# Frames, Quadratures and Global Illumination: New Math for Games



Robin Green – Microsoft Corp Manny Ko – PDI/Dreamworks

# WARNING

- This talk is **MATH HEAVY**
- We assume you understand the basics of:
  - Linear Algebra, Calculus, 3D Mathematics
  - Spherical Harmonic Lighting, Visibility, BRDF, Cosine Term
  - Monte Carlo Integration, Unbiased Spherical Sampling
  - Precomputed Radiance Transfer, Rendering Equation

- This is bleeding edge research (like new results *last night*)
- There are still a lot of unanswered questions

# **Some Definitions**

- $\mathbb{S}^2$  is the unit sphere in  $\mathbb{R}^3$
- $\xi$  is a point on the sphere

$$\xi = (\theta, \varphi)$$
 where  
 $\theta \in [0, 2\pi[$   
 $\varphi \in [0, \pi]$ 

$$\xi = (x, y, z)$$
 where  
 $\sqrt{x^2 + y^2 + z^2} = 1$ 

 Right-handed coordinate system, + z is up



# **Spherical Harmonics**

• The Real SH functions are a family of orthonormal basis function on the sphere.



# **Spherical Harmonics**

• They are defined on the sphere as a signed function of every direction

$$y_l^m(\theta,\varphi) = \begin{cases} \sqrt{2}K_l^m \cos(m\varphi)P_l^m(\cos\theta), & m > 0\\ \sqrt{2}K_l^m \sin(-m\varphi)P_l^{-m}(\cos\theta), & m < 0\\ K_l^0 P_l^0(\cos\theta), & m = 0 \end{cases}$$

• The functions are orthogonal to each other

$$\int_{\xi \in \mathbb{S}^2} y_i(\xi) y_j(\xi) d\xi = \delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

# **SH Deficiencies**

- SH produces signed values yet all visibility functions, BRDFs and light probes are strictly positive.
- SH projections are global and smooth, visibility functions are local and sharp.
- SH reproduces a signal *at the limit*. There is no guarantee the result is close to the original at low orders. Even at high orders it "rings" esp when restricted to the hemisphere.



#### **Haar Wavelets**

- Haar wavelets are spatially compact and produce a lot of zero coefficients.
- Generating 6 times the coefficients, papers rely on compression and highly conditional code.
- Projecting cube faces onto the sphere introduces distortions, and seams for filtering and rotation.



# **Radial Basis Functions**

- Radial Basis Functions are also used, usually sums of Gaussian lobes.
- Need to solve two variables direction and spread. Leads to conditional code that is not GPU friendly.
- *Zonal Harmonics* are another form of steerable RBF built out of orthogonal parts.



# **Smoothness vs. Localization**

 Haar and SH are two ends of a continuum – one smooth and global, the other highly local and unsmooth. This is Spatial vs. Spectral compactness.



Q: What lives in the middle ground?

# **Spatial vs. Spectral**

- It turns out, the Spatial vs. Spectral problem is exactly *Heisenberg's Uncertainty Principle*.
- You cannot have both spatial compactness and spectral compactness at the same time – e.g. The Fourier transform of a delta function is infinitely spread out spectrally.

• But... thanks to a theorem by David Slepian called the *Spherical Concentration Problem* you can get pretty close.

# **Fundamental Questions**

- 1. Where do these Orthonormal Basis Functions come from?
- 2. How can we loosen the rules so we can define better functions for our own use cases?
- 3. What are the key properties we need to retain for our functions to be useful?

#### What You Need To Know

• We are going to introduce *Frame Theory* and *Spherical Quadrature,* just enough to understand two key concepts:

# **Parseval Tight Frames**

# **Spherical t-Designs**

#### **Back to Fundamentals**

• We choose a vector space, like  $\mathbb{R}^n$  or  $\mathbb{C}^n$ 

$$x = \{x_1, x_2, \dots, x_n\}$$

where  $I = \{1, ..., n\}$  is an index set, we say the space has a dimension n

• Using the rules of Arithmetic we can add and subtract vectors, or multiply and rescale them using a Scalar value:

$$x + y = \{x_1 + y_1, x_2 + y_2, \dots x_n + y_n\}$$

$$3x = \{3x_1, 3x_2, \dots 3x_n\}$$

# **Back to Fundamentals**

• When we add an Inner Product and a Norm things get interesting:

$$\langle x, y \rangle = \sum_{i \in I} x_i^* y_i$$

$$|x| = \sqrt{\langle x, x \rangle}$$

• Now we can measure angles, perpendicularity, sizes, distance and similarity:

$$\langle x, y \rangle = 0 \Rightarrow x \perp y$$

• All of Geometry comes from these simple definitions

# **Hilbert Spaces**

• A Hilbert space  $\mathcal{H}$  is a vector space with a finite energy

$$\sum_{i\in\mathcal{H}}\langle e_i,e_i\rangle<\infty$$

- These *finite square summable* signals termed  $L^2$  after Lebesgue
- $L^2$  is the mathematical world of data we see in the real world
  - Photographs
  - Audio streams
  - Motion Capture or GPS data

# **Hilbert Spaces**

- The field  $\mathbb{C}$  has the inner product  $x\overline{y}$
- The field  $\mathbb{R}^n$  has the *dot product* defined  $\sum_{i=1}^n x_i y_i$
- The infinite dimensional space of finite sequences  $\ell_2(\mathbb{N})$  has the inner product  $\sum_{i=1}^{\infty} x_i \overline{y}_i$
- The space of functions on the interval [*a*, *b*] called *L*<sup>2</sup>(*a*, *b*) has the standard inner product:

$$\langle f,g\rangle = \int_{a}^{b} f(x)\overline{g(x)} \, dx$$

#### **Orthonormal Basis**

• An orthonormal basis  $\Phi$  for Hilbert space  $\mathcal H$  is a set of vectors:  $\Phi = \{e_i\}_{i\in\mathbb Z}$ 

where each pair of vectors are mutually orthogonal:

$$\langle e_j, e_k \rangle = \delta_{j,k}$$

$$\operatorname{span}(\Phi) = \mathcal{H}$$

- A span(x) is the set of all finite linear combinations of the elements of x

### **Orthonormal Bases**

- For example
  - the family  $\left\{\frac{1}{2\pi}e^{inx}\right\}_{n\in\mathbb{Z}}$  is an orthonormal basis for  $L^2(-\pi,\pi)$  called the *standard Fourier basis* from which we get the Fourier transform.



#### **Orthonormal Bases**

- For example
  - The family of polynomials  $\{1, x, x^2 \frac{1}{3}, x^3 \frac{3}{5}x, ...\}$  are the *Legendre Polynomials*, and form an orthonormal basis on the interval  $L^2(-1,1)$



# **Orthonormal Bases**

- For example
  - The family  $\{e_n\}_{n=1}^{\infty}$  is an orthonormal basis on  $\ell^2(\mathbb{N})$  where

$$e_1 = \{1,0,0,0,0,0,0,\dots\}$$
$$e_2 = \{0,1,0,0,0,0,0,\dots\}$$
$$e_3 = \{0,0,1,0,0,0,0,\dots\}$$

 $-\ell^2(\mathbb{N})$  is the infinite dimensional space of finite, time-related signals like audio, motion capture joints or accelerometer data.

# **Orthonormal Basis Characteristics**

• **Projection:** Given a signal or function  $f \in \mathcal{H}$ 

$$c_i = \langle e_i, f \rangle$$

• If  $e_i$  is a vector, this projection is a dot product. If  $e_i$  is a function in 1D this is an integral  $\int_a^b e_i(x)f(x)dx$ If  $e_i$  is a function on the sphere, this integral is over the sphere  $\mathbb{S}$  $2\pi \qquad \pi$ 

$$\int_{\varphi=0}^{\infty} \int_{\theta=0}^{\infty} e_i(\theta,\varphi) f(\theta,\varphi) \sin \varphi \, d\theta \, d\varphi$$

# **Orthonormal Basis Characteristics**

• Perfect reconstruction:

$$f = \sum_{i \in I} \langle e_i, f \rangle e_i \quad \text{ for all } f \in \mathcal{H}$$

• This says we can project then exactly reconstruct our signal from just it's coefficients

# **Orthonormal Basis Characteristics**

• Parseval's Identity:

$$\|f\|^2 = \sum_{i \in I} |\langle e_i, f \rangle|^2$$
 for all  $f \in \mathcal{H}$ 

- Sometimes called *norm preservation*, this says that the total energy in the function is the same as the magnitude of the coefficients.
  - This is a key property for a lot of algorithms. Working on coefficients is a lot quicker than working on functions.

#### **ONB Characteristics**

• Successive Approximation:

$$\hat{x}^{(k+1)} = \hat{x}^{(k)} + \langle e_{k+1}, x \rangle e_{k+1}$$

• This is a roundabout way of saying that projecting to a subset of indexes is the best approximation in a *least squares sense*.

#### **General Bases**

- We use Orthonormal Bases all the time
- Every rotation matrix in 3D is an Orthonormal Basis



#### **General Bases**

• What if you chose vectors that are not orthogonal?



#### **General Base**

 We can still represent points, but we need a "helper" basis to get us there.



#### **General Bases**

• We can now project the point  $f = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 

$$f' = \sum_{i=1}^{2} \langle \tilde{e}_i, f \rangle e_i$$

$$= \langle \tilde{e}_1, f \rangle e_1 + \langle \tilde{e}_2, f \rangle e_2$$
  
=  $(1 \cdot 1 + -1 \cdot 1)e_1 + (0 \cdot 1 + \sqrt{2} \cdot 1)e_2$   
=  $0 \cdot e_1 + \sqrt{2} \cdot e_2$ 

 $= \begin{bmatrix} 0\\\sqrt{2} \end{bmatrix}$ 



#### **Biorthogonal Bases**

• This second "helper" matrix is called the *dual basis*  $\widetilde{\Phi}$ 

$$\begin{array}{l} \langle e_1, \tilde{e}_1 \rangle = 1 \cdot 1 + 0 \cdot -1 = 1 \\ \langle e_2, \tilde{e}_2 \rangle = \frac{\sqrt{2}}{2} \cdot 0 + \frac{\sqrt{2}}{2} \cdot \sqrt{2} = 1 \\ \langle e_j, \tilde{e}_k \rangle = \delta_{j-k} \quad where \ \delta = \end{array}$$

• Biorthogonal bases are pairwise orthogonal and commute.

$$f = \sum_{i \in I} \langle \tilde{e}_i, f \rangle e_i = \sum_{i \in I} \langle e_i, f \rangle \tilde{e}_i$$

# **Matrix Notation**

- Now we switch to a matrix notation.
- Every basis in  $\mathcal H$  can be written as a matrix with basis vectors as columns

$$\Phi = \{e_1, e_2, e_3, \dots\}$$

$$= \begin{bmatrix} e_{1x} & e_{1y} \\ e_{2x} & e_{2y} \\ \vdots & \vdots \end{bmatrix}$$

$$p = \begin{bmatrix} x \\ y \end{bmatrix}$$

• Points are now column vectors.

# **Matrix Notation**

• Our projection and reconstruction now turn into *operators* 

$$p = \widetilde{\Phi}f$$
$$f = \Phi^*p$$

(where  $M^*$  is the transpose)

• We can now show that orthonormal bases are *self dual*:

$$\widetilde{\Phi} = \Phi$$
$$\widetilde{\Phi}\Phi^* = I$$

# **Breaking the Rules**

• What happens if we add another vector to the basis?

$$\Phi = \{e_1, e_2, e_3\} \qquad \qquad \widetilde{\Phi} = \{\widetilde{e}_1, \widetilde{e}_2, \widetilde{e}_3\} \\ = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & -1 \end{bmatrix} \qquad \qquad = \begin{bmatrix} 2 & 0 \\ -1 & 1 \\ -1 & 0 \end{bmatrix}$$

 Now we have an overcomplete system, and coordinates are now linearly dependent

#### **Breaking the Rules**



# **Breaking the Rules**

• We can still project a point and reconstruct it

$$p = \widetilde{\Phi}f \qquad f = \Phi^*p$$

$$= \begin{bmatrix} 2 & 0 \\ -1 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

## **General Biorthogonal Bases**

• Biorthogonal bases demonstrate *Perfect Reconstruction* but we lose *Norm Preservation* and *Successive Approximation* 

$$f = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad ||f|| = \sqrt{(1^2 + 1^2)} = \sqrt{2}$$

$$f' = \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix} \qquad \|f'\| = \sqrt{(2^2 + 0^2 + (-1)^2)} = \sqrt{5}$$

#### Frames

• This redundant set of vectors  $\Phi = \{e_i\}_{i \in I}$  is called a *frame* and the set  $\widetilde{\Phi} = \{\widetilde{e}_i\}_{i \in I}$  is the *dual frame* 

• Just like biorthogonal bases the frame and it's dual are interchangeable and reversible

$$f = \Phi \widetilde{\Phi}^* f$$
$$= \widetilde{\Phi} \Phi^* f$$
#### **Mercedes Benz Frame**

- Certain frames have properties that mimic Orthonormal bases.
- The *Mercedes Benz* frame has unit length elements and produces a norm 3/2 times too large:

$$\sum_{i=1}^{3} |\langle e_i, p \rangle|^2 = \frac{3}{2} ||p||^2$$

• 3/2 is the redundancy in the system.



# **Parseval Tight Frame**

• We can factor out this constant and we end up with a frame that obeys *Parseval's identity* 

$$\Phi_{PTF} = \sqrt{\frac{2}{3}} \Phi_{MB}$$

- This is called a *parseval tight frame*, or PTF.
- Parseval tight frames have all the same properties as orthonormal bases, except for *successive approximation*.



#### **PTF-Mercedes Benz is Self Dual**

• The PTF-MB basis is self dual and preserves the norm.

$$\Phi_{PTF}f = \begin{bmatrix} 0 & \sqrt{2/3} \\ -1/\sqrt{2} & -1/\sqrt{6} \\ 1/\sqrt{2} & -1/\sqrt{6} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0.8165 \\ -1.1154 \\ 0.2989 \end{bmatrix} = f'$$

$$\Phi_{PTF}^* f' = \begin{bmatrix} 0 & -1/\sqrt{2} & \frac{1}{\sqrt{2}} \\ \sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} 0.8165 \\ -1.1154 \\ 0.2989 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = f$$

 $||f|| = \sqrt{2}$  ||f'|| = 1.4142

## **Parseval Tight Frame**

- PTFs have *exact reconstruction* like orthonormal bases
- PTFs are *self dual*, so we do not need a *dual frame* to project



#### **Frame Bounds**

 A family of elements {e<sub>n</sub>}<sub>n∈Z</sub> in a Hilbert space H is a *frame* if there exists positive constants A and B such that:

$$A\|f\|^2 \le \sum_{n \in \mathbb{Z}} |\langle e_n, f \rangle|^2 \le B\|f\|^2$$

- The two values A and B are called the *frame bounds*
- Ensuring A > 0 means that the whole space is spanned
- Ensuring  $B < \infty$  means the space is finite

#### **Frame Bounds**

• We can categorize frames based on their construction

| $\ e_i\  = 1$ | Unit Frame           |
|---------------|----------------------|
| A = B         | Tight Frame          |
| A = B = 1     | Parseval Tight Frame |

• Any tight frame can be factored into a PTF

## **Gram Matrix**

 One way to check that a frame is a tight frame is to generate the *Gram Matrix* ΦΦ\*

$$M_{ij} = \langle e_i, e_j \rangle$$

• If the frame is Parseval Tight, it will have 1 in the leading diagonal and the frame bound A in the off-diagonals

$$\Phi = \{e_1, e_2, e_3, e_4\}$$

$$\mathbf{M} = \Phi \Phi^* = \begin{bmatrix} 1 & a & a & a \\ a & 1 & a & a \\ a & a & 1 & a \\ a & a & a & 1 \end{bmatrix}$$

# **Spherical Polynomials**

- A spherical polynomial is simply an expression in (*x*, *y*, *z*) that is evaluated on the surface of the unit sphere.
- Add the highest power on each axis to find the *order* of the polynomial, e.g.

$$f(x, y, z) = 3x^2 + yz$$

is a  $2 + 1 + 1 = 4^{th}$  order spherical polynomial



# **Integrating on the Sphere**

- We have three ways of integrating over a sphere
  - 1. Symbolic integration over  $\mathbb{S}^2$

$$\int_{\varphi=0}^{2\pi} \int_{\theta=0}^{\pi} e_i(\theta,\varphi) f(\theta,\varphi) \sin\theta \, d\theta \, d\varphi$$

2. Numerical integration using unbiased Monte Carlo

$$E(f) \approx \frac{4\pi}{N} \sum_{n=1}^{N} e_i(\xi_n) f(\xi_n)$$

## **Gaussian Quadrature**

• If you are integrating a fixed order polynomial over a closed range, Gaussian quadrature can find the integral using a small number of evaluations



- Trapezium Rule is a quadrature for linear curves.
- Simpson's Rule is a quadrature for quadratic curves.

# **Spherical Quadrature**

• Given a set of points and their weights, quadrature will quickly find you the integral

$$\int_{-1}^{1} f(x) dx = \sum_{j=1}^{N} w_j f(x_j)$$

- To find the integral over [a, b] we scale the range on x<sub>j</sub>
- This also applies to integration over the sphere, sometimes termed *spherical cubature*



# **Spherical t-designs**

- A spherical t-design is a special quadrature on the sphere where each point has the same weight  $\frac{1}{N}$
- There are designs in 3D for N points from 1 to 100, the full list of known low order designs is on the web.
- A t-design can accurately integrate a spherical polynomial of order t *and below*.



#### **Minimum Order t-designs**



# **The Mission**

- We need to find a spherical basis that is
  - Is defined natively on the sphere
  - Retains the norm as a Parseval Tight Frame
  - Allows us to select the number of coefficients
  - Is spectrally and spatially concentrated
  - Is cheap to project
  - Is cheap to rotate
  - Exhibits rotational invariance

### **Spherical Needlet**

• Thanks to Narcowitch et al, 2005 we have the *Spherical Needlet*, a type of third generation Wavelet

$$e_i(\xi) = \sqrt{\lambda_i} \sum_{\ell=0}^d b\left(\frac{\ell}{B^j}\right) \sum_{m=-\ell}^\ell \overline{Y}_{\ell m}(\xi) Y_{\ell m}(\xi_i)$$

Where  $Y_{\ell m}(\xi)$  are the complex Spherical Harmonics, *B* is the *bandwidth* and *j* is the polynomial order

## Simplifications

• The product-sum of all Complex Spherical Harmonics in one "row" is just a simple Legendre polynomial:

$$\frac{2n+1}{4\pi}P_{\ell}(\xi'\cdot\xi) = \sum_{m=-\ell}^{\ell}Y_{\ell m}^{*}(\xi)Y_{\ell m}(\xi')$$

• So needlets are defined in frequency space from orthonormal parts and are natively embedded on the sphere

### **Legendre Polynomials**

• The Legendre polys are normalized to simplify the definitions.

$$L_{\ell}(\xi' \cdot \xi) = \frac{2n+1}{4\pi} P_{\ell}(\xi' \cdot \xi)$$

 Legendre polys can be quickly generated iteratively using Bonnet's Recursion:

$$(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x)$$
  
where  $P_0(x) = 1$   
 $P_1(x) = x$ 

## **Littlewood-Paley Decomposition**

• The key part of the algorithm is the  $b\left(\frac{\ell}{B^{j}}\right)$  function.

$$f(t) = \begin{cases} \exp(-\frac{1}{1-t^2}), & -1 \le t \le 1\\ 0, & \text{otherwise} \end{cases}$$
$$w(u) = \frac{\int_{-1}^{u} f(t) dt}{\int_{-1}^{1} f(t) dt}$$
$$p(t) = \begin{cases} 1, & 0 \le t \le \frac{1}{B}\\ w(1 - \frac{2B}{B-1}(t - \frac{1}{B})), & \frac{1}{B} \le t \le 1\\ 0, & t > 1 \end{cases}$$
$$b(t) = \sqrt{p(\frac{t}{B}) - p(t)}$$

• Defined as a continuous function, evaluated at integer points.

# **Littlewood Paley Decomposition**

• LP Decomposition allows us to break down spectral space into chunks of bandwidth *B*.



### **Spherical Needlet**

• For use in signal space, the needlet is defined as:



## **Spherical Needlet**



#### What does this integrate to?



#### What does this integrate to?



#### Needlet B=2.0 and j=1



#### Needlet B=2.0 and j=2





-1 D





# **Spherical Basis**

• The complete spherical basis is a set of needlets, each pointing in a quadrature direction

$$\Phi = \{e_i\}_{i \in (1,N)}$$

- 1. Needlets are a solution to the *Spherical Concentration Problem* 
  - for a given bandwidth it is the most compact spatial support
- 2. The sum of needlet bases over  $j = \{2,3,4,...\}$  form a tight frame on the sphere.
- 3. A needlet of order N can exactly reconstruct spherical polynomials of order N and below.



#### **Needlet vs. SH**



# **Monte Carlo Sampling**

• Sampling needlets correctly requires non-uniform sampling



# **Fast Projection**

- Needlets are radially symmetric (  $\xi \cdot \xi_i$  is a scalar)
- The needlet function is 1D
- Approximate the needlet with a LUT, lerp the values.

Plot error of lerp LUT versus actual function.

#### **Fast Rotation**

• The same rotation idea as SH, generate a matrix that reinterprets a needlet as sums of other needlets.

$$M_{ij} = \langle e_i, Re_j \rangle$$
  
=  $\int_{\xi \in \mathbb{S}} e_i(\xi) e_j(R(\xi)) d\xi$ 

- The bases  $e_i$  and  $Re_j$  differ only in the quadrature direction.
- Which falls out to be a 1D function...

#### **Fast Rotation**

• By calculating each angle offset integral and tabulating it, we can generate a rotation function.



-3

-2

# **Key Features of a Spherical Basis**

- Radially symmetric basis
  - Allows fast projection
  - Allows fast and stable rotation
- Defined from natively embedded atoms
  - No parameterization problems
  - Use *lifting* to construct a more performant basis
  - Spherical concentration shows that localization is possible
- Using Frames
  - Allows simpler definition of the problem
  - Who needs successive approximation anyway?
## **Future Work**

• Littlewood-Paley is just one *partition of unity* optimized for spectral concentration. Other papers have optimized for spatial and other metrics.

## **Key References**

- D. Marinucci et al, "Spherical Needlets for CMB Data Analysis", arxiv.org/pdf/7070.0844.pdf, 2008
- F. Guilloux et al, "Practical Wavelet Design on the Sphere", Applied and Computational Harmonic Analysis, 2008
- J. Kovacevic et al, "*Life Beyond Bases: The Advent of Frames*", Signal Processing Magazine, IEEE, Vol.24, No.4, July 2007
- T. Hines, "An Introduction to Frame Theory", Aug 2009, <u>http://mathpost.asu.edu/~hines/docs/090727IntroFrames.pdf</u>

