

Crowds in Hitman: Absolution

Kasper Fauerby

Lead Programmer at IO Interactive

Highlevel goals

Quality over quantity

- Around 1200 agents per crowd, 500 on-screen
- Player should not distinguish between crowd & npc actors

Ambient crowd behaviors

- Mill around
- Be aware of points of interest & react to player actions
- Level designer has partial control of placement & movement flows

Panic crowd behaviors

- Evacuate the crowd area
- Help enhance the action experience of the game
- Never get in the way of the player during action

Crowds in general

- Two main approaches to crowd simulation:
- Global knowledge / global solution to simulation
 - Continuum based crowds with dynamically updated potential fields
 - Impressive results, especially looking at the actual simulation
 - 10.000 character army charging city gates, near-perfect evacuation of buildings etc.
 - But: Usually requires a limited set of fixed goals
- Agent based
 - No goals (just mill around)
 - Very local behavior
 - Movement can appear very erratic & the individual agents can seem stupid

Crowds in general

Crowds in a game

- The "fun factor" is the most important thing
- Perfect simulation (no intersections or stopping up) becomes secondary
- Must be very dynamic and react to player actions
- Level designers must have quite a lot of manual control
- Each agent must visually be of an acceptable quality, even when viewed up close

My opinion

The best approach is that of a traditional, but lightweight, AI system

•O• Io-Interactive

Our crowd system

- Main components of the crowd system
 - Framework: The cell map, agent model, tools
 - AI: Steering & behavior selection
 - Visuals: animation and character meshes
 - Believability: integration with core gameplay features

The cell map

- We could just add X agents to the world, but:
 - We need very fast navigation mesh queries
 - We need very fast neighborhood queries
 - We need very fast checks for walls & other static obstacles
- We overlay a regular grid on top of the nav mesh
 - This means that the crowd area is only 2.5D (no overlaps in height)
 - · Memory usage scales with area of a rectangle, even if walkable region is sparse
 - Each cell stores
 - Walkable/unwalkable flag
 - Current agents in cell (stored as an intrusive singly linked list)
 - Can also annotate the map with additional info, as needed for gameplay

The cell map

Cell annotations

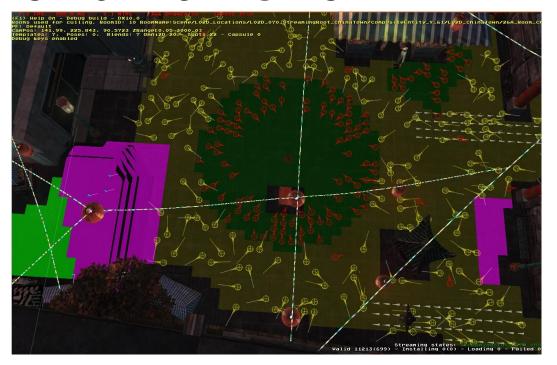
- Exclusion zones
- Panic only cells
- Ambient flow vectors
- Teleporters
- Exit zones

Agent model

- Craig W. Reynolds
- Agent "particles"
 - Position
 - Radius
 - Forward vector
 - Speed
 - Steering input

Tools: Agent placement

- Agents are distributed onto the cell map as:
 - Manually placed individuals
 - Manually placed groups of agents
 - Randomly placed agents


Manually placed individuals

Originally a debugging tool, but ended up being used quite a lot by level designers

Groups

- This is what designers really wanted!
- Position and shape: spherical or square
- Agent count
- Optionally: A list of POIs.
- Optionally: A list of idle animation overrides

The crowd framework

Crowd AI

Based on a state machine

- Basic navigation states: Idle, "pending walk", walk
- Other gameplay states: Alert, dead, possessed, prone, scared etc.

State specific memory

- Each state can define a "memory class" which stores arbitrary AI memory data
- Placed in fixed-size (small) memory block on each agent
- Wiped & initialized when entering state

Every frame the agent "Thinks"

- Steps the AI, using current state and current state memory
- Ask current state if a state change is wanted
- In some cases, change state randomly

Steering: Pending walk

Used when

• Agent is standing still, but wants to be moving.

Purpose

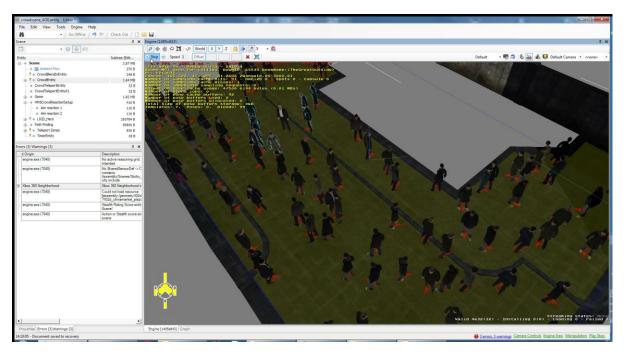
- Find the best valid direction and time to start moving
- Since agent is usually in a crowded place this requires some AI logic

Sub-phases

- "Search for direction"
 - Send out probes to check for wall collisions and other obstructing agents
 - Probe direction is changed every frame, favoring directions in front of agent
- "Wait for clear"
 - Wait until agent can start moving
 - Communicate a wanted state change to the agent (into walk state)

Steering: Walk

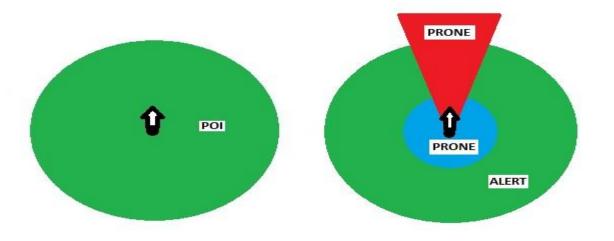
- Used when
 - Milling about
- Purpose
 - Move agent around, avoiding collisions with walls and other agents
- Algorithm
 - Find preferred direction
 - Check for walls, and steer to avoid collision
 - Check for avoid zones and ambient flows
 - Apply wander behavior (Reynolds)
 - Sample neighborhood for dynamic obstacles, select worst threat (Reynolds)
 - Do "unaligned collision avoidance" to get actual steering direction (Reynolds+)
 - Either accept the steering, or communitate a wish to stop moving


Steering: Panic

- Same as "Pending walk" / "Walk", but tweaked differently
 - Higher speed means different settings for probing for walls, collecting neighbors etc
- Panic steering relies heavily on "panic flows"
 - Each exit in the crowd becomes one separate "flow channel"
 - When cell map is generated, each flow channel is calculated
 - Each cell stores: direction to exit, along shortest path, and total cost to reach that exit
 - Each agent dynamically switches between flow channels to quickly flee the map
- Needs some manual guidance/annotation in narrow spaces
 - Panic flows are based on modified Dijkstra algorithm
 - Shortest path generates choke points around corners

Steering: Key learnings

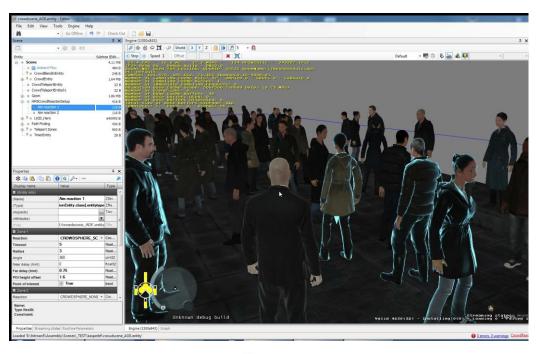
- This turned out to be hard in dense environments!
 - Lots of "magic numbers" to tweak
 - Especially hard when having multiple movement speeds
- Using speed for steering
 - Turned out to be critical!
 - First decide on a initial *preferred* and *max* speed (for example: *walk relaxed* and *walk fast*)
 - Each steering component (wall or dynamic avoidance) then reports:
 - New preferred speed
 - New maximum possible speed
 - Decision is based on, for example, distance to wall or whether or not a speed change can resolve a dynamic collision
 - A real human often prefers slightly changing speed over changing direction
- Favor stopping to radically changing direction


Video: Steering behaviors

Behavior selection

- Navigation AI automatically handles state changes
- More specific AI states are handled differently
 - A data-driven system makes the crowd react to various players actions
 - For example: aiming a gun, shooting, acting suspicious
- A player action spawn up to 3 user-configured zones
 - Radius & angle (spherical or cone)
 - Agent reaction type: (POI, avoid, alert, scare, go prone)
 - Reaction types are listed in "order of importance", and a zone can override less important zones

Behavior zones

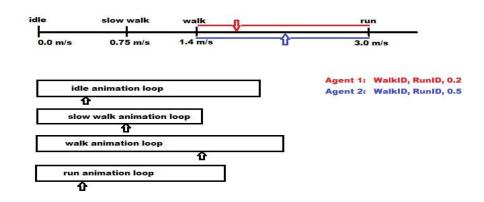


POI AVOID ALERT SCARE PRONE

Behavior zone pulses

- Zones continously send "pulses" into the crowd
 - This way each zone "pushes" itself on the affected agents
- When an agent is hit by a behavior pulse
 - Is this is now the currently most important behavior zone?
 - Check current agent mood (ambient, alerted, scared, paniced, dead)
 - Check "inflicted mood" from zone (derived from reaction type)
 - During "Think"
 - If mood for current zone is strictly worse than the current agent mood, then we change AI state
- Benefits of system
 - Level designer configures the behavior on a per-crowd basis
 - Quick and easy way to handle multiple inputs to the agents

Video: Behavior selection


Animation: First attempt

What and how?

- Fit animations on top of simulation
- Share a number of looping clips between all agents (idle, walk, run etc)
- At any time: animation state for an agent is two animation IDs and a blend weight

Why?

- Concerned about animation performance
- Simple to implement

Animation: First attempt

Pros

- Performance was great
- Navigation logic was stable
- Agents can move at any speed!

Cons

- Overall robotic look and feel
- Foot sliding in transitions: idle -> walk -> idle
- No turn/banking animations
- Agent animation looks synchronized
 - So we added multiple loops per animation, started at random times...
- Tedious and manual approach to controlling animation state from AI code
- Code involved in adding new animations to the system
- Hard to avoid animation glitches and blend errors

Overall

The approach was valid, but we had higher ambitions than that....

Animation: Second try

What and how?

- Ambitious goal 500 agents on screen with no foot sliding plus support for transition and turn/banking animations
- Based on heavily modified version of "Near-optimal Character Animation with Continous Control"
 - Annotated motion clips, high-level steering inputs, data driven
- Agents are now moved by a trajectory channel in the animations, rather than from steering velocity!
- Each visible agent now needs a uniquely blended animation pose, much like an ordinary NPC

Why?

- Player gets very close to the individual agents
- We felt that having a high quality of animation on each individual was needed for achieving a believable crowd experience
- Avoid the robotic feel

Animation: Second try

Pros

- Looks much better ©
- Completely removed tedious animation management code from the crowd AI
- Greatly simplified the AI code itself

Cons

- Took a lot of work to implement and optimize
- In rare cases a bit more control over the animations can be useful
- And very importantly: Agents reacts *much* slower to steering input, which makes it harder to avoid collisions and intersections!

Overall conclusion

- It was a great success!
- The approach we used for crowd agents might be how we control real NPCs in future games...

Animation

Check GDC Vault for: "Animation
 Driven Locomotion for Smoother
 Navigation" for further inspiration!
 (Gabriel Leblanc, Shawn Harris, Bobby Anguelov)

Believability

Main challenges:

- Core game mechanics: close combat, human shield etc
- Detail animation
- Visual variety

Core game mechanics

- No wish to have duplicate implementation
- Possession system
 - On-demand upgrade agent to full NPC AI
 - Allocates small pool of invisible NPCs
 - Simple API allows game programmers to switch between crowd agent and NPC
 - Made it trivial to support advanced gameplay mechanics

Detail animation

- Head IK
- Crowd acts
 - Talk on phone, smoke, sit on bench
 - Uses possession system and existing cut-scene tools
 - Spawns randomly near player
- Upper body acts
 - Lightweight overlay anims: cough, wave etc.
 - Can play while agent walks around

Visual variety

- Unique scaling factor for each agent
 - Small amount: ~5%
 - Softens up horizon
 - Does wonders for percieved diversity of crowd
- Diffuse texture overrides
 - Simply replace the diffuse texture of material
 - Cheap way of having red shirt, yellow shirt etc..

Performance: PS3

- Some numbers: 1200 agents simulated, 500 on-screen
- PPU: 5ms
 - Animation system: ~2ms
 - Crowd AI / steering: ~2ms
 - Framework: ~1ms
- SPU: ~20ms, distributed across multiple SPUs
 - Animation sampling
 - Animation blending
 - Animation selection logic
 - Frustum and occlusion culling
 - Crowd AI sensors (more later)
- GPU: 8ms
 - Listed here as an example, but obviously very dependent on render tech and meshes used
 - In G2: the vertex shader is limiting factor on PS3 due to skinning massive amount of vertices

Performance

Scaling?

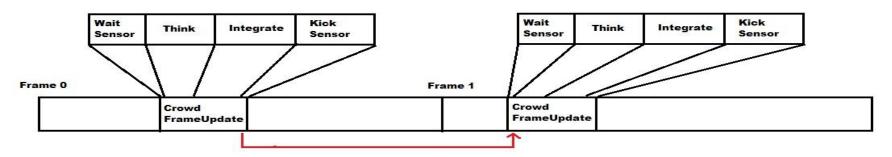
- System has very low general overhead
- Scales nearly linearly with number of agents in crowd
- Culled/on-screen ratio also affects performance, due to animation cost

Memory layout: Agent data

- On the PS3 the memory layout is one of the most important things for performance
- AI: code is pretty simple, but called many times and:
 - Performs a lot of neighborhood searches
 - Inspects properties on all neighbor agents
- Size of a full agent ~256 bytes
- Separate out "agent core". Stores the most basic properties: position, speed etc. 36 bytes
- Each agent object has a pointer to its corresponding core
- Allocate all cores as a single, 128 byte aligned, block of memory (1200 agents: 42kb)
- Reduces cache missing during simulation and fits on SPUs

Memory layout: Cell map

- Conceptually each cell stores many different pieces of data:
 - Walkable/non-walkable (and other "cell flags")
 - Flow vectors
 - Heights
 - Head pointer of linked list of current occupiers
- Bad implementation
 - Implement class ZCell, map is an array of ZCell objects
- Good implementation
 - Map is 4 arrays, each storing a different attribute
- Why?
 - Array of struct vs. struct of arrays
 - Usually an algorithm is only interested in *one* of the attributes
 - Which can then be 128 byte aligned
 - Which can (more easily) fit on SPU local store
 - Spans less memory, in turn causing less cache misses



Crowd AI & steering on SPUs

- Moving the entire AI code to SPU is hard
 - Has many dependencies between components in the system
 - Virtual methods
- Profiling showed a few hotspots
 - Neighborhood gathering
 - Raycasting through cell map
 - Selecting "worst threat" for steering
 - All hotspots are isolated algorithms, working on a limited input!
- Added sensor system
 - Sensor input: position and radius for neighborhood, raycast requests etc
 - Sensor output: Current neighborhood, current worst threat, ray results

Steering with sensor data

- Sensor input is usually fixed
 - Probe a certain distance ahead of agent for walls
 - Collect around agent
 - Select worst threat
- Sensor input is usually configured once when entering AI state
- Actually, sensor output is not 1 frame delayed
 - (except for first frame in state)

Sensor updates on SPUs

- Each job updates X number of agents
 - So it fans out on multiple SPUs
- Needed data on local storage
 - Agent cores: ~42kb
 - For ray casts: ~16kb
 - Our crowds have around 16k cells
 - Cell flags: Array of bytes
 - For neighborhood searches: ~32kb
 - Head pointers from cell map (stored as 16bit indices)
 - Linked list is intrusive, stored in agent cores
 - Sensor input/output for each of the X agents: ~3kb (30 agents per job)
- In total: ~93kb of data needed. Plenty of room for code.

Conclusions

- We managed to create a new crowd system that is a significant step up from our previous system
- We managed to achieve very good performance, which was necessary since the crowd has to integrate with a full game
- Having a proper layout of data is critical for performance when handling massive amount of characters
- It is a time consuming task to tweak all the magic numbers in steering code
- Having proper animation on characters in very dense crowds is very hard, since steering relies on quick reactions from the characters

Questions?

(Also feel free to email me at: <u>kasperbf@ioi.dk</u>)

- A big thank you to:
 - Michael Büttner
 - Nis Haller Baggesen
 - Bobby Anguelov