
Animation-Driven Locomotion For
Smoother Navigation
Bobby Anguelov
AI Programmer, IO Interactive
Gabriel Leblanc
AI Programmer, Eidos-Montréal
Shawn Harris
Senior Programmer, Big Huge Games

Format

● Introduction to Animation-Driven
Locomotion (ADL)

● Big Huge Motion Planning

● Eidos / IO Interactive Motion Planning

● Hitman: Absolution Case Study

Animation-Driven Locomotion

● Animation defines spatial transformations

● Movement can reflect kinematic properties of
animations.

Motivations for ADL

● Invalid kinematics break immersion

● ADL systems allow complex motion sets

● Animators work directly reflected in game

Navigation and ADL

● What is the goal of using ADL for Agents?

● Realistic, high fidelity visualization with
complex continuous ranges of movement

● Navigate within the constraints of the system.

Using ADL

● ADL is simple, usage patterns are hard!

● Multiple approaches

● Varying complexity

Complexity and Fidelity

ADL

Common Thread

● Same Problem

● Multiple Solutions

● Choosing the best approach is difficult

Reckoning‟s ADL System

● ADL Roadmap

● Motion Planning

Reckoning ADL Roadmap–Player Movement

● Wanted ADL for player character

● Motion graph implemented

● Extracted data from animation node

Reckoning ADL Roadmap–Player Movement

● Orientation - Procedural and ADL

● Blending of movement information

Reckoning ADL Roadmap – NPCs

● Used tech developed for the player

● Attempted real time motion graph search

Reckoning ADL Roadmap – NPCs

● Used system defined for player character

Motion Planning – Developed Tech

● ADL

● Linear and rotation
data encoded

Motion Planning – Developed Tech

● Motion Graph

● Defined by designers

● Conditional Links

● Tree like interface

Motion Planning – Developed Tech

● Motion Graph

● Became very large

● Grouping for organization needed

Motion Planning – Facilities Available

● Animation Blending

● Additive Animation Blending

Motion Planning – Facilities Available

● Procedural ADL Adjustments

● Ability to adjust linear and rotational output

Motion Planning

● How is motion planning completed?

● Motion graph does all planning

● Graph considers graph state, input, and game
state.

● How do we ensure orientation?

● Procedural orientation

● Foot slide still occurs

Motion Planning

● How is navigation fidelity improved
through this system?

● Straight line movement looks great and foot
slide is prevented

● Overall increase in fidelity in movement
and combat

Motion Planning-Detriments

● Fidelity to time cost high

● Foot sliding still occurs

Motion Planning - Benefits

● Low overhead for motion planning code

● Non-emergent results

● Easy addition of animation fidelity

● Good stepping stone

An ADL Approach to Foot Step Planning

● This system will:

● Respect the kinematics of walking at all times

● Reach destinations precisely with proper
orientation

● Use a per segment navigation
approach without steering

An ADL Approach to Foot Step Planning

● Why bother ? Our needs:

● Stay exactly on a path at all times

● To support planned interactions during locomotion

● Full body IK can only correct to a certain extent

● Characters that are able to convey their mood
through their navigation

● Specific clips depending on context and
turn angles

An ADL Approach to Footstep Planning

● This system is best suited for:

● Characters with high constraints on their
locomotion

● Stable targets

● Slow pace navigation

An ADL Approach to Footstep Planning

● Why slow pace navigation ?

● Longer strides delay reactivity

● Runway requirements limit possible paths

● …probably just not worth it in fast moving
clips

Approach Overview

● Requirements

● The footstep planner

● Dealing with foot sliding

● Collision avoidance

● Adding more emotions to locomotion

Animation requirements

● A complete animation set that covers
what your character can achieve

● Start, Move, Turn and Stop clips

● Detailed clips with information on current
feet status

● Extracted information on translation and
rotation

A typical animation set

● Start animations that covers all angles

● -180⁰, -90⁰, 0⁰, 90⁰, 180⁰

A typical animation set (turns)

A typical animation set

● Give some slack to your animators !

● Animation clips can have different length as long as they reach
critical points at the same percentage of the clip

● Failure to do so can result in bad blends

A typical animation set

● Stop animations for each leg, every angle
● We choose this to eliminate NPCs stopping and then turning on

themselves to reach final orientation

A typical animation set

● To build a complete navigation set for one stance:

6 start clips
8 turn clips
1 move cycle
10 stop clips

● At ~50 frames per clip, this requires more or less 1250
frames

● 410KB in our test bed after compression

● Double that if you need to support variable speeds

● Not a must in this system

Clip details

● Need information on foot ground contacts, foot passing to
properly branch to different clips

● Annotations or analysis

● Contact will be more responsive but with less acting
compared to Passing

Foot contact Foot passing

Let your animators

decide!

Footstep planning

● We do not want to start out stop clips unless
we are exactly on the branching position

● In ADL there are two critical spots where we need to
be precisely on our foot branching position:

● Before a pivot

● Before our goal

● Before interactions

Footstep planning

● Path needs to be stable for planning to work

Footstep planning

● Simple path containing two segments

● Plan will contain a start, a turn, a stop and several steps

● Need to stay on the funneled path at all times to prevent
hitting obstacles (i.e. walls)

● First we need to turn exactly on the pivot

Footstep planning

● We know we‟ll need at least our Start and the first part
of the Turn clip, so let‟s insert them in our plan

Footstep planning

● We can now insert Steps, one leg after the other, until we
reach our Turn clip

Footstep planning

• We can now insert Steps, one leg after the other, until we
reach our Turn clip

• As expected, we will almost never fit properly.

• We can either take the extra step and reduce the
displacement of every clip or skip it and
augment them

Footstep planning

• We want to select the plan that will minimize the
modification to the displacements

• In this case, we will go with fewer steps but make them
longer

• We want to spread the distance we were missing with
4 steps through the whole segment for uniformity

• Even so, we will introduce foot sliding

Footstep planning

● We repeat this process for every segment

● Calculate by how much you would overshoot or undershoot
the current target and annotate the path with that
information

Dealing with foot sliding

● With this type of planning the error will be at max half a
footstep span

● IK can usually hide this error well enough

● Path post processing is an elegant way to eliminate sliding
altogether

Path Post-Processing: Funnel Algorithm

● Standard path-finding only cares about the
shortest path

● Post-processing is used on navmesh paths
for „smoothing‟ usually something like simple
funnel algorithm step

● Funneling results in paths hugging exterior
navmesh edges so navmeshes are often
eroded away from obstacle geometry

Original
Navmesh

Path

Funneled
Navmesh

Path

Path Post-Processing: Shortest Paths

● Why the obsession with the shortest path?
● When path length variations of 10~15% wont be

noticed

● Why do we have paths that hug corners
● When humans don‟t walk that way

● Why do we try to hide an error that results
from forcing animations onto our paths?

Why don’t we simply force our paths onto
our animations

Funneled
Navmesh

Path

Path Post-Processing: Corner Push Away

● We create a path push-away vector at each
path vertex

● The push-away vector can be any vector
directed away from the corner

● One approach is to average the orthogonal
vectors of the previous and subsequent path
segments at a vertex

Funneled
Navmesh

Path

Path Post-Processing: Corner Push Away

● We create a path push-away vector at each
path vertex

● The push-away vector can be any vector
directed away from the corner

● One approach is to average the orthogonal
vectors of the previous and subsequent path
segments at a vertex

● The path can be pushed away from corner
and thereby its length can now be
dynamically modified

Pushed
Navmesh

Path

Path Post-Processing: Reducing the Error

● The error per segment is always at most half
a footstep

● Once a path is found we plan our footsteps
and calculate the distance error per segment

● By pushing away from corners, we can
increase the length of the two path segments
at that vertex thereby decreasing the error
for those segments

10cm

17cm

15cm

7cm

Path Post-Processing: Reducing the Error

● How much do we push per vertex?

● Multivariate optimization problem

● A simple approach can get us most of the
way

● We can modify the push direction in favor of
the larger error

● While there is an improvement in the error
for both segments we keep pushing

10cm

17cm

15cm

7cm

Path Post-Processing: Reducing the Error

● How much do we push per vertex?

● Multivariate optimization problem

● A simple approach can get us most of the
way

● We can modify the push direction in favor of
the larger error

● While there is an improvement in the error
for both segments we keep pushing

10cm

17cm

2cm

13cm

Path Post-Processing: Reducing the Error

● How much do we push per vertex?

● Multivariate optimization problem

● A simple approach can get us most of the
way

● We can modify the push direction in favor of
the larger error

● While there is an improvement in the error
for both segments we keep pushing

10cm

17cm

15cm

2cm

Path Post-Processing: Reducing the Error

● How much do we push per vertex?

● Multivariate optimization problem

● A simple approach can get us most of the
way

● We can modify the push direction in favor of
the larger error

● While there is an improvement in the error
for both segments we keep pushing

10cm

9cm

4cm

2cm

Path Post-Processing: Reducing the Error

● How much do we push per vertex?

● Multivariate optimization problem

● A simple approach can get us most of the
way

● We can modify the push direction in favor of
the larger error

● While there is an improvement in the error
for both segments we keep pushing

10cm

9cm

4cm

2cm

Path Post-Processing: Reducing the Error

● How much do we push per vertex?

● Multivariate optimization problem

● A simple approach can get us most of the
way

● We can modify the push direction in favor of
the larger error

● While there is an improvement in the error
for both segments we keep pushing

3cm

4cm

4cm

2cm

Path Post-Processing: Reducing the Error

● Path post-processing won‟t be able to
completely reduce all per segments errors
in one pass

● The more processing time you give it the
better the results

● ~10% error per segment is perfectly
acceptable and can be hidden without
causing foot sliding

Path Post-Processing: Aesthetics

● By pushing paths away from corners we
can improve the visual quality of paths

● Especially useful with regards to tight
turns e.g. doorways and staircases

● We can also prevent wall hugging while
keeping the navmesh as close to
obstacles as possible

● Reduce number of path segments

Using the footstep planner to our advantage

● ADL is all about empowering the
animators

● The footstep planner allows customization
of the locomotion as well as preparing for
interactions

Using the footstep planner to our advantage

● Take this example plan containing two segments

● We can easily alter the plan by cutting a few
steps and inserting a custom animation

Using the footstep planner to our advantage

● Take this example plan containing two segments

● We can easily alter the plan by cutting a few
steps and inserting a custom animation

● Lets remove 3 steps (right - left - right …)

Using the footstep planner to our advantage

● Take this example plan containing two segments

● We can easily alter the path by cutting a few
steps and inserting a custom animation

● Lets remove 3 steps (left - right - left …)

● We can replace it by an animation that will break
repetition while ensuring we stay on path

Collision Avoidance in ADL

● Cant talk about locomotion without
discussing collision avoidance

● Collision avoidance (CA) is tied to the
locomotion system used in the game

● CA is a pretty common problem and so
can be taken for granted

● There are certain considerations to take
into account with ADL CA systems

ADL CA:

ADL has one major drawback when it comes to CA:

Latency
● With most ADL systems, NPCs can only react/transition at

footstep events / transition markers

● Reaction latency is the time between footstep events and
varies across movement speeds

ADL CA: Latency

● Both the reaction latency and the resultant NPC motion need to
be taken into account when doing ADL CA

● Therefore Collisions need to be predicted and not simply
reacted to

● Reciprocal collision avoidance for pedestrians (RCAP) - 2010

● Latency was also a significant problem in the extremely dense
1200 character HM:A crowds, which made use of a simplified
motion graph controller

Wednesday,
15:30 - 16:30

Room 2006,
West Hall, 2nd Floor

Crowds in Hitman: Absolution – Kasper Fauerby

ADL CA: Lack of Steering

● Most CA techniques make use of velocity obstacles in
some form or other – ORCA / RVO / Clearpath

● They also often tend to assume that characters are
“steered”

● Steering allows for immediate and fine-grained
manipulation of angular acceleration / speed

● Traditional steering often results in foot sliding

ADL CA: Lack of Steering

● Using velocity obstacles for ADL CA can
be overkill

● Since we pre-plan motion, we know an
NPC‟s exact position and velocity at any
given point in the path

● We simply can perform localized collision
detection along NPCs‟ planned paths

ADL CA: Footstep Re-planning

● Once a collision is detected, we can react to it by either
changing speed or by navigating around it

● With footstep planning all avoidance actions will require
re-planning of all footsteps along the remaining path.

● This re-planning may also require a new path post process
step

ADL CA: Transitions

● Start / Stop transitions can be problematic since NPCs are
effectively uncontrollable during the transition

● Transition animation trajectories should be kept as short
as possible

● Non-linear motion during transition can make collision
detection difficult

● Ensure that NPC‟s are guaranteed to be collision free
before triggering a start transition

● Collision avoidance is a very game specific
problem - there is no silver bullet

● Hitman: Absolution also makes use of ADL
although we don‟t use foot step planning

● Even so, HM:A is still a good case study for
collision avoidance using pre-planned ADL
motion

ADL CA: Case Study

Hitman: Absolution

● Marketing Flash / crap

The Original Assassin is Back!

• The biggest Hitman game yet!
• Using the Glacier2™ Engine

Hitman: Absolution

CA in HM:A – Constraints Design

● In HM:A, we have a new gameplay mode called
“Instinct” which allows agent 47 to predict all NPC
paths

CA in HM:A – Constraints Design

● In HM:A, we have a new gameplay mode called
“Instinct” which allows agent 47 to predict all NPC
paths

● Our NPCs MUST follow their paths exactly (on-rails)

● NPC paths need to look good and NO foot sliding

● Our post processed paths are converted to a set of
quadratic Bezier curves

● We can‟t constantly modify paths while performing CA

CA in HM:A – Constraints Locomotion

● We don‟t use footstep planning

● NPCs don‟t have turn animations – we blend in a banking
animation when turning

● Discrete movement speeds – walk, jog, sprint, etc…

● In the end we built a really simple system to handle our
specific avoidance needs

CA in HM:A – Collision Detection

● We make use of animation metadata to create a local
collision horizon

● NPC motion is predicted for that collision horizon along
the NPC‟s path

● Collisions are detected by performing moving sphere
intersection tests for the NPC‟s predicted motion

CA in HM:A – Allowing Collisions & Conclusion

● There are always going to be cases where collisions are
unavoidable E.g. During start/stop transitions

● In such cases, we simply allow the collision to occur and play
an upper body act to try and hide the collision as much as
possible

Conclusion

● This system is not intended to replace all
other approaches

● Pick what works best for your
requirements

Pro‟s

● High fidelity, continuous movement

● Customizable handling of turns

● Interactions can be planned

● Respects the path and destination at all
times

Con‟s

● Latency can make navigating a dynamic
environment difficult

● High memory requirements

● Short distances aren‟t friendly

Thanks to:
Alex Champandard –aigamedev.com

Michael Buttner – IO Interactive

Josh Watson – Big Huge Games

Matt Gray – Big Huge Games

Everyone at Eidos-Montréal

Questions?

bobbyan@ioi.dk

sharris@bighugegames.com

gabriel.leblanc@eidosmontreal.com

