
Math for Gameplay / AI

John O’Brien
Senior Gameplay Programmer
Insomniac Games, Inc
jobrien@insomniacgames.com
jobrien@nc.rr.com

mailto:jobrien@insomniacgames.com
mailto:jobrien@nc.rr.com

Overview

● Basic Object Intersection Tests

● Real gameplay example(s)

● AI-specific topics

● Bayes’ Theorem

● Fuzzy Logic

Object Intersections

● In simulation and AI code, we rarely want
to use actual object meshes to test for
collision.

● Simplified collision representations are
used instead.

Object Intersections

● Gameplay and AI code often requires
checks between “real” game objects and
abstract things like zones.

● AI usually needs to analyze and represent
the world situation in a simplified way.

Bounding Spheres

● Simplest representation.

● Often used as 1st pass or screening check before
using more detailed technique.

1C
2C

1r

2r

d

Bounding Sphere Representation

● Only need a Point and a radius.

C

r

Bounding Sphere Pros and Cons

● Sphere intersection tests very simple and
cheap

● Spheres are rarely a close fit to the shape
of an object in the game world.

Sphere – Sphere Intersection

● The spheres intersect if

● A fast computation of this check takes the form:

1C
2C

1r

2r

d

21 rrd

)(21

2

rr)()(2121 CCCC

Sphere – Plane Intersection

● Using the center of the sphere as the origin, the
sphere can be described as:

● The equation for the plane is:

2222 rzyx

dczbyax

Sphere – Plane Intersection

● Sphere and a plane intersect if d < r, where d
equals the absolute value of the plane equation.

1C 1r
d

Axis-Aligned Bounding Boxes

● An AABB is a box surrounding an object
which is aligned to the world-axes.

AABB Representation

● Can be represented by 2 points – the
minimum and maximum x,y,z positions

),,(mxmxmx zyx

),,(mnmnmn zyx

AABB Pros and Cons

● Pros

● Simple representation

● Very cheap intersection computations

● Cons

● Need to be re-computed each frame

● Not necessarily a good fit to a model

AABB – AABB Intersection

● Very simple to calculate. For each axis, and
each object, check if the maximum for one object
is less than the minimum for the other. If this is
true for any axis, the objects do not intersect.

● Repeat for each axis.

false;return

) A.min.x) (B.max.x || B.min.x) (A.max.x (if

AABB – AABB Intersection

● For each axis, the points describing these AABBs overlap.

AABB – Ray Intersection

minx maxx
miny

maxy

Find the points where
the ray crosses the x
min, x max, y min and
y max planes.

If the resulting
line intervals
overlap, there is
an intersection.

AABB – Ray Intersection

● To find the points , representing the
intersections with the x min and x max planes,
given a ray described by a point P and a vector v:

1x 2x

x

x

v
Px

x

min

1
x

x

v
Px

x

max

2

AABB – Ray Intersection

● Test for overlap among (x1,x2), (y1,y2) and
(z1, z2) segments.

● There are many algorithms and approaches to
this problem.

Swept Spheres / Capsules

● A collision type that is oriented to a model rather
than the world coordinate system.

● Still relatively fast, and likely to be a better fit
for many common objects in games.

Swept Sphere Representation

● A swept sphere can be described by a line
segment and a radius.

1p 2p

r

Swept Sphere Intersection

● Two swept spheres intersect if the shortest
distance between their respective line segments is
less than the sum of their radii.

Shortest Distance Between Two Lines

u

v0P

0Q

0w

cw

)(csP

)(ctQ

 v)(u - v) u)(v (u

) w v)(u (v -) w v)(vu(
2

00

cs

 v)(u - v) u)(v (u

) w v)(u (u -) w u)(v u(
2

00

ct

Swept Sphere Intersection

● Clamp resulting , to the end
points of the two line segments.

● This gives you . If its length is less
than , then the swept spheres
intersect.

)(csP)(ctQ

cw
21 rr

Swept Sphere – Ray Intersection

● Essentially the same as two swept
spheres.

● Line to ray distance is calculated, then
compared to the radius.

Object Intersection Wrapup

● Understanding basic collision/intersection

techniques is still valuable.

● Gameplay and AI code will always have
abstracted views of the game world.

Example : Turrets on a Hill

Example : Turrets on a Hill

● Determine which turret should fire at the
target

● Calculate turret facing

● Calculate angle of the gun barrel

● Convert to local object space for our
engine.

Which turret should fire?

fwd to_targ

left

Which turret should fire?

● One easy way is to take the dot product
of our to_targ vector and the bunker’s left
vector.

if (dot(to_targ, left) > 0.0)
 turret = left_turret
else
 turret = right_turret

Turret Facing

● Turret can only rotate horizontally

● We need the component of the vector
from the gun barrel to the target that maps
to the plane formed by the turret’s fwd and
left vectors.

Orthographic Projection

● Mapping of a 3D point to a 2D plane

Source: http://en.wikibooks.org/wiki/Linear_Algebra/Topic:_Geometry_of_Linear_Maps

Orthographic Projection

● To project 3D point onto a 2D
point , using a point parallel to the y
axis:

where s is scale, and c is an offset

zyx aaa ,,

yx bb ,

z

x

z

y

x

z

x

y

x

c

c

a

a

a

s

s

b

b

00

00

Projection to a Plane

● To take the vector from the turret barrel to the target (v),
and project it onto the turret’s horizontal plane, where (n) is
the unit normal to that plane (up vector in this case):

a) (n - v r

a) (n - v r

a) (n - v r

nva

zzz

yyy

xxx

Turret Facing

● Now we have a vector along the plane the
turret swivels in to use as desired facing.

Gun Barrel Aiming

● Assuming that the gun barrel can only
rotate up and down relative to the turret’s
position…

Gun Barrel Aiming

● We can isolate that desired vector by again
projecting to a plane.

● The desired Left vector is the normal to this

plane.

Fwd
Left

Projection to a Plane Redux

● We perform the same calculation using the desired left
vector for the turret as n.

a) (n - v r

a) (n - v r

a) (n - v r

nva

zzz

yyy

xxx

One More Step

● We now have desired turret facing and gun
barrel pitch vectors, in world space.

● What if our engine requires them in local
(object) space?

World -> Local Transform

● Very common in games to move back and forth
between local and world coordinates.

● Local coordinates are the coordinate system
where the center (usually) of an object is at
(0,0,0), and the axes are usually aligned to the
orientation of the object.

World and Local Coordinates

World ->Local Transform

● To transform to local coordinates, we need a 4x4

matrix specifying the object’s axes and position.

● Multiplying a vector by this matrix will yield a
vector transformed into local space.

● Use the inverse of the object’s matrix to convert
back to world space.

Why Local Space?

● Often easier to work with components of an
object this way (ie. Joint hierarchies)

● AI and gameplay calculations will frequently be
based on something’s position relative to an object
or actor.

Local Space AI Example

Usage Area
Usage Area

Interpolation

● Lerp and slerp have many more uses besides
just generating curves.

● e.g. We can simulate the motor of our turret
revving up by lerp-ing from the current position to
the desired using an appropriate function.

Splines

● In Ratchet & Clank : All 4 One, there is an
enemy with tentacle-style arms that can grab
players. Splines are used to control the joint
positions.

Fixed attachment
to shoulder Fixed attachment

to player

Example Wrapup

● Basic linear algebra is incredibly useful in games.

● In games, we frequently need to express our
algorithms in terms of a planar projection or an
object’s local coordinate system.

Bayes’ Theorem

● Named for Thomas Bayes, who used it to
express subjective degrees of belief given pieces
of evidence.

● Was first published in 1763, 2 years after his
death.

● Did not gain widespread usage until the 20th
century.

Bayes’ Theorem

● A useful method for computing conditional
probabilities

● For game AI, it can be used to weight
decision-making in situations with limited
information.

Bayes’ Theorem

● The probability of event A1, given that event B
has subsequently occurred, is:

)2|()2()1|()1(

)1|()1(
|1

ABPAPABPAP

ABPAP
BAP

Bayes’ Theorem

● If we know something about the
conditional relationship between A and B,
we can speculate on the likelihood of A
occurring if B already has.

Bayes’ Theorem - Example

● Event A1 - an attendee falls asleep in a Math
tutorial during a discussion of Bayes’ Theorem

● Event A2 - an attendee remains awake

● Event B - a conference attendee is badly jet-
lagged when attending the Math tutorial

Bayes’ Theorem - Example

● Known probabilities:
● P(A1) : 2% of attendees fall asleep

● P(A2) : 98% of attendees remain awake

● P (B | A1) : 90% of sleeping attendees are jet-lagged

● P (B | A2) : 5% of awake attendees are jet-lagged

Bayes’ Theorem - Example

● If we know an attendee is jet-lagged
(event B), what is the probability of them
falling asleep (event A1) while I am
speaking?

Bayes’ Theorem - Example

● P(A1) * P(B | A1) : 0.02 * 0.9 = 0.018

● P(A2) * P(B | A2) : 0.98 * 0.05 = 0.049

%9.262686.0
049.0018.0

018.0

Bayes’ Theorem Usages

● Useful in any situation with incomplete
information:

● In an RTS, to estimate enemy army
compositions.

● In a shooter, to predict enemy tactics

● Help eliminate “saddle points” in your AI

Fuzzy Logic

● A method that involves approximate reasoning,

rather than strict true or false propositions.

● A given proposition has a degree of truth ranging
from 0.0 to 1.0

● Deals in possibilities, not probabilities

Fuzzy Logic History

● First formulated in 1965 in a proposal on Fuzzy
Set Theory by Lofti Zadeh.

● Has been successfully used in AI systems,
particularly robotics and other hardware control
systems.

● Good for games for the same reason it is good
for robotics : it handles chaotic environments and
incomplete information.

Fuzzy Sets

● Traditional sets have absolute membership: my
ammo clip is either empty or full.

● A fuzzy set allows for degrees of membership. If
I have 70% of my ammo, then we might say my
clip has a 0.7 degree of membership in the Full
set.

Fuzzy Sets

● Another key point is that fuzzy logic sets
are not mutually exclusive: my ammo clip
belongs to both the Full and Empty sets to
some degree.

Fuzzy Logic in Game AI

● Can help us escape from hard “if-then-else”
rules, which can break down given unexpected or

rare input.

● Helps make an AI more likely to do something
“reasonable” even in a very unlikely or
unanticipated situation.

Fuzzy Logic in Game AI

● Consider the following rules:
● Low on ammo : take cover and reload

● Under heavy fire : take cover

● Badly outnumbered: take cover

● In a traditional implementation, these are each
absolutes, that need to be satisfied completely in

order to be processed.

Fuzzy Logic in Game AI

● A Fuzzy approach would be :

● Low ammo factor + taking fire factor +
outnumbered factor = weight of taking cover

● We can weight our entire action set this way,
and choose a good course of action.

References

● Van Verth, Jim & Bishop, Lars. Essential Mathematics for Games And Interactive
Applications. Morgan Kaufman, 2004

● Yudkowsky, Elizier. An Intuitive Explanation of Bayes’ Theorem.
http://yudkowsky.net/rational/bayes

● Wolfram MathWorld. http://mathworld.wolfram.com

● Kaehler, Steven. Fuzzy Logic – An Introduction.
http://www.seattlerobotics.org/encoder/mar98/fuz/flindex.html

http://yudkowsky.net/rational/bayes
http://mathworld.wolfram.com/
http://www.seattlerobotics.org/encoder/mar98/fuz/flindex.html

