

Don't trust the HiPPOs: A/B Testing Online Games

Steve Collins CTO / Swrve

Me, me, me.

The HiPPO

Highest Paid Person's Opinion

Example #1

A +218%

B

Example #2

B

+102%

"One accurate measurement is worth 1,000 expert opinions."

Admiral Grace Murray Hopper

Game Service

Minimum Viable Product

What is testing?

A/B Testing Overview

1. Split population

2. Show variations

3. Measure response

4. Choose winner

What not to do...

```
// Check membership of gems test?
if(ABTestHash(userID) > 0.50f)
    // Show variant of gems test
    icon_resouce = "cdn:/icons/gemos/gem01.png";
    // Check membership of popup103-UI-layout test
    if(!ABTestHash(userID) < 0.33f)</pre>
        // in gems test but also in layout test
        layout_resouce = "cdn:/UI/XML/gem-layout-screen02.png";
    } else
        // in gems test, but not in layout test
        layout_resouce = "cdn:/UI/XML/gem-layout-screen02.png";
} else
    // Show control for gems test
    icon_resouce = "cdn:/icons/gemos/gem01.png";
}
```

- × Inflexible
- X Error prone
- × Complex
- X Forces app update

Solution: Data Driven Approaches

http://bit.ly/oWVvX3

Serial Cycles

Meta-data

Add to cart = button-style 3D-bevel call-to-action "Add to cart" colour Orange

PM

ENG

```
this.__defineSetter__('time', function(t) {
  var validMorphs = [];
  var morphDict = this.points.morphTargetDictionary;
  for(var k in morphDict) {
    if(k.indexOf('morphPadding') < 0) {
      validMorphs.push(morphDict[k]);
    }
  }
  validMorphs.sort();
  var l = validMorphs.length-1;
  var scaledt = t*l+1;
  var index = Math.floor(scaledt);
  for (i=0;i<validMorphs.length;i++) {
    this.points.morphTargetInfluences[validMorphs[i]] = 0;
  }</pre>
```


Serial Cycles

Parallel Cycles

Sessions

Sessions

Implementing Testing

State Hypothesis

Agree OEC (overall evaluation criterion)

%age of players who purchase

1. Split population

User - Bucket Assignment

Consistent
Unbiased
Efficient

md5_hash(UUID + testID)

Ensure users are bucketed independently for each test

Split population (into independent groups)

2. Show variations

Testing Architecture

3. Measure response

Conversions

Conversion Event

Item Purchase
Buy-in
Completed Tutorial
Fired in-game event
Added a friend
Watched movie

#players = n#conversions = rconversion rate = r/n = p

$$P[r, n] = \frac{n!}{(n-r)!r!} p^r (1-p)^{n-r}$$

Probability of *r* successes given *n* trials and probability of success *p* per trial

$$n = 1000, p = 0.05$$

Run 100 "experiments", n = 1000, p = 0.05 and compute the average "conversion rate"

$$\mu = np \quad \sigma = \sqrt{np(1-p)}$$

Expected value is 50

$$\bar{x} = 49.96$$

Repeat this process...

$$\bar{x} = 49.96$$

$$\bar{x} = 50.30$$

$$\bar{x} = 49.98$$

$$\bar{x} = 50.36$$

Keep repeating this process and plot the averages...

These are sampling distributions of the mean

Central Limit Theorem

As *n* increases, the sampling distribution of the mean becomes "normal", <u>independent of the underlying distribution</u>

The Normal Distribution

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

The Null Hypothesis

Comparing distributions

$$\mu_A = \mu_B$$

$$\mu_A \neq \mu_B$$

p-Value

The probability of observing

<u>as extreme a result</u>

assuming the null hypothesis

is true

p-value = area outside these critical points = 0.05 here

Power

$$n \approx \frac{16\sigma^2}{\delta^2}$$

Control conversion rate = 5%

Desired increase = 50% (i.e. to 7.5%)

Standard deviation = 0.1

n = 256 (25 mins for 50k DAU game)*

$$n \approx \frac{16\sigma^2}{\delta^2}$$

Control conversion rate = 5%

Desired increase = 5% (i.e. to 5.25%)

Standard deviation = 0.1

n = 25,600 (20 hrs for 50k DAU game)

$$n \approx \frac{16\sigma^2}{\delta^2}$$

Control conversion rate = 5% Desired increase = 5% (i.e. to 5.25%)

Standard deviation = 0.5

n = 640,000 (21 days for 50k DAU game)

Challenges when Testing

Primacy

- News users behave differently to old users
- Familiarity with existing UI / resources / items etc.

SOLUTION: Restrict tests to new users

Causality

- There may be many reasons for a change in test statistic
- Seasonality, events, trends, errors, etc.

SOLUTION: use tight evaluation criteria

(e.g. sales of item tested NOT overall revenue)

Testing QA

- Tests can (will) introduce errors
- Particularly with many variants

SOLUTION(s)

- ramp-up, roll-back capability
- force user bucket capability

Temporal Effects

- Daily, weekly, yearly
- False signals
- Ramp up bias

SOLUTION

Run tests for sufficiently long to normalize for effects

Version Control

- Multiple app-versions in flight
- Resources may have changing schema
- Can't force upgrade always

SOLUTION(s)

• Limit to one app-version; careful version control with schema

Testing in Online Games

Death to Hippos

Steve@surve.com @stevec64

Homework:

- http://exp-platform.com Ron Kovahi et al.
- http://statisticsforexperimenters.net/ George Box et al.
- http://www.kaushik.net Occam's Razor Blog
- http://www.abtests.com/

