Intelligent implementation

Keeping the Program Lead off your back

Alistair Hirst

General Manager

GAME DEVELOPERS CONFERENCE SAN FRANCISCO, CA MARCH 5-9, 2012 EXPO DATES: MARCH 7-9

GDC

Introduction

- Started in games 1990
 - Sega Genesis:
 - •6 voices of FM
 - •5 voices and one voice 8 bit 11kHz sample

Introduction

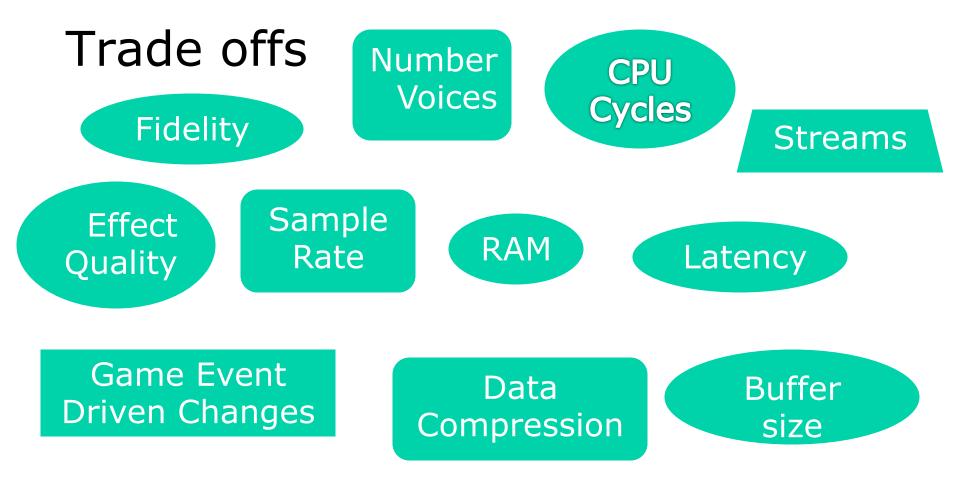
- In 20 years
 - VR Worlds, jacked in
 - still fighting with simulation and graphics for resources.

The Problem

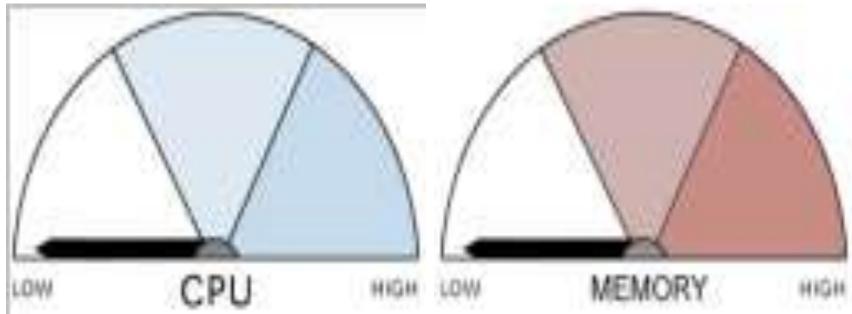
• Resources are limited

The Problem

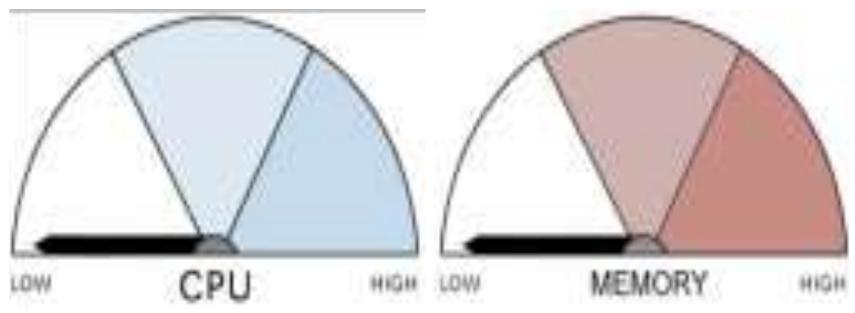
- Resources are limited
- Trade offs need to be made
 - Biggest bang for the buck

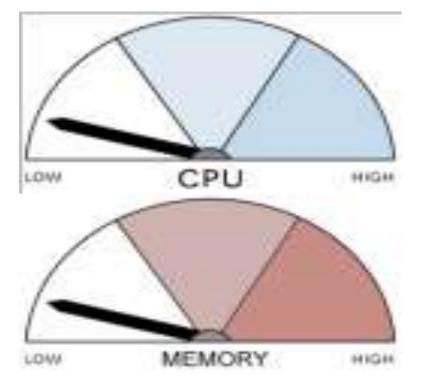

The Problem

- Resources are limited
- Trade offs need to be made
 - Biggest bang for the buck

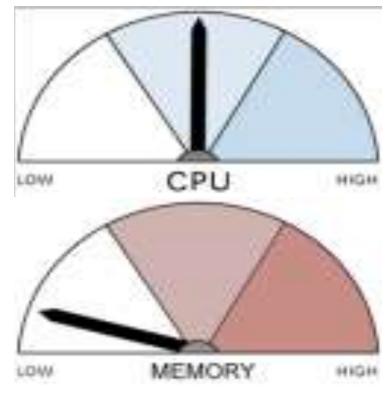

• Trade offs are different depending on the platform and game. Find the bottleneck and balance.

GAME DEVELOPERS CONFERENCE[®] 2012

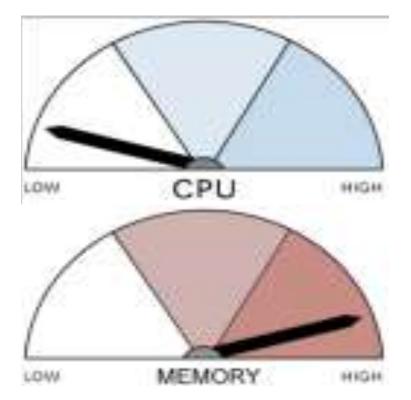

MARCH 5-9, 2012 WWW.GDCONF.COM


Volume

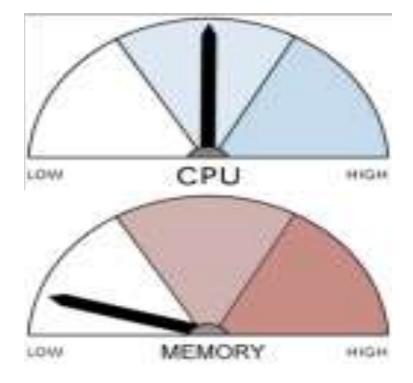
Surround Pan

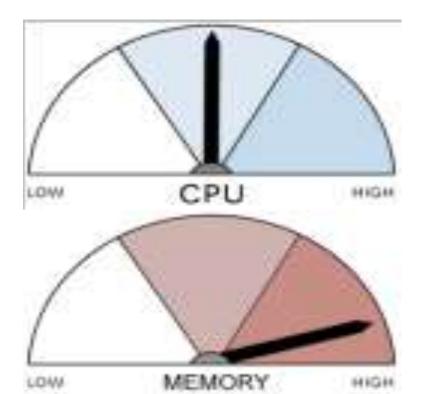


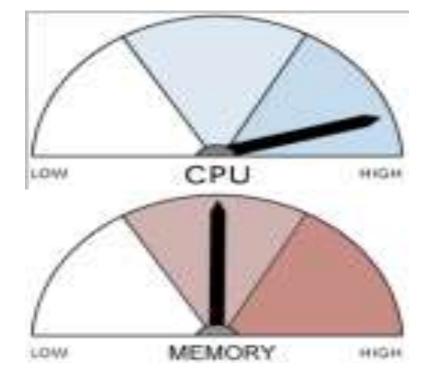
LoPass Simple



FMOD Lopass filter


(analog resonance emulation)


Echo


Parametric EQ

Chorus

FMOD SFX Reverb

- CPU cycles
- RAM
- Number of voices
- Hard Drive streams
- Optical Disk streams
- Latency/buffer sizes
- Sample rate/data compression/fidelity
- Game event driven changes
- Effect quality/CPU hit

- CPU Cycles vs RAM
 - Decompressing mp3 on the fly (runtime)
 - Versus
 - Decompressing mp3 into RAM

- # Streams vs buffer size vs latency
 - The read head needs time to seek

- # Streams vs buffer size vs latency
 - The read head needs time to seek
 - More streams -> Bigger buffers

- # Streams vs buffer size vs latency
 - The read head needs time to seek
 - More streams -> Bigger buffers
 - Bigger buffers -> higher latency

- Number of Voices Vs CPU
 - Each voice uses CPU cycles

- Number of Voices Vs CPU
 - Each voice uses CPU cycles
 - More voices allow layering, more immersion

- Effect quality vs CPU hit
 - Higher quality EQ or reverb -> more CPU

 Bottleneck: Download under 20MB to go over 3G network – footprint potentially limited.

- Music compressed as AAC to make smaller
- iPhone can only decompress 1 AAC/mp3 stream at a time in hardware

- Result: SFX shouldn't be AAC, will affect frame rate.
 - Reduce sample rate to reduce size

- Result: SFX shouldn't be AAC, will affect frame rate.
 - Reduce sample rate to reduce size.
 - Or use IMA 4:1 compression

- Bottleneck: Size needs to be minimized
 - to reduce bandwidth costs and
 - Reduce download time

- Data reduction on audio assets
 - mp3,
 - Ogg Vorbis

 Decoding MP3's at run time causes CPU hit

• Possible frame rate drop, pause

 Decoding MP3's at run time causes CPU hit

- Possible frame rate drop, pause
- PC's have more RAM than consoles

- Solutions:
 - decompresss into RAM before playing
 - •(pre-cache in Flash)

- Solutions:
 - decompresss into RAM before playing
 (pre-cache in Flash)
 - use IMA 4:1 compression. Lighter CPU, less size reduction.

Case study: Xbox 360

- Bottleneck:
 - RAM

Case study: Xbox 360

- Bottleneck:
 - RAM
 - potentially DVD space,

Case study: Xbox 360

- Bottleneck:
 - RAM
 - potentially DVD space
 - limited # of streams off of DVD

- XMA compressed files decoded on hardware
 - no CPU hit
 - Lots of voices

- Solution:
 - XMA Compression

- Solution:
 - XMA Compression
 - Tradeoff compression/fidelity needed

- Solution:
 - XMA Compression
 - Tradeoff compression/fidelity needed
 - Minimize streaming

• Game effects are optimized for CPU efficiency

 DAW's have more resources dedicated to audio

- DAW's have more resources dedicated to audio
- DSP cards like UAD can have even higher quality emulations because of dedicated DSP

- DAW's have more resources dedicated to audio
- DSP cards like UAD can have even higher quality emulations because of dedicated DSP
- External hardware available with DAW

• Better sound quality

- Better sound quality
- Much more variety in models for compressors, reverb, sweeter EQ's.

General Rule

 If it's not changing in realtime in-game, consider baking the effect in

Applying EQ or filters that never change to sounds

- Applying EQ or filters that never change to sounds
- Applying compression to a single sound source that never changes

 Applying distortion that never changes to a sound source to make it more audible

 Applying distortion that never changes to a sound source to make it more audible

 Using multiple layers of sounds nondynamically

- increases immersion
- provides realtime feedback to player

- Choose relevant game parameters to drive them:
 - Distance

• Choose relevant game parameters to drive them:

- Distance
- Force

• Choose relevant game parameters to drive them:

- Distance
- Force
- Speed
- Location

- dynamic EQ/filters fed by RTPC tied to game states
 - Filter or EQ on damage sounds, tied to force

- compression or limiting on the master bus
 - Can only be done realtime, keeps mix under control.

- Dynamic distortion
 - Trash distortion used in Forza 4, driven by load on engine.

- Dynamic distortion
 - Trash distortion used in Forza 4, driven by load on engine.
 - CPU load (of 1 thread, 1/2 core)
 - •Trash = 3 5 %
 - •FMOD = 1%

- Chorus or flanging effects best done at runtime
 - realtime chorus will help mask loop points, sounds more natural

• HD seeks much faster than DVD

- HD seeks much faster than DVD
- Switching layers on DVD is slow

- HD seeks much faster than DVD
- Switching layers on DVD is slow
- Read heads only go so fast
 - Bigger the buffer, the more time available
 - More streams available
 - Higher latency

- Probably sharing with other game data
 - Textures
 - Geometry

- Speech and music typically streamed
 - Except when it isn't.

- Have to coordinate with lead programmer
 - Allocate resources as early as possible
 - Stream not available? Argue for more RAM

- Ambiences:
 - Try overlapping loops
 - Random one-shots

- Need to limit number of voices playing
 - Shut off voices out of audible range

- Need to limit number of voices playing
 - Shut off voices out of audible range
 - Take up CPU tracking position and volume updates

- Offload to "virtual voices"
 - Will play at right position when come back in range

- Offload to "virtual voices"
 - Will play at right position when come back in range
 - Music

- Offload to "virtual voices"
 - Will play at right position when come back in range
 - Music
 - Retrigger loops

- Use a Priority system to cull voices
 - Oldest
 - Quietest
 - Most important to least important

- intelligent instance limiting
 - Group sounds into categories, and limit the number that can play at once. (example: bird chirps, wind loops).

- Don't place individual sound points for ambient sounds (birds, insects)
 - Tracking all those points is CPU intensive

• Don't place individual sound points for ambient sounds (birds, insects)

- Tracking all those points is CPU intensive
- designate an area where birds are heard and play with random positioning and volume

- Stream one voice to multiple locations
 - Example: Speakers around a race track
 - Saves on voice overhead

 Categorize your sounds, and put a voice limit on that category to avoid making your mix too dense.

Questions?