
VAULT, SLIDE, MANTLE
BUILDING BRINK’S SMART SYSTEM

Arne Olav Hallingstad
Lead Gameplay Programmer
Splash Damage

BRINK is a registered trademark of ZeniMax Media Inc.
© 2011. ZeniMax Media Inc. All Rights Reserved.

Splash Damage

 Multiplayer team & objective
based FPS games

 Relatively small team

 Evolve multiplayer shooters

Goals

 Improve player movement

 Be consistent

 Be accessible

 Support different body types

 Shouldn’t require extra LD
work

 Must be usable by AI
JACK MONAHAN

GAUSSWERKS.COM

SMART moves

What we’ll cover

 Prototype

 Precomputation

 Runtime Detection

 Runtime Execution

 Lessons Learned

Prototype

Prototype

 Prove viability of SMART movement

– Multiplayer game

– Impact on level design and gameplay

 Prototyped using run-time collision traces

 Refined over 6 months

Ledge Detection & Vaulting

 Find ground

 Find wall

 Find low edge/high edge

 Trace clip to ledge height

 Trace clip over ledge

 Trace clip down

 Trace down on ledge

Successes

 Easy to implement

 No LD placed hint objects

 Works on any map

 Standardized map metrics

Issues

 At least 1 trace every frame

 Worst case 8 traces per player

Precomputation

Nav mesh system

 Used for AI path-finding

 Map-compile step

 Areas connected by
reachabilities

 Potential use for SMART?

Reachabilities

 Get all edges between two areas

 Edges overlap vertically we may
create a reachability

 Stores edge segment

 travel_flags

Reachability Types

 barrier_vault
 barrier_mantle
 AI pathfinding
 Used by players & bots
 barrier_dynamic

– Used by players only
– Vault/Mantle move decided at

runtime
– Explosion in number of reachabilities

barrier_dynamic barrier_mantle barrier_vault

Slide

 Areas marked low ceiling

 Bots & players required to
crouch

 Players can auto slide into
these areas

Runtime
Detection

Player Physics Loop

 Step 1: Is player on ground?
 Step 2: Query player body type for available movement

modes
 Step 3: Detect high moves (vault, mantle, wall hop)
 Step 4: Detect low moves (slides)
 Step 5: Choose active move
 Step 6: Update player state machine

Step 3: Detect High Move

 3.1: Player checks

 3.2: Nav mesh query

 3.3: Evaluate high moves

Step 3.1: Player Checks

• Cannot be in active state

• Vaulting

• Mantling

• Sliding

• Iron-sighting

• Knocked down

Step 3.2: Nav Mesh Query

 Search bounds 6x player b-box width & 2.5x player height

 Areas = GetBoundsAreas(searchBounds)

– Areas in BSP-tree

 For each Area

– For each Reachability

• barrier_vault, barrier_mantle or barrier_dynamic

• Append to list

Step 3.3: Evaluate High Moves

 Iterate all reachabilities
– Player must look at the ledge
– Distance within 2.5x player b-box width

 Vault: ledge height is 0.4x-0.8x player
height

 Mantle: ledge height is 0.8x-1.4x player
height

 Auto wall hop: Ledge height is mantle
height + player’s jump height

Step 3.3: Evaluate High Moves

 Reachability list

 Exclude wall hop if vault/mantle in list

 Mutual exclusion

– Allow mantle if within 1.5x player b-box width

– Otherwise: Allow vault

 Sort potential moves by closest ledge

Player Physics Loop

 Step 1: Is player on ground?
 Step 2: Query player body type for available movement

modes
 Step 3: Detect high moves (vault, mantle, wall hop)
 Step 4: Detect low moves (slide)
 Step 5: Choose active move
 Step 6: Update player for delta time

Step 4: Detect Slide

 4.1: Player checks

 4.2: Nav mesh query

 4.3: Evaluate low moves

Step 4.3: Evaluate Low Moves

 Iterate all areas
 Area within height of 0.4x player height
 Area marked as low ceiling
 Auto crouch: distance < small number
 Auto slide: distance within 1.5x player b-

box width
 Mutual exclusion

– Allow auto slide if sprint held
– Otherwise: Allow auto crouch

Step 5: Choose Active Move

Runtime
Execution

Vault Physics States

 Intro and exit states
 Intro

– Duration: Distance and player velocity
– Spline from player position to ledge

 Exit
– Calculates momentum
– Calculates direction
– Clear momentum if drop too high

(trace)

Intro Exit

Mantle Physics States

 Intro, climb and exit states
 Spline calculation same as vault
 Intro

– Duration calculation same as vault
– Push player to correct position

 Climb
– Duration scaled up during climb
– Pulls the player on top of ledge

 Exit - Clear momentum

Intro Climb Exit

Slide & Wall Hop Physics States

 Sliding
– Force crouch

– Constant velocity in direction of
travel for a second

 Wall Hop
– Single frame state

– Only light body type may wall
hop

Wall Hop Slide

Third Person Animations

 Animations driven by physics state

 Slide - Play slide animation

 Vault - Intro plays vault animation

 Mantle

– Intro plays grab animation

– Climb plays mantle animation as
root motion

Third Person Animations

 Animations driven by physics state

 Slide - Play slide animation

 Vault - Intro plays vault animation

 Mantle

– Intro plays grab animation

– Climb plays mantle animation as
root motion

Conclusions

 More fluid movement

 SMART Button

 Generated during map-compile step

 Free flow restricted by body types

Lessons Learned

 Prototyping allows quick iterations

 Systems can successfully be used beyond their
original intention

 Could give client authority over physics

 Consolidating physics states saves network
bandwidth

Arne Olav Hallingstad

ao@splashdamage.com

@arneolavhal
@splashdamage

www.splashdamage.com

Questions?

