
•  Hi everyone, I’m Mark Wesley and I’m the Lead Gameplay
Programmer at 2K Marin, located just over the Golden Gate
Bridge in beautiful Marin County.

•  My talk today is on “Implementing a Rewindable Instant
Replay System for Temporal Debugging”

1

So today I’m going to:

•  Tell you what a Rewindable Replay system is.

•  How to implement one for debugging and development

•  How to then use it to debug your own games

•  How you could then make it shippable if you chose to
•  And there will be a little bit of time at the end for some

questions

2

•  First a quick intro to me…

•  I’ve worked on a bunch of games…

•  And many of those have included replay of some form…

3

4

•  Some as a feature in the final game.

•  Burnout for example had a rewindable Crash Replay System
which I wrote, and also deterministic forward-only race
replays which I helped to maintain.

•  And the skate series had an awesome video suite which I
didn’t write, but I did help to extend it for debugging and we
used it extensively when developing and debugging the AI,
Physics and other Gameplay elements.

5

And for pretty much anything I’ve worked on since, the first
thing I do is add a development-only replay system for
debugging as I find it makes myself and the rest of the team
work so much more efficiently.

6

•  So… what is a rewindable replay system?

•  Well, it’s rewindable…

•  And it is NOT determinstic replay – this is an important
distinction.

•  This requires absolutely no determinism in your game
whatsoever

•  This makes it incredibly robust

•  And in my opinion far far more useful.

7

•  So in essence it’s video-style replay

•  As you might have seen in some sports games.

•  It’s kind-of like having a VCR or PVR attached to your game.

•  But far better as you can

•  move the camera around
•  view things from any position or angle

•  turn on things like debug info on the fly

•  change rendering modes
•  switch to wireframe

•  and so on…

8

•  So it’s probably easier to explain if I just show you a video.

•  Unfortunately I’m not allowed to show our game at this
time…

•  But I was able to port the code back into the base version of
Unreal 3 in just 1 hour, and I think this is a testament to not
only how re-usable such a system is but also how applicable
it is to most game genres.

•  Note that you can jump in and out of replay at any point
and continue execution of the game.

•  http://youtu.be/x1rgEtC3bTc

9

So you might be thinking… “well that’s great, but isn’t that a
lot of work to implement”
•  And to make it shippable, the answer is, well, yes…
•  But for a development only version then no, it really doesn’t

have to be. Because it’s:
•  For internal use only
•  Doesn’t have to be pretty
•  And it’s a lot easier to find some spare memory –

devkits usually have more memory than retail
machines, your dev PCs are probably better than your
minimum spec, etc.

10

•  So actually you can get a basic version working in just a
couple of days.

•  And if you can devote 1-2 weeks to it then you’ll probably
have everything you’ll really want.

•  And in my experience it pays for itself incredibly quickly.

11

•  So, to implement one, lets start with how to record the
replay.

•  In essence it’s just a circular buffer of frames.

•  And then for each frame store all of the debug draw for that
frame

•  In a minimal form, so if you’re storing a sphere just
store the center and the radius, not as the hundreds
of lines which you then render for it.

•  Also store just enough data on any relevant entities (e.g.
player, AI, dynamic physics objects, etc.)

12

•  Whilst you’re doing this, think about how to use as little
memory as possible

•  Then you’ll have more room to store longer replays
and the system will be more useful.

•  So don’t store your vectors in your fancy 16 byte aligned
SIMD-style vectors, instead just use 3 normally-aligned
floats

•  I’d recommend storing orientations as compressed
quaternions

•  You might already have something like this for your
animation system

•  Otherwise even something as simple as quantizing
each component into a UInt8 works fine for this kind-
of thing.

•  Bools only need a single bit, so put them as bitfields, or
bitmasks if you want it more cross-platform

•  And generally try and pack everything together

•  A “Bit Stream” style read/writer can be really handy here,
making it easy to store floats on arbitrary bit boundaries
and generally removing all alignment padding wastage
automatically.

13

•  For replay, storing text in 3D (next to each entity) can be
really useful, and in general I’d suggest that for any 3D text
you merge nearby text into paragraphs.

•  This has 2 big benefits:

•  It makes it much easier to read than 2 bits of
text drawn on top of each other

•  And it saves memory as you only need to store
1 vec3 per paragraph

•  Clamp maximum debug draw data stored per frame - so if
someone turns on an insane amount of debug draw the
game still runs correctly.

•  I recommend that you store 1 bit in each frame to tag
whether that frame ran out of room, then when
viewing a replay you’ll know if/why not all of your
debug draw is showing up.

•  Keep large static debug draw out of replay
•  E.g. better to render things like Navmesh or static

collision meshes live rather than store the same
hundreds of lines in every frame

14

•  For storting entities:

•  Need a fast way of iterating over the interesting ones.
If you have thousands of entities and only want to
store a few then you might want to keep a list of the
interesting ones to speed this up – because we want
the CPU impact of recording a replay to be completely
negligible

•  A unique ID – this helps to associate an entity
between 2 frames of replay, and is also useful for
mapping back to additional information on that entity

•  The 3D Transform
•  Bones (transforms) for skeletal meshes: make this

optional, toggle-able at runtime – these can use a lot
of memory, and although are vital for debugging
animation and making a good-looking replay, they’re
not necessary for debugging most gameplay things so
if memory is scarce some people might prefer to have
longer replays without storing the animation bones.

•  Any other important display info. This really depends
on your game and your entities. e.g maybe you have
a damage or dirt value, or some flags that effect if
something “IsGlowing”, blurring, etc.

15

•  I highly recommend that you also store the in-game camera
transform

•  This is not only really useful for debugging the camera
system

•  But it’s also great to jump back to the player’s
perspective, and it’s a useful starting point to position
the manual camera at.

•  You’ll definitely want a manual camera mode too so that you
can view everything from anywhere

16

•  So, you’ve stored a replay, now to play it back

•  Just pause the game simulation (and stop submitting frames
to the replay)

•  For the currently viewed frame
•  Render that frame’s debug draw

•  Show the entities in the world (the ones that still exist
in the currently paused simulation) using the stored
data at that frame in the replay

•  Allow user to scrub / rewind / fast forward through the
replay.

17

•  So, you’ve stored a replay, now to play it back

•  For entities, we re-use the ones that still exist in the
currently paused simulation, but:

•  Render entities using the transforms (and other
settings) from the replayed frame

•  For sub-frame blending:
•  Note it’s still handy to be able to step through

and look at “concrete” recorded frames, but it’s
great to be able to see what the change
between 2 frames was, especially in the case of
large changes in position or orientation.

•  To implement, just:
•  Find the matching entity in the

neighboring replay frame (using the
Unique ID)

•  Interpolate data as appropriate (e.g. Slerp
quaternions, Lerp vectors, etc.)

18

•  Entities with shorter lifetimes are a little bit trickier than
anything that’s persistent

•  First the easier case, where an entity was spawned during
the replay:

•  If they weren’t in the currently replayed frame, just
don’t draw them.

19

•  Now the harder case, where an entity was unspawned
during the replay:

•  So it’s not present in the currently paused simulation,
so we cannot reuse it

•  You could just draw a debug representation –
e.g. a stick figure (using the stored bones), or a
debug sphere

•  Better is to re-create the entity using the
original mesh – by storing a mapping from the
UID of each recently spawned entity and how to
recreate them.

•  This gets even harder if you’ve already unloaded
the assets…

•  You probably don’t want to try and fix this
unless you want to ship this as a feature

•  But for debugging, just re-use a similar
asset (e.g. another biped with the same
rig / skeleton)

20

•  So what can you actually use a rewindable replay system
for?

•  Well, combined with some good in-game diagnostics (e.g.
lots of good debug draw)

•  Then it helps provide what I’d call “temporal debugging”,
e.g:

•  Debugging anything that occurred in the past (and
how/why it happened)

•  Understanding how things changed over time

21

•  Some temporal debugging examples:

•  Great for AI decision making, pathfinding, etc. You can
see how the AI state’s changed, why they made a
decision on any given frame, how their states and
decisions changed over tine.

•  Physics collisions, reactions – e.g. understanding and
reviewing collisions, impulses, motion etc.

•  Pretty much any Gameplay action - see when and why
they happened

•  Animations. Our animators love it. They can review
the animations in game, at any angle, in slow-motion,
rewind, see sub-frame interpolations, etc.

•  Multiplayer replication – you can show the replication
information on the frame it was sent, on the frame it
arrived, and how it relates to your current forward
prediction and help debug issues in lag, jitter and
generally make for a smoother online experience.

22

•  A quick comparison with traditional debugging tools

•  So there are traditional debuggers, e.g. Visual Studio

•  And sure they’re great for low-level debugging,

•  But they’re terrible for higher-level debugging

•  Slow to get a higher-level view on things – hard
to visualize what’s happening

•  Only show the current state – no clue to what
happened before this point to lead to that state

•  Very unfriendly for non-programmers (and often
unavailable on their machines anyway).

•  Even for programmers they’re particularly poor
with optimized code – so you have to manually
go through the assembly, look in registers and
memory, cast them manually in a watch
window… Or run in debug but then that’s too
slow, or have some halfway-house where you
only build the subsystem you’re interested in in
debug and the rest is in release, but it’s still far
from ideal…

•  For “Higher-level” debugging = e.g. gameplay, AI,
animation, physics and multiplayer, you can work far more
efficiently outside of the debugger.

23

•  The other common debugging tool is a Log File / TTY /
“printf debugging”

•  These do provide a partial history of what happened

•  But it’s:
•  Very hard to parse hundreds of pages of these

•  Hard to relate to game state in 3D – what does a
position or direction of <1.23, 0.11, 5.2> even mean?

•  Hard to associate with what else was happening on a
given frame

24

•  So my general advice is:

•  Use higher level tools and viewers whenever possible!

•  And I think a replay system is a great tool to have as
part of this

25

•  So lets look at an example of using replay to debug
something

•  Again, sadly, I’m demoing this on a sample project instead
of on a project that I’ve worked on, but hopefully you’ll be
able to see the approaches you can use and some of the
benefits from using a rewindable replay system.

•  http://youtu.be/jUpTGeszM4o

26

•  So how much moery does this need?

•  Well, if you can provide anything over 1MB then you can
store a “useful” replay (e.g. skeletal meshes disabled, but
everything else enabled, debug draw limited to a few
primitives per-frame)

•  To find some more memory…

•  Well on PC you probably already have plenty,
especially if you have a 64 bit build.

•  On consoles…

•  You could use some of the extra memory that’s
available in most devkits

•  Or only store a small buffer in memory, and
stream the rest to disk or over the network to
your PC in the background. (This can be re-used
for other debug systems too…)

27

If you’re still short of memory – e.g. you’re on a very small
device, or want to get this in the retail version:

•  Store less stuff… (e.g. turn off bones, unimportant entities,
unimportant state info, etc.)

•  Compress / Quantize data – e.g. pack floats with small
ranges into int16s (or smaller)

•  Store only every N frames

•  This can be variable and on a per entity basis
•  You can for example keep a small buffer of the last

few exact frames, compare them against the
interpolated results, and put down a new frame
whenever you would otherwise exceed some error
tolerance.

28

•  Some useful extensions you can build on top of this:

•  Debug draw “channels” – so you’re always submitting AI,
Physics and other debug info, but it’s not necessarily
displayed during the game and in replay you can optionally
choose the channels you wish to display.

•  This is particularly great for when another team-
member encounters an issue on their machine, where
they are unlikely to have had specific debug draw on,
because you’re still able to rewind and enable the
channels that you’re interested in.

•  Serialize more of the entity data, or entire entity, so that
you can show the entire state of everything at any frame.

•  Can make you less reliant on adding debug draw for
everything, and also potentially allow you to dig into
some lower-level details too.

29

•  Save / load replays
•  Have your QA automatically attach them to bug

reports etc.
•  Replay has effectively already serialized everything

anyway…
•  Can be great for hard/slow to repro issues – just

watch the replay, enable any relevant debug channels,
and you can often understand and fix the issue
without even having to reproduce the problem.

•  Similarly, export serialized data to an external viewer /
visual debugger

•  Where you might be able to provide a better GUI
outside of the game (or on your PC whilst debugging
on console)

30

•  I guarantee that when you first implement this in your
game, someone will ask how much work it would take to put
this in your retail game for the end-user to play with

•  And it really is quite a lot more work

•  Replaying everything (particles + audio), ensuring
required assets are in memory

•  Fitting in retail memory (or on your min spec PC)

•  Robust manual camera (no flying through objects) –
for debugging you don’t want any camera collision,
but for your end user you do so that they don’t see
things like how all of your levels are just like
Hollywood sets.

•  Nice GUI

31

•  If you still really wanted to ship it, then I’d highly
recommend that you design it in from the start – there are a
number of things which are particularly hard to do
otherwise:

•  Limit yourself to stateless, parametric particle effects - then
you only need to store start/end markers in your replay and
you’re cheaply and easily replay particle

•  Plan for the memory overhead and reserve that space

•  Plan for how you spawn / unspawn entities to make it easier

•  Plan for how you stream assets to make it easier
•  Plan for how you submit your render data to make it easier

to record or replay the data.

32

•  If you don’t have a parametric particle system then you can
still try and fake it

•  Store markers to say when an effect started and ended

•  Then just always play the effect forwards (by the absolute
value of the time delta) when you play forward and rewind
between those markers

•  I’ll show you an example video of this in practice…

•  http://youtu.be/bzwdPoKP80k

33

So… any questions?

You can also contact me via the website URL shown.

Thanks everyone!

34

