LI 4 N7 - —

il

UNDER THE HOOD OF BLIZZARD'S INTERNAL BUILD SYSTEM

Blaine \Whittle
bwhittle@blizzard.com =

X
- U |

GAMES ARE Q_ETTING BIGGER'

Game install size for enUS clients

30 GB

20GB

10 GB

1996 1998 2000 2002 2004 2006 2008 2010 2012
T e S Fﬁ_—‘\—/b ———AL ~ 7 . ”y s /‘;":#:Jssé,,__ - _ _-- ..

V7 .
9 ——-——gz f ¢ s g e e e U p—
|
SO N N

S AN N ¢ — S 4 \

SMALL-SCALE DISTRIBUTED SYSTEMS

MW‘
Debug =
. 1-10 Jobs
. ezt Release
 Top down scaling
Mac
Release
— e (S A s o)—,_ \.... ———t W
A '

MR,
NN F
A

\

\

Code Build Task Graph

Wizes

R

Rendered via Graphviz
sfdp layout engine

/ QA R A\ -

LARGE-SCALE DISTRIBUTED SYSTEMS

e :‘ “ Py ,Q Q‘ Q:’l
Re 0
- 10,000 - 500,000 ‘:f‘:::‘é:" S 4
IES G . | “;.f‘“‘ Q. e
" g ogeeles Ui
: 09 -
* Bottom up scaling ’&vo ‘c.‘ :"\ s

LARGE-SCALE DISTRIBUTED SYSTEMS

\;\' oy

: : : - =
* Fine grained dependencies e e

* Minimize 10 \/ =

* Very lightweight tasks Task

* High concurrency l
* Reattempt on error

File

L — ————) a2 -~

g
)

i

\

1

1

\What we
need

g
N

PROBLEM REQUIREMENTS

T v e
"

Use graph analysis and dataflow paradigm for maximum
parallelism

Multiplatform (hosts and build targets)
Incorporate existing processing tools into new framewaork

Design for maximum execution performance

PROJECT “SANITY”

L
|

v

DATAFLOW

* A dataflow architecture is functional programming using
nodes that are stream processors

* In our dataflow pattern, the nodes are tasks that read
immutable files and produce new files and new tasks

7
|
I
|
|
!

IMMUTABLE FILES

v-:gg,..a;,

During a Sanity build, file paths can only be
written to once

Tasks that normally modify a file in place
become a copy on write

Unlimited directories and filenames

Foo.unsigned.exe

|

Sign Task

|

Foo.exe

FFIAM EWD Rk K

——
e Task = smallest unit of schedulable work

* Metatask = a task that may define additional tasks
* Allows us to reason about the remaining work
* |f only tasks remain, we know our dependency graph is complete

* Rule = procedurally generates tasks based on file name patterns
* Map Rule = 1 file ™ 1 task
* Reduce Rule = N files ™% 1 task

4 N

API

2\ S e

TASK

Each task must implement two functions

e Parse
Execute

Il

S

- \\;‘ > (] I (\ ?0 TR -

* Parse
* Takes an opague data structure called a
task line
* Returns ;.

List of input files
List of output files

* Pure function / no side effects

o™ ‘\ ")B“‘\ £ P
- _N___h‘ _____,__A,(,x e, s <5 ~ —r =k 3 _(”/’_-Jé«r’\) ,______\»_,__M_ —

- \ A ® L3 7 i L SN . 3
6‘ 57 N T el - SN I I\ -7 \ S N 56

R] M == I3 e\ Saee & WL SN 8

Jé\s o, N s 1 - \\ 75 5 ~fél. %
- :; AR o = h o % & "

(R el < / A 2% (TR)

i

- Task dependencies
are implicit

Code Build Task Graph

. Task

A

CENERAY

LR i ?"M"
REx 3‘::'}::‘{ i

0

3

Code Build File & Task Graph

Task
Meta Task
Artifact File

Source File

S s i — AT . somde $

TASK API = F’AFISE

w" o~
A3

* Parse functions may not directly open or
read files

* However Parse may return a set of
closures for transforming file contents
into a list of additional input file paths

File A

Task
Foo

File C

T e

% -

'!|

-
S =

—- A WS 1A -
FILE FILE DEPENDENC‘.IE___T_-
. — =

ii

File dependencies —
can be cyclic

1l

:H"'

TASK API - EXECUTE

File A File B
* Execute
* Does the actual work, I.e. reads input
files and creates output files -
* Returns either TFGOS;
* Result (Success / Failure])
* A new set of task lines [Metatasks] l

All state is passed via task lines or files =
ile C

3 Metatasks
* ‘] solution file
* 2 project files

26 Tasks
e 23 compile tasks
e 2 link tasks (1 lib]
* ‘1resource compile task

Battle.net

SN B - Vs i e S :

I

.

SANITY FILE

{tasks, [

{vs_solution, "IcePaq/Icepaq.sln", "Release|Win32"} 4
1},
{deliverables, |

"IcePaq/win32_release/Icepaq.exe”

1},
{deploy, [
{location, {smb, "//someserver/someshare®}}
1},
{vfs, [
{"/",{rep, svn, "http://svn-repository/trunk/", head}} <
1}

)
\‘

Parse Result
Icepag.sin

Input Files

SOLUTION TASK PARS
:;—mw,_ “\-i\ ;: R
Qutput Files

Release|Win32"}

Task Line
{vs_solution, "IcePaq/Icepaq.sln",

O Blocked Task or File
Q Evaluated Task or File

target
Q Unevaluated File

Dependency Graph
L
——= vs_ solution
= it s = V«"\ S ———— e ‘\

Icepaq.csln

AN N — Nt) S

"

SOLUTION TASK EXECUTE

' ;
Task Line

{vs_solution,"IcePaq/Icepaq.sln","Release|Win32"}

Execute Result

{vc_project,["IcePaq/ConsoleMopaq.vcproj"],
"IcePaq/Release/Mopaq.lib"”,
"Release|Win32",
[{solution_dir,"IcePaq/"}]}

{vc_project, [“IcePaq/Icepaq.vcproj"],
"IcePaq/Release/Icepaq.exe"”,
"Release|Win32",
[{solution_dir,"IcePaq/"}]}

LEET ™, p— - — -
— ,,_,.,%/:"’"' e O ———— — —_——) VE—

L — o 4 -

NEATENS U

PROJECT TASK PAFISE;
— —— Parse R;ult

Task Line
Input Files lcepag.veproj

{vc_project,[“IcePaq/Icepaq.vcproj"],
Qutput Files Icepaqg.exe

"IcePaq/Release/Icepaq.exe"”,

"Release|Win32",
[{solution_dir,"IcePaq/"}]}

A e e " o
AN

= e) & 7 B ,
PROJECT TASK PARSE

Task Line = Parse Result
{vc_project,["IcePaq/ConsoleMopaq.vcproj”], Input Files | ConsoleMopag.veproj
Output Files | Mopaq.ib

"IcePag/Release/Mopaq.lib",

"Release|Win32",
[{solution_dir,"IcePaq/"}]}

Dependency Graph

D

> ConsoleMopaq.veproj
\. h

Icepaq.sln — vs solution
Icepaq.veproj

. \
==Y = = i Vil e > 4 / =

PROJECT TASK EXECUTE

Task Line ——

{vc_project, ["IcePaq/ConsoleMopaq.vcproj"],
"IcePag/Release/Mopaq.lib",
"Release|Win32",
[{solution_dir,"IcePaq/"}]}

Execute Result

{vc8_compile, "Contrib/zZ1lib/Contrib_zlib.c",

["IcePaq/Release/Contrib_zlib.obj"],

[{vcproj, "IcePaq/ConsoleMopaq.vcproj"},

{search_paths, "Contrib/zZlib",
"Tools/Mopaq/IcePaqg”,
"BlizzardCore/Include",
"BlizzardCore/Source/Packages”,
"BlizzardCore/Source/Packages/Mopaq”,
"Shared", "Contrib"]},

{platform, "Win32"},

{workdir, "IcePaq"}]}, ..

—~ Ve — - ¢ »* / \ 2 2 -

COMPILE TASK PARSE

: ‘“‘?:i?!5a1€7ﬁz=rxw
Task Line Parse Result
{vc8_compile, "Contrib/zZ1ib/Contrib_zlib.c", Input Files S
["IcePaq/Release/Contrib_zlib.obj"], L
[{vcproj, "IcePaq/ConsoleMopaq.vcproj"}, Output Files Contrib_zlib.obj

{search_paths, "Contrib/zZlib",
"Tools/Mopaq/IcePag”,
"BlizzardCore/Include",
"BlizzardCore/Source/Packages”,
"BlizzardCore/Source/Packages/Mopaq”,
"Shared","Contrib"]},

{platform, "Win32"},

{workdir, "IcePaq"}]},

Repeated for other tasks in this project

/

target

ve_project

—p{ Icepaq.veproj

Icepaq. .-'.:lul]—b vs_golution

 Rel Tcepag.exe

Source/BlizzardCore.cpp ves_compile

/

Cous.-ole]!\[opnaq.vcprqjl]

(O Blocked Task or File
O Evaluated Task or File

O Unevaluated File

| Release/Bl.izzm—dCOre.objl]

bzip2/Contiib bzip2.c

ves_compile

Release/Contrib_bzip2. objj

Lzma/Contrib lzma. cpp ves_compile

Rdeasa’C01mib_]sz.objl]

PCRE/Contrib PCRE.c ves_compile

ReleaseICouhib_PCREobj‘]

T

ve project

popt/Contrib popt.c

Release/Contrib _popr.objT,J

ves_compile

Mopaq/FFlags.cpp I_ |

ves_compile

Zhib/Contrib zlib. ¢

ves_compile

Mopaqg/Mopaq.cpp

ves_compile

Mopaq/PFile.cpp

F.elease/FFlags.obj

Releaze/Contrib_zlib. objj

Release/Mopaq.obj

F.eleaze/PFile. oly

P vc8_libranan

Fel Mopaq.l.ibl]

ey b ey

(O Blocked Task or File e
O Evaluated Task or File i S

i L pade cy

O Unevaluated File T [res——

e Tl oy

e et m by
P Ve e by
[I——
s ey sy
eyl
Pa— Wi T ool oy
L] =] My P L
o —t
Vs e by
Rebewrn beqag e ==
PR
— = I, o b e b 2 -
P g
SR i oyl e Tl by
Wb
ot e Vit oy
R
ol vy Gy
e Ty by
Wt o
o ——
et
o et bt 1y
)
R e e e R By R
[Emvr—
[T e
e e
— e Wb W b e by
B ot ey,
RrRe— e Pt

T — 2" Project task complete

Hapmdbysy W e)

Mooy Trbecry e P PP by

(O Blocked Task or File
O Evaluated Task or File

O Unevaluated File
| \ —, }
-

hclude files fof ERie—CPBRIa

15t compile task complete

(O Blocked Task or File
O Evaluated Task or File
O Unevaluated File

Our focus

Even more include files

2 and 3™ compile tasks complete

(O Blocked Task or File
O Evaluated Task or File
O Unevaluated File

4™ compile task complete

(O Blocked Task or File
O Evaluated Task or File
O Unevaluated File

(O Blocked Task or File
O Evaluated Task or File
O Unevaluated File

Linker can now run

(O Blocked Task or File
O Evaluated Task or File
O Unevaluated File

Yy “. | Reduce

Build is complete!

USE CASES
Code compilation

Asset transformation

Texture mipmap reduction

Path map generation

Shader compilation

Archive creation
Patch generation

g
N

‘ Task

‘ Meta Task

|
R

. Task

. Meta Task
@ ArtifactFile

. Source File

Pathmap Generation File & Task Graph

. Task

. Meta Task
@ Artifact File

. Source File

Shader Compilation File & Task Graph

LESSQNS LEAF!NED

B AT e

Memory footprint issues related to large
graphs
Language difficulties with Erlang

* Mnesia [built in distributed DB)

e String handling performance
Unrealized VS 2008 integration
Replacing an 8 hour build process required
many test runs of both the old and new
systems

|

IMPLEMENTATIO

. ll“

i,

~r
0 - —4«(})&,‘*—\5 el g
Y 1% A ‘ 0
— g - NG N 2

FILE CACHE MANAGEMENT

Traditional repo checkout system is problematic
* (Often fetches unused files

e Doesn’t scale
 Across branches
e Across build machines

* File system tree includes build state that
needs cleaning or repairing

FILE CACHE MANAGEMENT

WQ‘W =

Non-traditional repo interface
Repo plugin driver architecture
* Simple API

Logical File System

Virtual File System

Similar to GIT's internals
 (Content addressable cache
Managed working directory via

/

Source/ —

Physical File Systems

Svn Repo

Art/ ——

hard links to the local cache
Ability to map repo paths to build
paths

=
N~

P4 Repo

Subversion Repo

Local
Cache

Work Dir
Task /\
Task

Machine A

Work Dir
Task /\

Task

Machine B

Perforce Repo

Local
Cache

Work Dir
Task /\
Task

Machine C

Files not in cache are
fetched (i.e. lazy]

Files can be fetched from
other machines

Content addressable
cache (md9]

Hard linked to the
working directory

Subversion Repo Perforce Repo

Local Local
Cache Cache

Work Dir Work Dir Work Dir
Task /\ Task /\ Task /\
Task Task Task

Tasks write new files to
the working dir

Output files are hashed
and hard linked to local
cache
* Immutability
enforced via ACL
Async deploy build results

* Transient working
directory

* \Working directory can be

recreated

* Pause/Resume Build
* Debugging

Machine A “Machine B Machine C

s e N e s .

BUILDER ,

* Tracks task to task
dependencies

* When a task is no longer
blocked the task is

—a dispatched to the build

queue

! (\ ﬂ T -

Y|.

BUILD QUEU

B s

Wi

H(

|

e Acts as a task router for
the cluster

- * Routes groups of tasks to
specific machines based
on a consistent hash of
the parent task line

Machine A) \ Machine B Machine C =
PET o - — o N N - . i "N
o o D e el e AT A
’,":4 2 "y.\ / 2 .'.‘_‘:: i e T D\ g N

e — 7 N

CONSISTENT HASHING_
S ——— —

Hashkeys @ @ @ ® ©® @ * Minimizes key map

changes when nodes are
added or removed

Keys and machines are
mapped to slots

Slots l....k....l...-l

| Y |
Machines JAY B D
oS - e — |\ W

S AN N ¢ — S 4 \

CONSISTENT HASHING;
=

Hash Keys @& @ ® ® * When we add a node only

keys / nodes (avg] are
remapped

Slots l...l ..A A..-l

| | | |
Machines A B C D

IS

/-4
AW

L3 e e 4) ¢ ' 4 T GRS 2

|lx

. s

i

|

I

}
|
H

ll
|

(

* Each machine manages
its own task queue

* Allows low latency
transitions to new tasks

* Max runners = CPU

cores
Machine A Machine B Machine C ~ 2
Yy | 4
il {:t;‘/ —’d @‘wf_\“‘\\\ 2 _4‘\ = e r‘ﬁ_—/ﬁ o 2 " 2 GA/\M')kh—F—\ S) R

<

| \ s . : M e & N

. ST . o S == e 50 N e

o \\& SNegd :
i

N, = N .77! ; 7'\77 LY

[

[

|
|

RUNNER
R

* Exists for the lifetime of a
single task

}
|
H

|

e Sets up the working
- directory and fetches any
required files

* Verifies and hashes

output files
Machine A Machine B Machine C ~ 2
Yy | 4
— e e e o o Ny N - : i . e ar
WP reiay STl —r N TS

A \ N ~ ! \

LDAD BALANCING

lh[

i
1
il

!

1’NI

|
|

I ;' '!"h

Faster butg rbrittle

~ Flexible but slower

THFIEAD WOFIK STEALING

v-qg,,au—
LY 4

Thread Queue Thread Queue Thread Queue Thread Queue

?—»—;

CPU Core 1 CPU Core 2 CPU Core 3 CPU Core 4

Build Queue — —

N

&
B

Machine B Machine C

Queued

Executing Tasks

Machine A Machine D

Machine F Machine E

P
|
|
J
!
|
|

TASK STEALING

Each machine executes
tasks from its local queue

Task stealing occurs
between neighbors in a
loop

Build queue process
manages the loop

TASK STEALING

e Machine runs low on

Forwarded R ——— tasks event
steal work Machine B Machine C
request
! * Asynchronous steal work
requests are sent to both
—— neighbors
Machine A == Machine D
- ——— * If arequestcan’t be
S ———— fulfilled, its forwarded
request !
> Ve along the loop
Machine F5tal Worfviachine £
request

g

S— \

| TASK STEALING

* Response is sent directly

BE— | —— to the original machine
Machine B Machine C
* Build queue is notified of
= the ownership change
: Steal work - e
Machine A response Machine D

Machine F Machine E

Node color represents
the machine that
executed the task

Smaller groups were
all run on a single node

Largest groups ran on
at least two nodes

SOFT CACHE AFFINITY.

* Tasks are loosely bound

e Machqec to a machine based on
the hash of its parent
task

Default node for TaSk Foo

L * Likelihood of executing a
Meehine A Mechine D specific task is based on
the distance along the
loop
3 > 2

Machine F Machine E

- e S = y S— RSN \ Y

Builds / Hour W
6
SC2 Data Build = - —
5
13.5 mins
AN =
4 —
- «=C==Jncached
3 — Li
S = = Linear
o =22.2 mins === Cached
30.8 mins 3
1
0
4 6 8
Cluster Size
e " e

" 4

|
9

HARDWARE SCALING —

. HARDWARE SCALING —
Builds / Hour —

10
-
- - - -
SC2 Shader Generation = =
8 - = - 8.0mins
B T
13.3 mins < -1 Mins == == Jncached
- 11.0 mins e
= 17.4 mine- Hinea
14.5 mins = —=-="Cachad
2 T587mi
O T T T T T T T 1
1 =) 3 4 5 6 7 8
Cluster Size
““'-‘f_‘-—’)f - s N v RN

HETEHQGENEQUS LQAQ BALANGING

S v ————

A V/A
0 /"‘d SN

I'ma PC I'm a Mac

TASK MACHINE DEPENDENCIES
s o —

* Tasks have specific machine
requirements
* Visual Studio 2008
* Perl
« XCode 3.2
 CUDA
« Win64

T e P

TASK MACHINE MATRIX

Machine A Machine B Machine C Machine D

Task 1 X X N
Task 2 X X]
Task 3 X X e
Task 4 X X X []
Task 5 X X X X <
Task 6 X X X X k]

. | | I

| L |

Machine D

g
N

\

LOOP ORDERING

e e

Machine A
]
- (\/
|
n
. /
n
Machine C

Machine B

Consistent ordering

Avoid gaps between
“colors”

(Gaps impede work
stealing

LOOP ORDERING

Machine A
n Similar to traveling
N salesman problem [NP
hard]
Machine D . - . . Machine B :
gchine [] achige * (Order the machines from
the most constrained
colors to the least
|
o
Machine C

OPTIMAL ORDERING

Machine A
] Group by
[* Blue (2 Machines]
* Red (2 Machines]
* White (3 Machines]
Machine D uE L Machige:B * Yellow [All machines]

=,

Machine C

g
N

DPTIMAL DFIDEFIING

g
Machine B
=t Group by
* Blue (2 Machines]
/> \ * Red [2 Machines)
* White (3 Machines]
Machine D Machine A * Yellow [All machines]
\> B /
[]
Machine C

g
N

S

_ﬁ{,ﬁ«ﬂ" e,

= ’)t’_:\—_——/ -

A

PR =N
f e },)k‘—-—

TG b Y T

e

wh

|

w'
|

il
'

Wi

= == > =
bwhlttle@bllzzard coh%‘*"j' =

iy

| Mt ‘!WM\I

L

1

I
]
i

“

i

IMH

UNDER THE HOOD OF BLIZZARD’S
INTERNAL BUILD SYSTEM

~ —_ - —— -
) .y N\
g R R % =75 =
)
Neam Y

TOOL TIPS AND TRICKS

No GUI dialogs or windowed error messages
If an error occurs return a non zero result code

If an error occurs because of a malformed input file, print out the
filename and the error

g
N\

TDOL TIPS AND TFIICKS

T vﬂ?‘w

Avoid using exclusive read when opening input files

Avoid using write access when opening input files that you don't
actually write to

Avoid editing files in place, or at the very least provide command line
switches to explicitly name both the input and output files

TQQL TIPS AND TF!IGKS

'-:thve—-"

* Don't have fixed / hardcoded file paths (especially absolute file paths].
All filenames should be assignable via command line switches

* If the tool does any type of batch processing of files, ensure that
individual steps can be executed independently via additional command
line switches

TOOL TIPS AND TRICKS-

T
A

* Embed paths in data, not code (write out a text file describing the
paths]

* Minimize dependencies

SHADEFI COMPILE EF’FIEVIOUSJ

WQ‘W

Wait for data build to complete
Split shader compilation into 5
batches based on graphics quality
* Copy entire game (all locales]
* For each model in game
generate shader pair for
each unique shader key
Merge shader caches

15 mins

45 mins

2 mins

Data

Build
Shader Shader Shader
Compile Compile Compile

N

Shader
Merge

SHADEFI COMPILE QSANITYJ

WQ‘W

* (Generate model lists
* Partition into 100 bins
* For each bin and graphics setting,
loop over models and emit shader
keys
* Assets automatically fetched
If needed
* New file format for keys
* Merge and dedup shader keys

9 secs

1 min

5 secs

Emit
Keys

Emit
Model
Lists

/o \,

Emit
Keys

N/

Merge
Keys

!

Emit
Keys

SHADER COMPILE (SANITY),

Partition keys into N bins (2,000]

For each key bin generate shader

pair from keys

Merge shader caches via two
layers

sgrt(N] = 45 caches per
merge = 46 merge tasks

3 secs

10 mins

15 secs

Shader
Compile

Partition
Keys

/e

Shader
Compile

N/

Merge
Shaders

Shader
Compile

