

GAMES ARE GETTING BIGGER!

SMALL-SCALE DISTRIBUTED SYSTEMS

- 1-10 Jobs
- Top down scaling

LARGE-SCALE DISTRIBUTED SYSTEMS

- 10,000 500,000 Tasks
- Bottom up scaling

LARGE-SCALE DISTRIBUTED SYSTEMS

- Fine grained dependencies
 - Minimize IO

- Very lightweight tasks
 - High concurrency
 - Reattempt on error

EVALUATING EXISTING TOOLS

Distributed & Scalable

DistCC

Google MapReduce

DMake

Incredibuild

MPI

What we need

XCode Distributed Builds

Heterogeneous Platforms

Maven

Make

Hudson / Jenkins

Ant

Heterogeneous
Tools

PROBLEM REQUIREMENTS

- Use graph analysis and dataflow paradigm for maximum parallelism
- Multiplatform (hosts and build targets)
- Incorporate existing processing tools into new framework
- Design for maximum execution performance

DATAFLOW

 A dataflow architecture is functional programming using nodes that are stream processors

 In our dataflow pattern, the nodes are tasks that read immutable files and produce new files and new tasks

IMMUTABLE FILES

- During a Sanity build, file paths can only be written to once
- Tasks that normally modify a file in place become a copy on write

Unlimited directories and filenames

FRAMEWORK

- Task = smallest unit of schedulable work
- Metatask = a task that may define additional tasks
 - Allows us to reason about the remaining work
 - If only tasks remain, we know our dependency graph is complete
- Rule = procedurally generates tasks based on file name patterns
 - Map Rule = 1 file \longrightarrow 1 task
 - Reduce Rule = N files \longrightarrow 1 task

TASK API - PARSE

Parse

- Takes an opaque data structure called a task line
- Returns
 List of input files
 List of output files
- Pure function / no side effects

TASK API-PARSE

TASK API - PARSE

- Parse functions may not directly open or read files
- However Parse may return a set of closures for transforming file contents into a list of additional input file paths

FILE FILE DEPENDENCIES

TASK API - EXECUTE

Execute

- Does the actual work, i.e. reads input files and creates output files
- Returns either
 - Result (Success / Failure)
 - A new set of task lines (Metatasks)

All state is passed via task lines or files

EXTENDED EXAMPLE

3 Metatasks

- 1 solution file
- 2 project files

26 Tasks

- 23 compile tasks
- 2 link tasks (1 lib)
- 1resource compile task

.SANITY FILE

```
{tasks, [
         {vs_solution, "IcePaq/Icepaq.sln", "Release | Win32"}
    ]},
    {deliverables,[
         "IcePaq/win32_release/Icepaq.exe"
    ]},
    {deploy, [
         {location, {smb, "//someserver/someshare"}}
    ]},
    {vfs, [
         {"/",{rep, svn, "http://svn-repository/trunk/", head}}
    ]}
].
```

SOLUTION TASK PARSE

Task Line

{vs_solution, "IcePaq/Icepaq.sln", "Release | Win32"}

Parse Result

Input Files	lcepaq.sln
Output Files	

Dependency Graph

- Blocked Task or File
- Evaluated Task or File
- () Unevaluated File

SOLUTION TASK EXECUTE

Task Line

```
{vs_solution,"IcePaq/Icepaq.sln","Release|Win32"}
```

Execute Result

PROJECT TASK PARSE

Task Line

Parse Result

Input Files	lcepaq.vcproj
Output Files	lcepaq.exe

PROJECT TASK PARSE

Task Line

Parse Result

Input Files	ConsoleMopaq.vcproj
Output Files	Mopaq.lib

Dependency Graph

PROJECT TASK EXECUTE

Task Line

Execute Result

COMPILE TASK PARSE

Task Line

Parse Result

Input Files	Contrib_zlib.c
Output Files	Contrib_zlib.obj

Repeated for other tasks in this project

- Code compilation
- Asset transformation
- Texture mipmap reduction
- Path map generation
- Shader compilation
- Archive creation
- Patch generation

LESSONS LEARNED

- Memory footprint issues related to large graphs
- Language difficulties with Erlang
 - Mnesia (built in distributed DB)
 - String handling performance
- Unrealized VS 2008 integration
- Replacing an 8 hour build process required many test runs of both the old and new systems

FILE CACHE MANAGEMENT

Traditional repo checkout system is problematic

- Often fetches unused files
- Doesn't scale
 - Across branches
 - Across build machines
- File system tree includes build state that needs cleaning or repairing

FILE CACHE MANAGEMENT

- Non-traditional repo interface
- Repo plugin driver architecture
 - Simple API
- Similar to GIT's internals
 - Content addressable cache
- Managed working directory via hard links to the local cache
- Ability to map repo paths to build paths

- Files not in cache are fetched (i.e. lazy)
- Files can be fetched from other machines
- Content addressable cache (md5)
- Hard linked to the working directory

- Tasks write new files to the working dir
- Output files are hashed and hard linked to local cache
 - Immutability enforced via ACL
- Async deploy build results

- Transient working directory
- Working directory can be recreated
 - Pause/Resume Build
 - Debugging

- Tracks task to task dependencies
- When a task is no longer blocked the task is dispatched to the build

BUILD QUEUE Builder **Build Queue** Node Queue Node Queue Node Queue Runner Runner Runner Runner Runner <u>'R</u>unner Runner Runner Machine A Machine B Machine C

- Acts as a task router for the cluster
- Routes groups of tasks to specific machines based on a consistent hash of the parent task line

CONSISTENT HASHING

- Minimizes key map changes when nodes are added or removed
- Keys and machines are mapped to slots

CONSISTENT HASHING

 When we add a node only keys / nodes (avg) are remapped

Builder **Build Queue** Node Queue Runner Runner Runner Machine A

NODE QUEUE

Node Queue

Runner

Runner

Machine B

- Each machine manages its own task queue
- Allows low latency transitions to new tasks
- Max runners = CPU cores

RUNNER Builder **Build Queue** Node Queue Node Queue Node Queue Runner Runner Runner Runner Runner Runner Runner Runner Machine A Machine B Machine C

- Exists for the lifetime of a single task
- Sets up the working directory and fetches any required files
- Verifies and hashes output files

THREAD WORK STEALING

TASK STEALING

- Each machine executes tasks from its local queue
- Task stealing occurs between neighbors in a loop
- Build queue process manages the loop

TASK STEALING

- Machine runs low on tasks event
- Asynchronous steal work requests are sent to both neighbors
- If a request can't be fulfilled, its forwarded along the loop

TASK STEALING

- Response is sent directly to the original machine
- Build queue is notified of the ownership change

Node color represents the machine that executed the task

Smaller groups were all run on a single node

Largest groups ran on at least two nodes

SOFT CACHE AFFINITY

- Tasks are loosely bound to a machine based on the hash of its parent task
- Likelihood of executing a specific task is based on the distance along the loop

HARDWARE SCALING

HARDWARE SCALING

HETEROGENEOUS LOAD BALANCING

TASK MACHINE DEPENDENCIES

- Tasks have specific machine requirements
 - Visual Studio 2008
 - Perl
 - XCode 3.2
 - CUDA
 - Win64

TASK MACHINE MATRIX

	Machine A	Machine B	Machine C	Machine D	
Task 1	Х	Х			
Task 2	Х		Х		
Task 3	Х	Х			
Task 4		Х	Х	Х	
Task 5	Х	Х	Х	Х	
Task 6	Х	Х	Х	Х	
		-			

LOOP ORDERING

- Consistent ordering
- Avoid gaps between "colors"
- Gaps impede work stealing

LOOP ORDERING

- Similar to traveling salesman problem (NP hard)
- Order the machines from the most constrained colors to the least

OPTIMAL ORDERING

Group by

- Blue (2 Machines)
- Red (2 Machines)
- White (3 Machines)
- Yellow (All machines)

OPTIMAL ORDERING

Group by

- Blue (2 Machines)
- Red (2 Machines)
- White (3 Machines)
- Yellow (All machines)

UNDER THE HOOD OF BLIZZARD'S INTERNAL BUILD SYSTEM

- No GUI dialogs or windowed error messages
- If an error occurs return a non zero result code
- If an error occurs because of a malformed input file, print out the filename and the error

- Avoid using exclusive read when opening input files
- Avoid using write access when opening input files that you don't actually write to
- Avoid editing files in place, or at the very least provide command line switches to explicitly name both the input and output files

- Don't have fixed / hardcoded file paths (especially absolute file paths).
 All filenames should be assignable via command line switches
- If the tool does any type of batch processing of files, ensure that individual steps can be executed independently via additional command line switches

- Embed paths in data, not code (write out a text file describing the paths)
- Minimize dependencies

SHADER COMPILE (PREVIOUS)

- Wait for data build to complete
- Split shader compilation into 5 batches based on graphics quality
 - Copy entire game (all locales)
 - For each model in game generate shader pair for each unique shader key
- Merge shader caches

SHADER COMPILE (SANITY)

- Generate model lists
 - Partition into 100 bins
- For each bin and graphics setting, loop over models and emit shader keys
 - Assets automatically fetched if needed
 - New file format for keys
- Merge and dedup shader keys

SHADER COMPILE (SANITY)

- Partition keys into N bins (2,000)
- For each key bin generate shader pair from keys
- Merge shader caches via two layers
 - sqrt(N) = 45 caches per merge = 46 merge tasks

