

A slice of Python

def a_function():

 # a comment

 a = “a string variable”

class A_Class():

 def __init__(self): # Initializer

 self.xx = 42 # instance var

for obj in objects:

 # do something with obj

What I inherited

C:\Tools\Maya\Scripts

C:\Tools\Maya\3rdParty\Scripts

What I inherited

C:\Tools\Maya\Scripts\MyExportInt.py

C:\Tools\Maya\3rdParty\Scripts

 WTF?

What I inherited

This is dumb.

if not ValidateArray(objs):

 for obj in objs:

 # Do stuff

This is all that is needed.

for obj in objs:

 # Do Stuff

Legacy code can be a burden

Symptoms: confusing logic

for f in files:

 if [f for s in GAME_EXT if s in f]:

 for s in GAME_EXT:

Symptoms: How to make changes?

Symptoms: Fear of breakage

Bad code is an infection that spreads!

Not all hope is lost

Not all hope is lost

Not all hope is lost

Not all hope is lost

The Prescription

The Prescription

The Prescription:
Continuous Maintenance

Overview

Bad Code is an infection that spreads

Bad Code is an infection that spreads

How bad code happens

New to the language/system/toolchain
etc.

New to the language/system/toolchain
etc.

The criteria changes

Everyone has deadlines.

How bad code spreads

Others will reference the code.

Others will reference the code.

Growing systems entrench bad code

Growing systems entrench bad code

Overview

Overview

You must fight this infection regularly

Don’t write bad code, write less
optimal code

Dangerous shortcuts

Dangerous shortcuts

Dangerous shortcuts

Dangerous shortcuts

Dangerous shortcuts

Future proofing

Future proofing

Future proofing:
Compartmentalize assumptions

This is bad

turnSpeed = strength * 42.57

This is better

torsionRatio = 42.57

turnSpeed = strength * torsionRatio

Compartmentalize assumptions

def calcTorsionRatio(vehicle=None,

 weight=None):

 # We’ll leave the complex math for later.

 return 42.57

turnSpeed = strength * calcTorsionRatio()

Group things by responsibility

Group things by responsibility
def rigFace():

 browL = "browLeft"

 browR = "browRight"

 cheekL = "cheekL"

 cheekR = "cheekR"

 upperLipL = "upperLipL"

 upperLipR = "upperLipR"

 ...

 browLPos = getPosition(browL)

 browRPos = getPosition(browR)

 cheekLPos = getPosition(cheekL)

 cheekRPos = getPosition(cheekR)

 upperLipL = getPosition(upperLipL)

Group things by responsibility
def rigFace():

 browL = "browLeft"

 browLPos = getPosition(browL)

 # Code to build left brow

 browR = "browLeft"

 browRPos = getPosition(browR)

 # Code to build right brow

 cheekL = "cheekL"

 cheekLPos = getPosition(cheekL)

 # Code to build left cheek

Tutorials, on boarding, documentation

Help people fit in

Documentation

Documentation

def updateEmitterCloud():

 ...

def updateCloudEmitter():

 ...

Documentation

def getCollision(obj):

 for child in listRelatives(obj):

 if child.name() == 'collision':

 return child

Documentation

def getCollision(obj):

 ‘‘‘

 Return collision or None if not

found.

 ’’’

 for child in listRelatives(obj):

 if child.name() == 'collision':

 return child

Good documentation lets new people
see the whole system.

Documentation
class Vector(VectorN):

 def __init__(self, *args, **kwargs):

 if args:

 if len(args)==1 and hasattr(args[0], '__iter__'):

 args = args[0]

 try:

 self.assign(args)

 except:

 if isinstance(args, _api.MPoint) and args.w != 1.0:

 args = copy.deepcopy(args).cartesianize()

 if isinstance(args, _api.MColor) and args.a != 1.0:

 pass

 if isinstance(args, _api.MVector):

 args = tuple(args)

This is a dumb comment

// increment i

i++;

This is a good comment

Go through collision largest

to smallest

for col in reversed(getCollision()):

 ...

This is a good comment

Get the short name without namespace

name.rsplit(‘|’,1)[-1].rsplit(‘:’,1)[-1]

This is kind of awkward

shortNameNoNamespace =

 name.rsplit(‘|’,1)[-1].rsplit(‘:’,1)[-1]

This is really awful

shrtNameNoNs =

 name.rsplit(‘|’,1)[-1].rsplit(‘:’,1)[-1]

So much nicer!

Get the short name without namespace

name.rsplit(‘|’,1)[-1].rsplit(‘:’,1)[-1]

Sometimes hacks are required
x x x x

x x x x

x x x x x x

x x x x x x x x

x x x x x x x x

x x x x

x x x WARNING: The buffer

x x x x x x MUST be accessed

x x x x x x directly, backwards,

x x due to a bug in

x x x x the API ...

x x x x

x x x x x x x x

x x x x x x

x x x x x x x x x

x x x x x x x x x x x

Refactor your code

Breakdown monolithic
classes/functions

By single responsibilities

Separate functionality and gui

Separate functionality and gui

Separate functionality and gui

def onClick():

 for obj in selected():

 # Make LODs

Separate functionality and gui

def onClick():

 makeLODs(selected())

def makeLODs(objects):

 # do the real work

Draw to understand

Draw to understand

Draw to understand

Draw to understand

Globals

Why globals can be bad

Why globals can be bad

Why globals can be bad

Why globals can be bad

Why globals can be bad

Why globals can be good

def a(obj):

 b(obj) # Pass obj along

def b(obj):

 c(obj) # Just keep passing it along

...

def g(obj):

 h(obj) # And passing it some more

def h(obj):

 # Finally do something with obj

 size = obj.size

Global Scope Issues

class Exporter():

 def __init__(self):

 self.meshes = []

 self.collision = []

 def a(self):

 # meshes and collision set here

 def h(self):

 # meshes and collision used here

Global Scope Issues

def prepMesh(... , exportTop):

 # exportTop not used here

def combineCollision(... , exportTop):

 # exportTop not used here

def generateLOD(... , exportTop):

 # exportTop not used here

def resampleAnimation(... , exportTop):

 # exportTop not used here

Global Scope Issues

def prepMesh(... , exportTop):

 # exportTop not used here

def combineCollision(... , exportTop):

 # exportTop not used here

def generateLOD(... , exportTop):

 # exportTop not used here

def resampleAnimation(... , exportTop):

 # exportTop not used here

Global Scope Issues

class ExporterManager():

 def __init__(self):

 # Easy to access as needed

 self.outputFiles = []

 def determineOutput(self):

 # Clear setting mechanism

 # set self.outputFiles

Overview

Overview

Testing will save you

Testing

Automate the testing

Automate the testing

Unit tests

Unit tests

 def test_returnsNoneWithNoCollision():

 def test_findsValidCollision():

 def test_errorOnMultipleCollision():

Testable Code = Better Code

Automated testing

pendown

right 90

draw 15

right 90

draw 12

right 90

draw 15

right 90

draw 12

Automated testing

Super Automated Testing

Overview

Bad code is an infection that spreads

Fight the infection with regular
maintenance.

Fight the infection with regular
maintenance.

The principles of good code are also
ones of testable code.

Testable Code = Good Code

Resources

The Art of Readable Code

 Dustin Boswell and Trevor Foucher

Working Effectively with Legacy Code

 Michael Feathers

Dive Into Python

 Mark Pilgrim

 (esp. Ch 7.3 on testing)

patc@arena.net

The Art of Readable Code

 Dustin Boswell and Trevor Foucher

Working Effectively with Legacy Code

 Michael Feathers

Dive Into Python

 Mark Pilgrim

 (esp. Ch 7.3 on testing)

