GBC EUROPE

Liquid Intelligence

Combining AI and Physics in Vessel

John Krajewski President, Strange Loop Games

COLICINE, GERMANY AUGUST 19-21, 2013 EXPO DATES: AUGUST 19-20

Vessel

Part 1: Programming

Systems-based design

1. Physics Objects

3. Liquid

2. Constraints and Springs

4. AI

Systems-based design

• Goal for systems:

To be independent with rich interactions.

Physics bodies

- Impulse based
- Seamless support for non-convex shapes
- Contact graph stacking algorithm

Constraints and Springs

- Attach point between objects
- 'Hinge' setting
 - Sliding, rotating, axis constrained
- All interactive objects are physical

• Smoothed Particle Hydrodynamics

Particle-based Viscoelastic Fluid Simulation

Simon Clavet, Philippe Beaudoin, and Pierre Poulin

LIGUM, Dept. IRO, Université de Montréal

- Compute three values for each particle:
 - Density
 - Pressure
 - Near-pressure

- Particles can both push and pull neighbors
- Multiple kernels creates surface tension effects

• Pressure Optimization:

 Track neighboring particles with a sparse hash grid

AUGUST 19-21, 2013 GDCEUROPE.COM

Liquids

- Viscosity
 - Friction between drops
 - Calculates velocity between neighboring drops, applies drag

Stickiness

- Attraction to nearest wall
 - •Extension of collision system
- Dynamic springs between particles

Collision

- Liquid must move and be moved by objects
- Huge performance drain
- Optimization: add objects into hash grid

• Chemical Reactions

Water + Lava = Steam

Red Goo + Blue Goo = BAM

• Lighting

 2D planes + normal maps

• Lighting

- Build clusters of liquid
- Place lights at clusters
- Use hashtable again
- Spatial/temporal coherence
- Parameters (density, avg. velocity) determine light type

• Attractors

- Point attractors, exert a force
- Uses spatial partitioning again

- Endless parameter tweaks!
 - Hundreds of parameters

Water - Water Instance		
Event Listener		
Drops		
Water Settings		
Water Drop Mass	0.100000	
Stickiness Stiffness	0.000000	
Stickiness Radius	0.000000	
Rest Density	0.800000	
Pressure Stiffness	12.000000	
Near Pressure Stiffness	0.500000	
Initial Temperature	1.000000	
Thermal Conductivity	90.000000	
Linear Viscosity Factor	1.000000	
Quadratic Viscosity Factor	500.000000	
Water Coefficient Of Restitut	0.000000	
Water Friction	0.100000	
Friction Priority	1.500000	
Gravity Multiplier	1.000000	
Drag Multiplier	0.000000	
Does Not Decay	_	
Explosion Effocts		
Settings for effects based on this fluid exploding		
,		

• Liquid Creatures

- Animated skeletons
- Each bone can attract liquid
- Attaches close drops, pulls them close
- Different numbers of particles depending on the bone

- Circulatory system
 - Transfer particles between bones
 - Particles flow to most needy bone
 - Fluros can function with a range of particles
 - Regrowing lost limbs
 - Seamless flow between living and non-living

- Behaviors
 - Priority tree of behaviors
 - Performs highest behavior that meets conditions
 - Conditions can be physics based

• Pathfinding

- A* on a hand-placed network
- Fluros can 'claim' objects like clusters or buttons
- Behaviors very predictable so they can fit into puzzles

Part 2: Design

Interacting systems

"Every block of stone has a statue inside it and it is the task of the sculptor to discover it."

Michelangelo

Interacting systems

- Puzzle solutions = the results of combined systems
- Fair puzzles: the player knows the facts, they must induct the solution
- Satisfying to combine ideas
 - "Solving Vessel's puzzles feels like a 1,000 watt light bulb flicking on in your brain." - GamesRadar

Puzzle example: Combining Chemical Reactions and Fluros

Puzzle example: Teaching for the 'exam'

Design – Unexpected effects

- Cycle: Create a system, play with it, wonder 'what-if'
- Designing is just like playing the game
- Science stretching the unexpected
- Programming and design are inseparable

Puzzle example: Stretching a small effect

Not just puzzle design

- All the aspects of the game grew out of the core systems
 - Story Living machines
 - Visuals A mechanical world
 - Music Contemplative, dark, glitchy

John Krajewski - Strange Loop Games – john@strangeloopgames.com Twitter: strangeloopgame