
Using Gigapixel Landscape Textures in 
Dragon Commander: Lessons Learned

Swen Vincke
CEO, Larian Studios

Charles-Frederik Hollemeersch
CTO, Graphine



About Larian Studios

● Divinity II (Dec. 2010)
● RPG

● PC & Xbox 360

● Dragon fights were very popular!

● Dragon Commander (DC) (Aug. 2013)
● RTS + Action

● Lots of dragon fights









Landscape Texturing in Divinity II

● Looked great on the ground



Landscape Texturing in Divinity II

● Lower quality when seen from the sky

Visible
Tiling

Need more 
dramatic detail



Divinity II Approach

● Masked blending

● Low resolution masks

● Tiling detail textures



DC Requirements

● Needed something more visually unique

● Less tiling when seen from the sky

● More natural detail: erosion, rivers, cracks, …

● Blending approach not feasible

● Needs many layers for variety

● Needs high resolution source art to ensure uniqueness

● Masks: height, slope, …

● Textures: diffuse & normal

● Needs complex blending modes



DC Prototype Solution

● Use uniquely baked texture data on the 
landscape
● 64 tiles, 2048x2048 each
● Equivalent to a 16384 x 16384 texture
● Textures baked during production

● Statically load all the data
● 512 MB (DXTn)

● Big, but the artists were happy 



Results



Prototype Issues

● Too much runtime memory use

● 512MB per level landscape

● Too much disc storage

● 512MB per level landscape



Solution 1: Back to layer blending?
Layer Blending

● Recreate production pipeline in shader:

● 36 source textures per map

● 18 diff + 18 norm

● 1k x 1k: ~ 50 MB total (DXT)

● 8 mask textures

● height, erosion(s), normals, 
roads, walkable

● 16k x 16k: ~1,3GB total

● Assuming 8k masks: still 391 MB run 
time memory use

● Complex blending shader accessing 
many textures

Static Loading 

● 2 textures

● diffuse + normal 

● 512MB run-time meory use (DXT)

● Trivial shader



● A.k.a. don’t load it all at once

● Requirements

● Low rendering overhead

● Low memory footprint

● Low disk storage

● Future scalability



Layer Blending 

● Complex blending shader
accessing many textures

● 360 MB memory at run-
time

● 360 MB memory on disc

Prototype

● Trivial shader 
accessing 2 textures

● 512 MB memory at 
run-time

● 512 MB memory on 
disc

Streaming Final

● Relatively simple shader
accessing 3 textures 

● 60MB ~ 120MB run time 
memory use (depends on 
cache)

● ~130MB memory on disc



Texture Streaming

Charles Hollemeersch - Graphine



Background

● Mipmap based

● Clipmapping

● Virtual texturing

● Dedicated hardware



Mipmap Based Streaming

● Stream textures one mipmap level at a time
● + Easy to implement
● + No special shader needed
● - Bad granularity

● Big tiles
● Seconds, not ms to process for highest mips
● Memory not efficiently allocated maybe only small area needed

● Small tiles
● Batch overhead of splitting geometry



Clip Mapping

● Load fixed resolution rectangles around a 
certain point
● + Supports large textures

● + No need to split geometry

● - Need roughly planar UVs

● - Special set-up in shader

● - Streaming gets more compicated



Clip Mapping in Games

● Difficult to decide a single high resolution 
area to load

Which area should 
we load at the 

highest resolution?



Clip Mapping in Games: Example

Enemy Territory Quake Wars



Virtual Texturing

● Stream arbitrary set of tiles based on actual 
visibility

● + WYSIWYL (a.k.a. what you see is what you load)

● + No special geometry or uv requirements
● + Tiles are small and can be processed fast
● - Most complex to implement
● - More complex shader



Virtual Texturing Overview

Translation 
Texture Cache Texture Rendered Result

Calculated Tile 
Identifiers and Mip Levels



Virtual Texturing in Games

● Has been used in a few high-end titles

Rage Brink



Tiled Resources

● Hardware tiled-texture support
● Simlified texture filtering
● Announced at //Build/ 2013
● Confirmed on DirectX 11.2 and Xbox One
● PS4 Partially Resident Textures
● Can be used to implement flexible streaming

● Clipmapping
● Virtual Texturing
● …



Tiled Resources II

● Still need streaming system to drive hardware
● Decide what to load
● Streaming data from disc
● Compression

● More info in our //Build/ talk
● http://msdn.microsoft.com/en-

us/library/dn312084(v=vs.85).aspx

● Not used in Dragon Commander: DX9



Tiled Resources: Hardware

Indirection step is now 
hardware accelerated

Translation 
Texture Cache Texture Rendered Result

Calculated Tile 
Identifiers and Mip Levels



Virtual Texturing in 
Dragon Commander



Streaming Runtime Overview

Streaming Runtime

Color/Normal 
Compression

Quartz 
Advanced

Compression

Dragon Commander

Tile File

Residency 
Analysis

Tiling Engine

Software
Tiling

Microsoft 
Tiled 

Resources

AMD PRT

Compression 
Engine

Streaming Engine



Software Tiling on DX9

● Difficult to get right in all cases
● Tile border filtering

● Mipmap filtering

● Been described in detail elsewhere
● J.M.P. van Waveren - id Tech 5 Challenges

● Charles Hollemeersch et al – Accelerating Virtual 
Texturing using CUDA



Residency Analysis in DC

● Decide what tiles to load
● Try not to load unnecessary tiles

● Mipmap level never accessed
● Occluded by other geometry

● Low resolution render of the scene
● Asynchronous read back to the CPU for analysis

● Only render landscape
● Main occluder in DC scenes



Need for compression

● DXTn compression: 512 MB/Level
● DXT5: 16k x 16k Normals + mipmaps
● DXT1: 16k x 16k Color + mipmaps

● 54 levels in game:
● 28 Gigabyte

● We needed something better than plain 
DXTn on disc



Compression

● Graphine compression
● quantized, block-based 

● predictive

● adaptive: color + normals

● support for alpha 

● Supports fast transcoding from this format to 
DXT for optimal storage on GPU

0%

20%

40%

60%

80%

100%

Raw DXT5 Granite High

Quality

Granite

Medium

Quality

Compression of Textures In Dragon 
Commander

Diffuse RGB+A

Tangentspace Normal



Compression: Example



Compression: Example

DXT 
compressed 

image

fixed 6:1

Granite 
compressed 

image

quantisable ~20:1

12 kb 5 kb



Compression in Dragon Commander

● 4.6x compression over DXT (18x vs raw)

● Made the game ~ 1/3rd smaller

● 6GB level textures

● Ship on 2 DVDs

● Download faster



VT Engine Integration

● VT textures are first class citizens
● Fully integrated in engine resource system and 

shader node editor, not a special case shader

● Can use VT on all objects if we want (RAGE style)

● Currently only used on the landscape

● Integrated in tool chain
● Compression (16k) adds 45 seconds



Multi-threading

● Asset loading thread
● Regular assets load through this thread, used at load time

● Main thread renders loading animations

● Resource creation invoked on main thread (DX9)

● Texture streaming thread
● Active at run-time streams compressed pages from disc

● Mainly sleeping blocked on disc IO

● Texture transcoding thead
● Convert tiles from compressed format to DXT



Memory use

● 128 MB of system cache memory

● 96 MB of GPU texture memory (-82%)

● Less on low-quality settings



Performance

● Fast even on low-end systems
● Minimum spec GeForce 8800 (>96% PC Gamers)

● Transcoding of tiles takes up 10-15% of a single 
core

● Tiles usually available in 2-4 frames
● Gracefully falls back to lower resolution if data is 

unavailable
● No visible popping



Texture Streaming

Swen Vincke - Larian Studios



Conclusions on VT

● Removed limit on texture detail

● Reduced storage per map

● 28GB -> 6GB

● ~1/3 size reduction overall

● Low runtime memory use

● Easy to integrate in production pipeline



Why we chose to use Granite SDK by Graphine

● Granite SDK: middleware package for 
advanced streaming and compression

● Easy to integrate
● Years of expertize on streaming and 

compression
● No codecs to write & optimize
● Future proof: Engine is tiled resources ready



Baking Workflow



Generate landscape info
• Height
• Normal
• Erosion
• Walkable

Run action
• Ambient 

Occlusion
• Non destructive

Generate textures
• Diffuse
• Normal

Compress texture
• DXT
• Granite SDK 

Codec

Generate landscape 
mesh
• Optimization

• Delete temp. data
• Check into source 

control



Build Server

● Automatically builds landscapes overnight

● Python script controlling all DCC apps

● Maxscript

● After effects java script

● Runs through: 
http://www.cruisecontrolnet.org/



Pipeline problems

● Iteration times to long
● 2~3 hours for full resolution bakes

● Not enough local control
● Wanted to add small stamps around bases, forests…

● Fine control for road layout

● Integrate interactive painting tools in the game 
editor in the future



Conclusions



● Texture streaming allowed us to use less 
memory at run-time

● On-disc compression allowed us to pack 
more content in the same download size

● Using middleware gave us high-end 
technology quickly

● More interactive tools are needed




