
The Art and Rendering of
Remember Me

Sébastien Lagarde
Senior 3D/Engine programmer, DONTNOD
Laurent Harduin
Lighting Artist, DONTNOD

DONTNOD Entertainment

• Young French studio located in Paris

• 5 years old

•  Game and studio created in parallel

• Grew from 5 up to 95 internal employees

Remember Me

•  Released June 2013
•  Sci-fi action-adventure

third person game
•  XBOX360 / PS3 / PC
•  Published by Capcom
•  Based on Unreal Engine 3

Remember Me – Launch Trailer

Conception :

Key concept

Neo-Paris

Virtual Spaces

Conception - Key concepts

• Memory manipulation

• Inspired by social networks

•  Had to be perceived as an evolution of today’s

“share everything” way of life

Conception - Key concepts

• Location
•  Need to have recognizable parts in the

environment to have that near future feel

•  Takes place in Neo Paris

• Near future
•  2084 in reference to 1984

Conception :

Key concept

Neo-Paris

Virtual Spaces

Conception - Neo Paris

• Believable world and strong art direction

•  Stylized realism

• Sci-fi visual codes (shiny, moody, reflections,

contrast, high tech, glossy)

• Specific color schemes

Conception - Neo Paris
• Graphic elements

Conception - Neo Paris

• Only one city

• Three different areas

Conception - Deep Paris

Conception - Mid Paris

Conception – Bastille

Conception - High Paris

Development agenda

• Believable world

• Rainy mood

• Reflections

• Ambient occlusion

•  Image enhancement

Believable world - Landmarks

Believable world - Realistic rendering

Physically based rendering (PBR)

• Inspirational SIGGRAPH 2010 PBR course
•  Thanks to Naty Hoffman and Yoshiharu Gotanda

• Benefit:
•  Intuitive parameters
•  Fewer parameters
•  Easier to achieve photorealism
•  Consistent looks under different lighting conditions

Physically based rendering

• What is different with PBR?
•  Fresnel everywhere
•  Energy conservation

Remember Me shading model
•  Rendering equation

 BRDF
(Shading model)

Lighting

For all incoming lighting

Lambert’s
cosine law

Resulting
color

Remember Me shading model
•  Direct lighting

•  Analytic lights
•  Naty Hoffman’s Blinn microfacet model

[Hoffman10]

Analytic light

Fresnel eyerywhere

Energy conservation

Blinn model

Remember Me shading model

•  Indirect lighting
•  Environment lights (Image based lighting)

•  Separate diffuse and specular

Specular Diffuse Environment light

Remember Me shading model

• Indirect diffuse lighting
•  Lightmap

•  For background

•  Irradiance volume of spherical harmonics

•  For dynamic objects

•  Available in UE3

Remember Me shading model
• Indirect specular lighting
• Too complex to pre-integrate

•  Approximate by splitting in two parts
•  Not mathematically correct

Glossy Fresnel Pre-integrated cubemap

• Pre-integrated cubemap

Remember Me shading model

ModifiedCubemapgen [MCube12]

Remember Me shading model
• Glossy Fresnel

•  Rough surfaces reflect
less light at grazing
angles

•  Coarse approximation
•  Cheap and visually OK

Rough material

// Direct lighting
float3 FresnelSchlick(float3 SpecularColor,float3 E,float3 H)
{

 return SpecularColor + (1.0f - SpecularColor) * pow(1.0f - saturate(dot(E, H)), 5);
}
// For each light (Pi in energy conserving term is cancel by the Pi of punctual lights)

SpecularColor += FresnelSchlick(SpecularColor, L, H) * ((SpecularPower + 2) / 8) *
 pow(saturate(dot(N, H)), SpecularPower) * dotNL * LightColor;

// Indirect lighting

float3 FresnelGlossy(SpecularColor,float3 E,float3 N,float Smoothness)
{

 return SpecularColor + (max(Smoothness, SpecularColor) - SpecularColor) *

 pow(1 - saturate(dot(E, N)), 5);
}

// For one cubemap
float3 Envcolor = texCUBElod(EnvironmentTexture, float4(R, EnvMapMipmapScaleBias.x * Gloss +

 EnvMapMipmapScaleBias.y)).rgb;

SpecularColor += FresnelGlossy(SpecularColor, N, E, Gloss) * Envcolor.rgb * EnvMapScaleAndModulate;

 // EnvMapScaleAndModulate is used to decompress range

Physically based rendering
• Area lights
•  Important for physically based rendering
•  Spherical light hack [Gotanda11]

example of varying spherical light size

half SpecularPowerHack(half SpecularPower, half AttenuationFactor, half LightSizeForSpecularPower)
{

 half val = saturate(LightSizeForSpecularPower * AttenuationFactor);

 return SpecularPower * val * val;
}

half3 PointLightBlinnMicrofacet(half3 DiffuseColor,half3 SpecularColor,half SpecularPower, half3 L, half3

N, half3 H, half AttenuationFactor)

{
 half dotNL = saturate(dot(N, L));
 // (Pi in energy conserving terms are cancel by the Pi of punctual lights)

 half DiffuseLighting = DiffuseColor * dotNL;

 SpecularPower = SpecularPowerHack(SpecularPower, AttenuationFactor, LightSizeForSpecularPower);
 half SpecularLighting = FresnelSchlick(SpecularColor, L, H) * ((SpecularPower + 2) / 8) *

 pow(saturate(dot(N, H)), SpecularPower) * dotNL
 return DiffuseLighting + SpecularLighting;

}

PBR – Artists guidelines
• Workflow - Concept art

PBR – Artists guidelines

Albedo Specular Smoothness Normal

PBR – Artists guidelines
• Albedo (or diffuse color)

•  Strict name: “bi-hemispherical reflectance”
•  The characteristic color of an object
•  Has a physical meaning

• No lighting information
•  Lighting is processed by the engine
•  Exception for micro-occlusions
•  Often authored too dark

PBR – Artists guidelines
•  Reference chart

•  Albedo value is between 32-243
in sRGB

•  Darkest is charcoal
•  Brightest is fresh snow
•  No albedo for pure metal

•  Chart is not enough

PBR – Artists guidelines

• Acquire reference from real world
•  Based on the work of Henry Labounta [Labounta11]

•  Used as references

•  Time-consuming

• Two cases for game
•  Metal: high RGB values
•  Non-metal: low grey values

PBR – Artists guidelines
• Specular

•  Input of Fresnel equation
•  Purely physical values: index of refraction
•  Strict name: “Fresnel reflectance at normal incidence

for air-surface interface”

PBR – Artists guidelines
•  Specular reference chart (sRGB)

•  Non-metal values are 43-65
•  Unintuitive

•  Metal values are 186-255
•  Characteristic color of metal

•  In practice non-metals can
be set to default 59

•  Chart is available
[DONTNOD12]

PBR – Artists guidelines
• Smoothness

•  Very important
•  Control strength of

reflection blurriness
•  Values are engine -specific

•  Black: rough
•  White: smooth

•  White preferred for smooth
•  Many names: “Roughness, shininess, glossiness”

PBR – Artists guidelines
• Smoothness reference chart (grey)

• Used to select mipmap with indirect lighting
• Converted to specular power (2-2048) with direct lighting

Real world pictures
courtesy of Andrea
Weidlich from “Exploring
the potential of layerer
BRDF models” Siggraph
Asia 2009).

PBR – Artists guidelines
• Required fast visualization tools

•  Test scene
•  Updated UE3 mesh viewer with indirect specular lighting

PBR – Artists guidelines

•  Outsourcing
•  Followed the same workflow as our in-house artists

•  Needed a simple viewer

•  Updated shaders in UDK (Nov2011)

•  Art director frequently checked and gave precise

feedback

PBR – Artists guidelines

PBR – Artists guidelines

• In practice
•  No real resistance to the switch

•  Large amount of time to get textures right

•  Good results still depend on the artists’ work!

•  Great response to lighting

Development agenda

• Believable world

• Rainy mood

• Reflections

• Ambient occlusion

•  Image enhancement

Rainy mood

Physically based wet surfaces

• Wet surfaces with PBR?
•  Old way: boost specular, attenuate diffuse
•  Take real life reference

•  Darker diffuse, brighter specular, hue/saturation changes
•  But not for all surfaces, only porous ones

Physically based wet surfaces

• Shading model way is too complex
• Approximate by adjusting textures
•  Assume rough, non-metallic surfaces are

porous
•  Attenuate albedo
•  Increase smoothness
•  Specular doesn’t change

Physically based wet surfaces

•  Optimization

•  In the end the game use static rain

•  All wet influences were baked into textures

• Bonus: allows control from artists

•  Always fit to the context

float ProcessWetSurfaces(inout float3 Albedo, inout float3 Smoothness, float WetLevel)

{
 // Determine if we are a metal object (specular > 0.5), non metal (specular < 0.08)
 float Metalness = saturate((dot(specular, 0.33) * 1000 - 500));

 // Calculate a porosity level based on Smoothness[0 rough, 1 smooth]
 float porosity = saturate(((1-Smoothness) - 0.5)) / 0.4);
 // Calc albedo attenuation factor

 float factor = lerp(1, 0.2, (1 - Metalness) * Porosity);

 // Water influence on material parameters
 Albedo *= lerp(1.0, factor, WetLevel); // Attenuate albedo

 // Move Smoothness toward 1 (perfect mirror)
 Smoothness = lerp(1.0, Smoothness, lerp(1, factor, 0.5 * WetLevel)); // 0.5 is an empirical factor

}

Rainy mood

Development agenda

●  Believable world

●  Rainy mood

●  Reflections

●  Ambient occlusion

●  Image enhancement

Reflections
• “Reflection” term

•  Alias for “indirect specular
lighting”

•  Reflection improvement
features here

• Reflections everywhere
•  Used artist-placed pre-

integrated cubemap on every
surface

Reflections

• Local image base lighting
•  Mix into one cubemap

•  Based on camera/player position

•  Apply on every surface

•  Presented at SIGGRAPH 2012

[Lagarde_Zanuttini12]

Reflections

• Parallax-corrected
cubemap
•  Improves quality
•  Reflection vector adjusted

•  Based on camera location
•  ...and scene approximation
•  Supported boxes and spheres
•  [Bjorke07][Behc10]

Reflections
• Improved for the ground

•  Parallax-corrected cubemap
•  Support convex/concave

•  Artists placed ground plane
•  Mix cubemaps into 2D texture
•  Use result like dynamic planar

reflection
•  Coarse handling of smoothness
•  See GPU Pro 4 book

[Lagarde_Zanuttini13]

Reflections

Reflections
• Ground image proxies

•  Billboard reflections
•  Similar to particles

•  Enhance a cubemap
•  Generated in editor
•  Authored by hand
•  [Mittring11]
•  [Wiley07]

Reflections
Image proxies – best practices

Reflections
• Image proxies can be
dynamically linked

• Characters
•  Stretched sphere linked to

main bones
•  Don’t look at mirror surfaces! ☺

After the rain

After the rain

• Our engine is not optimized for a lot of

dynamic light sources

• Art direction influenced by the technical

limitations

Development agenda

• Believable world

• Rainy mood

• Reflections

• Ambient occlusion

•  Image enhancement

Ambient occlusion (AO)

•  Subtle static AO baked into
lightmaps

•  No hard shadows in indirect
lighting areas

•  Need solution for characters

• We don’t like SSAO

Ambient occlusion volumes
• Analytic ambient occlusion

•  Volume proxy
•  Based on distance
•  Take horizon into account

• For Characters
•  Capsule linked to main bones
•  Less waste

• Similar to [Hill10]

Ambient occlusion volumes
• Splat influence volumes on the screen

•  Capsules extended by influence region
•  Approximated by a box

• Bounding box + thinnest axis size

• Requires a normal buffer
•  Forward renderer!
•  Render normals in Z prepass

• Only for objects in contact with characters

Ambient occlusion volumes
•  Steps:

•  Render normal + depth during z prepass
•  Splat extended box into AO buffer
•  Apply in main pass on indirect lighting

•  Performance
•  Between 0.5 and 1.5ms on PS3
•  Faded out on close-ups to reduce fillrate cost

// Get vector from local position to local sphere center. In local sphere space, center is 0,0,0
half3 Vec = MulMatrix(ProxyWorldToLocal, float4(PositionWS.xyz, 1.0));
// Compute vector from point we are shading to center of the sphere

half3 VecWS = normalize(ProxyWorldPosition.xyz - PositionWS.xyz);
half3 NormalWS = tex2Dlod(NormalTexture, float4(ScreenUV,0,0)).xyz * 2.0 - 1.0;

// Cosine of the capsule’s angular height above the horizon
half CosAlpha = saturate(dot(NormalWS, VecWS));

// We use a capsule shape which is computed as:
// AOVSize.w = min(size.x, min(size.y, size.z))

// AOVSize.xyz = size - AOVSize.w
// Using length(dist3D) will result in a smooth capsule
half3 dist3D = max(abs(Vec) - AOVSize.xyz, 0.0f);

half dist = saturate(AOVSize.w / length(dist3D) * 2.0f - 1.0f);

half Occlusion = dist * CosAlpha;
Occlusion = min(Occlusion, 0.95); // Do not allow totally black to avoid removing all color

// .w contains fade factor calculated offline for transitioning to close-up shot
Occlusion *= ProxyWorldPosition.w;

Occlusion = saturate(1.0 - Occlusion); // 1 no occlusion, 0 full occlusion

Development agenda

• Believable world

• Rainy mood

• Reflections

• Ambient occlusion

•  Image enhancement

Atmospheric tint sphere

Image enhancement
Atmospheric tint sphere
• Enhances

•  Silhouettes, image depth, light
glowing, steamy atmosphere

• Cheap additive translucent sphere
•  Cubic attenuation at border

 float3 c = Intensity * Color.rgb;

 float3 result = c * pow(abs(TangentCameraVector.z), 3)

•  Optional features

Image Enhancement

•  Hand-authored sky in Photoshop
•  Default to LDR
•  Meant low reflection, no bloom
•  Tonemapper changed sky appearance

•  HDR sky required with predictable results

Image Enhancement
Inverse tonemapping for sky
•  Inverse tonemapping in sky material

•  Luckily the UE3 tonemapper is invertible
•  y=Bx / (x + A) => x=y * A / (B – y)
•  Values above a threshold produce bloom

Invert

Image Enhancement
Normal sky

Inverse
tonemapped sky

// UE3 default tonemapper range is [0;8] resulting in following code

float3 ToneMap(float3 color)
{

 return 1.0275 * color / (color + 0.22);

}

// When editing the image in Photoshop, a pure white (1) in the game is obtained with the value 214
// (0.84). Any value above 214 will bloom & the maximum in-game value (8) is reached for the value 255

float3 InverseToneMapping(float3 color)
{

 return (0.22 * color / (1.0275 – color));

}

Conception :

Key concept

Neo-Paris

Virtual Spaces

Virtual Spaces

• Human mind seen through the Sensen technology

• Two types of levels

Virtual Spaces

Virtual Spaces in the Sensen

• Art style: half organic & half technological
•  Blurry space

•  Ghosting effects

•  Fade in effects

•  Glitches

Depth of Field with translucency
• UE3 DOF is deferred

•  Wrong DOF for translucent objects
• Tried many “low cost” methods

•  Performance mattered
•  Nothing gave the quality we were

looking for
• Want in-focus objects on top
of out-of-focus background

Depth of Field with translucency
• Brute force solution
• Render an extra DOF pass

•  Render translucent objects behind of focal
•  Blur with stencil masked far pixel
•  Render translucent objects in front of focal

• 1.6 to 2 ms extra cost (PS3)
• Limited to memory remix and ego room

Thanks!
• Frédéric Cros (Lead Lighting artist), Michel Koch
(Art Director), Antoine Zanuttini, Laury Michel
(Graphic programmers)

• DONTNOD and EPIC Team
• Naty Hoffman, Yoshiharu Gotanda
• Reviewers: Stéphane Hubart, Sam Hocevar, Cyril
Jover, Jérôme Banal, Timothée Letourneux,
Thomas Iché, Daniel Wright

• Special thanks : Stephen Hill, Brian Karis

Q&A
•  Sébastien Lagarde

•  Email: Lagardese@hotmail.fr
•  Twitter : @SebLagarde

•  Laurent Harduin
•  Email: harduin.laurent@gmail.com
•  Twitter : @lharduin

•  Slides availables at
 http://seblagarde.wordpress.com

Q&A
•  Sébastien Lagarde

•  Email: Lagardese@hotmail.fr
•  Twitter : @SebLagarde

•  Laurent Harduin
•  Email: harduin.laurent@gmail.com
•  Twitter : @lharduin

•  Slides availables at
 http://seblagarde.wordpress.com

References
Some of the screenshots of this talk are extract from
the Dead End Thrills’ Remember Me gallery.
(Slides 9, 16, 30, and 123).

http://deadendthrills.com/gallery/?gid=3
@deadendthrills

References
[Behc10] “Box projected cubemap environment mapping”
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/
[Bjorke07] “Image based lighting”
http://http.developer.nvidia.com/GPUGems/gpugems_ch19.html
[DONTNOD12] DONTNOD specular and glossiness chart
http://seblagarde.wordpress.com/2012/04/30/dontnod-specular-and-glossiness-
chart
[Gotanda11] "Real-time Physically Based Rendering – Implementation”
http://research.tri-ace.com/
[Hill10] “Rendering with Conviction”,
http://www.selfshadow.com/talks/rwc_gdc2010_v1.pdf

[Hoffman10] “Crafting Physically Motivated Shading Models for Game Development”
http://renderwonk.com/publications/s2010-shading-course/

References
[Labounta11] GDC 2011 “Art Direction Tools for Photo Real Games”
Not available
[Lagarde_Zanuttini12] “Local Image-based Lighting With Parallax-corrected
Cubemap”
http://seblagarde.wordpress.com/2012/11/28/siggraph-2012-talk/
[Lagarde_Zanuttini13] “GPU Pro 4 – Practical planar reflections using cubemaps and
image proxies”
http://seblagarde.wordpress.com/2013/05/07/gpu-pro-4-practical-planar-reflections-
using-cubemaps-and-image-proxies/
[MCube12] “AMD Cubemagen for physically based rendering”,
http://seblagarde.wordpress.com/2012/06/10/amd-cubemapgen-for-physically-
based-rendering/

References
[Mittring11] “The Technology Behind the DirectX 11 Unreal Engine "Samaritan" Demo”,
http://udn.epicgames.com/Three/rsrc/Three/DirectX11Rendering/

MartinM_GDC11_DX11_presentation.pdf
[Persson12] “Graphics Gems for Games – Findings from Avalanche Studios”,
http://www.humus.name/index.php?page=Articles
[Wiley07] “The Art and Technology of Whiteout”,
http://developer.amd.com/resources/documentation-articles/conference-
presentations/gpu-technology-papers/

Bonus slides

Image Enhancement
Color grading
•  Intensify stylization
•  Reinforce the mood
•  Fake eye adaptation

Depth color grading
• Color grading varying with depth
• Up to 4 different levels

•  Remember Me use only one level
• Too much time required for multiple levels setup

• 3D textures 16x16x64
• Manual interpolation in the shaders
•  Add ~0.6 ms (PS3) compare to one level

sampler3D ColorGradingLUT;

half4 LookUpInRange(half3 InLDRColor, half IntZ)
{

 half3 UVW;

 UVW.xy = InLDRColor.xy * 15.0f / 16.0f
 + 0.5f / 16.0f;
 UVW.z = InLDRColor.z * 15.0f / 64.0f

 + 0.5f / 64.0f + IntZ * 16.0f / 64.0f;
 return tex3D(ColorGradingLUT, UVW);

}

half4 DepthTransition;
half4 DepthDistances;

half4 ColorLookupTableDepth(half3 InLDRColor, half Depth)

{
 half4 DepthDistancesNear = half4(0, DepthDistances.xyz);

 half4 DepthDistancesFar = DepthDistances;
 // Get distance weights from each layer
 half4 near = half4(Depth >= DepthDistancesNear);

 half4 far = half4(Depth < DepthDistancesFar);
 half4 weights = near * far;
 half3 Layers = half3(1, 2, 3);

 half IntZ = dot(weights.yzw, Layers);
 half3 Fraction = saturate(Depth * DepthTransition.w -

 DepthTransition.xyz);
 half FracZ = dot(weights.xyz, Fraction);

 half4 ret = LookUpInRange(InLDRColor, IntZ);
 half4 RG1 = LookUpInRange(InLDRColor, IntZ + 1.0f);

 ret = lerp(ret, RG1, FracZ);
 return ret;

}

Rainy mood
• Splashes on the background

•  Top down depth map from location above the camera
•  Read back on CPU
•  Splashes spawning location recover from depth
•  Only render tagged objects

•  ~0.5ms GPU PS3/XBOX360
•  (Splashes + depth map 256x256)

Rainy mood
• Rain

•  Cylinder with two cone caps
•  Centered around the camera

•  Only one rain texture

•  Mapped on 4 virtual layers
•  Parallax effect
•  Different scrolling/rotation

Rainy mood
• Rain

•  Drops have different intensities in rain texture
•  Hide drops based on threshold

•  Drops occluded by depth map
•  Restricted to 2 first layers for performance
•  Level designer could disable other layers

•  Heavily optimized
•  ~1.7 ms PS3/XBOX360
•  Fixed cost

Rainy mood
• Puddles

•  Paint vertex color to define depth
•  Based on wet surface code

•  Puddles are mirror-like
•  Vertex color fetch for footsteps

•  Sound
•  Splash FX

Rainy mood
• Ripples

•  Only where enough water
•  GPU semi-procedural

•  One RGBA texture
•  Mapped with world XY

coordinates
•  ~0.15ms PS3/XBOX360

256x256

Rainy mood
•  Camera droplets

•  View space particles
• With particle trimming [Persson12]

•  ~0.4 PS3/XBOX360

Remember Me
• Published by Capcom
• Midsized team with little outsourcing
• Based on Unreal Engine 3 (UE3)

•  With in-house features ☺

• PS3 Lead platform
•  XBOX360 just works

• PC port by external company (Qloc)

Remember Me shading model
• Indirect diffuse lighting

• Pre-integrated offline
•  Stored as Directional lightmaps

•  Or as Spherical harmonics

• Available in base UE3

