Physics Engine Development

Sergiy Migdalskiy
Dirk Gregorius

Physics
Rubikon

Hello!

My name is Sergiy Migdalskiy and | work at Valve with Dirk Gregorius. | helped port,
develop and optimize our in-house physics engine, Rubikon. Also, | have implemented a
physics engine for Uncharted: Drake's Fortune on PS/3.

Physics Engine Development

While this talk is about physics development, I'd like to emphacise that tools and techniques
I'm describing are general purpose. They are probably applicable to any complex system
written in C++.

Visualization

[& Playing with Physicsmp4 ~VIC media player K — S o|@

‘Media Playback - Audio - Video - Subtifle: - Tools.- View " Help

[~ -

Playing_with__Physics.mp4

00:03 — 01:14

[01] (@] (E) (=86 0 el]

Run Playing_with_Physics.mov

This is what | do the whole day long.

| play with physics, throw ragdolls into sandboxes, and such silliness.

(wait) Here I'm piling up some ragdolls, it's looking good, until..

I notice one of the ragdolls, the very first, doesn't seem to collide with anything.

I'm testing some more. | make sure the other ragdolls work fine. Then | notice something.
Here it is — the collision flags on the very first ragdoll are set to not collide with anything.
Now the mystery is solved, and | go on to other tests.

Physics + Qt = Fast Dev Cycle

5 Physics Testbed

We started working with Dirk by porting his rigid body engine to Valve's framework. |
knew Qt and | like playing with stuff I'm working on, for fun and to make it easier.
So | implemented a little IDE for our physics project.

It was incremental. Every time something took more than 30 seconds seconds to
look up in the debugger, | made a widget that makes it a split-second.

We had physics running in an isolated tool with buttons, sliders and 3D window with
shadows, the one you've just seen, which was pretty cool. And it restarted in
seconds. We call it the Physics Testbed, or the Physics Debugger. Not to be confused
with Visual Studio debugger.

Physics + Game = Slow Dev Cycle

Collision in Game

But there comes the time for every game physics engine to be put into an actual
game.

Once we started integrating physics with the game, we had to debug it inside the
game. So we lost our fast-iteration, nice Ul.

Every engine has in-game visualization of physics. So we make do.

It has some serious drawbacks, though.

. You can't easily use mouse cursor for clicking collision or UL.

. You cannot fly around easily, you have to implement a special camera for it.
. You need to render inside game engine, which can be pretty tricky.

. You have to implement a special pause that pauses absolutely everything

while you're examining something.
. It's non-trivial to implement rich Ul, like you can do with Qt.

Physics Ul

Collision in a Separate Window with Ul

Physics Testbed was a great Ul with a bunch physics-centric widgets. It was a great
help already in making physics work. | felt | can reuse it in the game integrated
physics.

But how do we display in-game physics world in a separate window?

Extra Window

Game with extra Window
S =

| briefly entertained an idea to open an extra Qt window in the game process. | find
It:

. inconvenient to implement

. It's intrusive to the main game loop

. does not work when the game is crashed or stopped on a breakpoint

. You have to implement “full pause” in the game, both on server and client

So | decided against in-process window. This means | could just reuse the existing
separate tool, our Physics Testbed.

Out-of-Game Visualization

Game Physics World
Serialized Bit Stream

10010110010110...

Visualization

Transport

. TCPIP

To visualize in external process, you need to send data to it.

The hardest part about sending physics data to external app is serialization.

But if you can properly and fully serialize your world state into a stream of bits and
send it over the wire, it becomes very straightforward to visualize your physics in
a separate app.

Playing with physics in external app is a nice bonus feature.

Serialization

Physics World

Bit Stream

»1 | 10010110010110...

So serialization is the biggest obstacle here. But once we solve it, it becomes very
useful:

- we can save and look at something later

- we can implement nice data and time profilers

- we can record and replay bugs

Once you can serialize, it is trivial to stream to external app.

(Un)Serialization

Physics World

Serialize Bit Stream

Unserialize 10010110010110...

By the way, of course, serialization works two ways. The external app has to
somehow turn our stream of bits into data structures..

So How do we serialize? Physics engine is complex. There are so many classes and
data structures in there! Serializing pointers is hard. How do we build software
that doesn’t miss anything, and then reconstructs everything faithfully. And
hopefully it updates itself every time we add or remove a field in a class?

Definitely not! by writing serialization by hand.

10

Generating C++ from C++

C++ Classes i

Serializer Code

We can analyze the engine's header files to generate serialization code.
That's what we would do if we wrote the serialization by hand.

But instead of doing it by hand we can parse C++ in a utility and spit out C++ which
will serialize our data.

But parsing C++ is extremely hard. Or is it?

12

Clang to the Rescue!

C++ Classes

Serializer Code

Clang is an open-source c++ compiler. In some ways it's a direct competitor of
GCC, but with much more readable source code and liberal license.

Clang makes C++ parsing a piece of cake. It's written in C++ itself, and it just
works.

We can use all our existing code as input, convert cpp and header files into
easy-to-use AST and spit out the serializer routines.

One bonus from using Clang is this improved C++ compliance of our code. We
found some bugs, and prepared the code for Linux. It's really useful to compile
your code with another compiler.

14

Source code

class CRnCapsuleShape :
public CRnShape

public:

private:
vector m_vCenter[2];
float m_f1Radius;
AUTO_SERIALIZE;

i

ang AST

Abstract Syntax Tree

CRnCapsuleShape

A

CRnShape

m_vCenter

L’ Vector

m_vCenter

L—v float

| mentioned the term AST. It means Abstract Syntax Tree.

It's a tree that describes everything there is to know about your source code.
This is how it looks, schematically. For every class, you'll have a node. For every
member, its type or size, or annotation, or anything you can think of you'l

probably get a node of some type.

15

Code Generation

C++|——

#include "

class CRnCapsuleShape :
public CRnShape

public:

private:
vector m_vCenter[2];
float m_f1Radius;
} AUTO_SERIALIZE;
’

Clang\

- |C++

3

void CRnCapsuleShape::Serialize(

CRnSerializer *pout) const

CRnShape::Serialize(pout);
pout->WriteBuiltin<float>(m_flRadius);
for(int nElement = 0;
nElement < 2;
(nElement)
::Serialize(pout,
m_vCenter[nElement]);

}

In effect, we are transforming C++ code into additional C++ code

It's very tempting at first to put code generation as a bunch of printf() statement
right into the your parser

| decided to resist the urge, and | consider myself lucky | did. It would be
horribly slow to iterate on the generated code with printfs.

16

The Structured Approach

C++|——

#include "

class CRnCapsuleshape :
public CRnShape

public:

private:
vector m_vCenter[2];
float m_f1Radius;
} AUTO_SERIALIZE;
’

Clang\

“CRngapsu1e§hap%" 3

fields .
"m_fTRadius" : {
"typeName" : "float",
’
"m_vCenter" : {
"className" : "vector",
"arraySize" : 2,
"bases" : [
"CRnShape"
]

}

Parse, then Generate. Decouple these two stages, and unless your project is trivial,

you'll be rewarded.

I'm distilling the huge AST of the physics engine into a very concise json file. Json is
a human readable format that is widely used nowadays.

After adding features for a year, my Visitor class in the code that uses Clang that just
prints out the json with relevant information is about 1000 lines long, and it would

be incomprehensible if | generated code there.

17

The Structured Approach

C++[E=— Clang\ : ‘json

#include "

"CRnCapsuleShape" : {
"fields" : {
class CRnCapsuleShape

{

Parse, then Generate. Decouple these two stages, and unless your project is trivial,
you'll be rewarded.

I'm distilling the huge AST of the physics engine into a very concise json file. Json is
a human readable format that is widely used nowadays.

After adding features for a year, my Visitor class in the code that uses Clang that just
prints out the json with relevant information is about 1000 lines long, and it would
be incomprehensible if | generated code there.

13

The Structured Approach

C++[E=— Clang\ - [json

#include "..." "CRnCapsuleshape" : {
UEieldst
class CRnCapsuleShape "m_flradius" : {
. }
public:
i private:
m_f1Radius; ’ 1y

AUTO_SERTIALIZE;

Parse, then Generate. Decouple these two stages, and unless your project is trivial,
you'll be rewarded.

I'm distilling the huge AST of the physics engine into a very concise json file. Json is
a human readable format that is widely used nowadays.

After adding features for a year, my Visitor class in the code that uses Clang that just
prints out the json with relevant information is about 1000 lines long, and it would
be incomprehensible if | generated code there.

19

The Structured Approach

C++[E=— Clang\ - [json

#include "..." "CRnCapsuleshape" : {
UEieldst
class CRnCapsuleShape "m_flrRadius" : {
;typeName” : "float",
public:
i private:
float m_flRadius; ' 1,
AUTO_SERIALIZE;
}s
b

Parse, then Generate. Decouple these two stages, and unless your project is trivial,
you'll be rewarded.

I'm distilling the huge AST of the physics engine into a very concise json file. Json is
a human readable format that is widely used nowadays.

After adding features for a year, my Visitor class in the code that uses Clang that just
prints out the json with relevant information is about 1000 lines long, and it would
be incomprehensible if | generated code there.

20

The Structured Approach

C++[E=— Clang\ - [json

#include "..." "CRnCapsuleshape" : {
UEieldst
class CRnCapsuleShape "m_flrRadius" : {
"typeName" : "float",
public: "m_vCenter" : {
i private:
m_vCenter : }
float m_flRadius; 1,
AUTO_SERIALIZE;
}s
b

Parse, then Generate. Decouple these two stages, and unless your project is trivial,
you'll be rewarded.

I'm distilling the huge AST of the physics engine into a very concise json file. Json is
a human readable format that is widely used nowadays.

After adding features for a year, my Visitor class in the code that uses Clang that just
prints out the json with relevant information is about 1000 lines long, and it would
be incomprehensible if | generated code there.

21

The Structured Approach

C++|——

#include "

class CRnCapsuleShape

public:

private:
Vector m_vCenter
float m_f1Radius;
} AUTO_SERIALIZE;
’

Clang\

- ljson

"CRnCapsuleShape" : {
UEieldst
"m_f1Radius" :

{

"typeName" :

’
"m_vCenter" : {

"className" :

}
}7

}

"float",

"vector",

Parse, then Generate. Decouple these two stages, and unless your project is trivial,

you'll be rewarded.

I'm distilling the huge AST of the physics engine into a very concise json file. Json is
a human readable format that is widely used nowadays.

After adding features for a year, my Visitor class in the code that uses Clang that just
prints out the json with relevant information is about 1000 lines long, and it would

be incomprehensible if | generated code there.

27

The Structured Approach

C++

#include "

class CRnCapsuleShape

public:

private:
vector m_vCenter[2];
float m_f1Radius;
} AUTO_SERIALIZE;
’

Clang\

- ljson

"CRnCapsuleShape" : {
UEieldst
"m_f1Radius" :

{

"typeName" :

’
"m_vCenter" : {

"className" :
"arraySize" : 2

}

"float",

"vector",

Parse, then Generate. Decouple these two stages, and unless your project is trivial,

you'll be rewarded.

I'm distilling the huge AST of the physics engine into a very concise json file. Json is
a human readable format that is widely used nowadays.

After adding features for a year, my Visitor class in the code that uses Clang that just
prints out the json with relevant information is about 1000 lines long, and it would

be incomprehensible if | generated code there.

23

The Structured Approach

C++|——

#include "

class CRnCapsuleshape :
public CRnShape

public:

private:
vector m_vCenter[2];
float m_f1Radius;
} AUTO_SERIALIZE;
’

Clang\

“CRngapsu1e§hap%" 3

fields .
"m_fTRadius" : {
"typeName" : "float",
’
"m_vCenter" : {
"className" : "vector",
"arraySize" : 2,
"bases" : [
"CRnShape"
]

}

Parse, then Generate. Decouple these two stages, and unless your project is trivial,

you'll be rewarded.

I'm distilling the huge AST of the physics engine into a very concise json file. Json is
a human readable format that is widely used nowadays.

After adding features for a year, my Visitor class in the code that uses Clang that just
prints out the json with relevant information is about 1000 lines long, and it would

be incomprehensible if | generated code there.

24

Json?

C++ |—|Clang]* json |— ? = €

So, I'm taking my C++ code, let Clang parse it and spit out Json.

But I ultimately need my serializer and potentially other useful tools to be written in C++
This begs the question: how do I generate C++ code from Json?

25

StringTemplate (to the rescue)!

C++ |—|Clang]* json |~ StringTemplate |[—~|C++

. Fortunately, there is no need to reinvent the wheel, because it was invented many times over
before us. There are a lot of text template libraries, and languages. They are widely used and
freely available.

. | chose StringTemplate. It's a text library that's very easy to use, and it's very well suited to
code generation. It's declarative style, which is appealing for this kind of task.

20

StringTemplate (to the rescue)!

C++ |~|Clang]*\json H StringTemplate |—’ @k

XML XSLT

SQL PHP

You could use something else. In fact, if you're very familiar and comfortable with, say, PHP,
you should absolutely use it.

You could also use XML instead of Json. In fact, standard Clang tools can output full abstract
syntax tree in XML directly. XSLT is a powerful transformation language for XML.
StringTemplates and Json are much easier to learn and much more human-readable. That's
why | personally chose them.

There are many ways to configure this pipeline, I'm just describing what worked for me.

21

C++

Clang

StringTemplate

—— |json |—|StringTemplate |[—

C++

void <name>::Serialize(
<class.bases :

¥ | <field(name = k, props =

CRnSerializer *pout) const

{b | ::Serialize(pout); }>
<class.fields.keys, class.

fields.values: {k,
v)> }>

StringTemplate looks like this. The tool itself is written in java, but there's no need to know
Java to use it. All my serialization, unserialization and memory statistics code is generated
from a 400-line template. These are a few of those lines. They auto-generate the code to

serialize most classes in our physics engine.
You feed it json file, it spits out C++ file. Quite simple.

28

Code Generation: Sources

C++

—— | Clang |—

\\\\<

#include "..."

class CRnCapsuleShape :
public CRnShape

public:

private:

1

Vector m_vCenter[2];
float m_flRrRadius;
AUTO_SERIALIZE;

json |—

StringTemplate

— | C++

So, to recap.

We start with the source code of the engine — it's arbitrary C++, potentially annotated. For
instance, you can annotate only the classes you want serialized. And exclude some fields

from serialization. And add a member to call after serialization.

29

Code Generation: Parser

C++ |——|Clang |—|json |—|StringTemplate |— |C++

clang: :CxxMethodbDec1 * FindMethodswithName(const clang::CxXRecordbecl *pRecord,

}

const char *pName)

for(auto itMethod = pRecord->method_begin(),

itMethodEnd = pRecord->method_end();

itMethod != itMethodEnd; ++itMethod)

if(clang::IdentifierInfo *pIdinfo = (*itMethod)->getIdentifier())

}f(pIdinfo->getName() == pName)
return *itMethod;

}
}
return NULL;

The parser/Clang part is moderately complicated. | wrote the first working version
within a couple of weeks, working on it part-time. But then | fiddled with it for well over
a year. It handles all the special and edge cases we have in our engine. It's not a
magic bullet, though. It will not parse anything and everything in the known universe,
but it'll parse and describe any exotic data structure in our engine. | have to change it
only very rarely. In fact, the last change | made was very minor. And it was over 4
months ago.

This slide shows how to look for a method with a given name in class. It's pretty
straightforward to extract information once you start writing the code.

The best source of information for me was the online Clang docs, especially their
class diagram. It's very logical and educational. Also, Clang is very readable, so a lot
of stuff becomes clearer after you debug it.

30

Code Generation: Parser

C++ |——|Clang |—|json |—|StringTemplate |—— |C++

"CRnCapsuleshape" : {
"fields" :

"m_f1Radius" : {
"typeName" : "float",
"m_vcénter” i
"className" : "Vector",
"arraysize" : 2,
" ’ll
bases" : [
SCRnShape“

}

The generated json file looks like this. | already explained the meaning of this snippet
before.

Generated Code

C++ |——|Clang |—|json

— | StringTemplate |—— |C++

void <name>::Serialize(
CRnSerializer *pout) const

<class.bases :
{b | ::Serialize(pout); }>
<class.fields.keys, class.fields.values:

void CRnCapsuleShape::Serialize(
CRnSerializer *pout) const

CRnShape::Serialize(pout);
pout->WriteBuiltin<float>(m_flRadius);
for(int nElement = 0;

nElement < 2;

{k, v | <field(name = k, props = v)> }> nElement)
} i ::Serialize(pout,
) m_vCenter[nElement]);
}

. To remind, this is what the string template looks like, and this here is the resulting
generated C++ code

. The template goes through all data members of the class and generates code for
each of them.

. The template is smart enough to know where | have arrays, templates, pointers to
follow and so on.

. All the non-plain data elements are recursively serialized by other overloaded

serialization functions. Some of them methods, some of them free functions. |
especially prefer free functions for simpler types, containers and third party classes
where | don’t want to touch the header where those classes are declared.

32

Once you complete these 5 easy steps, you'll have yourself one wholesome serializer. It will
be self-maintaining. You will forever be able to visualize your physics in all detail.

Sometimes we don't even know something is wrong. Some bugs ship and go unnoticed for
years. This will never happen to you again.

Well..., | can't make guarantees... But | really hope | convinced you that visualizing stuff is
great. Having serializer auto-magically generate itself makes everything even better.

But we have quite a bit more to discuss before we wrap up.

33

Record and Replay

& Top_Heavy L - VLC media player =de
Video Subttle Took View Help

[TopwxHeavy_Lamp.wmv

or @ o237
(1] (wm)m] (@) ()@) el | |

=Play= Top_Heavy Lamp.wmv

Here's an example of one workflow when you have full serialization.

| noticed something weird with a lamp here. It was always falling down. Lamps are
supposed to stand straight, and this one was always on its side.

So | snooped and looked at the lamp.

(wait) When | figured out why it's not standing (because its center of mass is too
high), I just sent out an email to an artists — and | attached the file he can play
with to prove my words. It's quite intuitive.

34

Clang's “Hello World!”

See ClangCheck.cpp

class CbumpAction: public clang::ASTConsumer
TTvm: :raw_fd_ostream &m_log;

public:
%DumpAction(Tlvm: :raw_fd_ostream &fd):m_log(fd)
}

virtual bool HandleTopLevelDecl(clang::DeclGrouprRef DG)

for (clang::DeclGroupRef::iterator it = DG.begin(),
itend = DG.end(g; it !'= itend; ++it)

clang::Decl *pbDecl = *it;
pDecT->dumpXML(m_log);

return true;

5

Here is the Clang's “Hello World” program relevant to this use case is called ClangCheck and it is a
great starting point to write your own tool. It's part of the Clang distro, and | urge you to have a
look at it.

It uses visitor pattern. For every top-level declaration in your source file, such as a class or function
definition, or a typedef, or a global, you get a callback. In that callback, you can drill down the
AST.

This self-contained example is dumping those declarations as XML to a log. If XML is your thing and
performance is not the most critical issue, this here just may be your parser.

35

What to Parse?

A.h B.h C.h

A.cpp B.cpp C.cpp

Typically, all our class declarations are contained in headers.

It's enough to parse one .cpp file that #includes all the relevant headers for serialization.

There's no need to parse the whole engine, although there may be other useful tools that
would need it.

To parse just one file, you'll need to create a compilation database file with cpp file name
and compile options.

36

Clang Compilation Database

"directory": 5

"command":"clang -fsyntax-only -fms-extensions -fms-compatibility -I../public/include
rnser1a1ize.cpp",

"file":"rnserialize.cpp"

Here's an example of compilation database. The most interesting options are highlighted
here.
Compilation database is like a makefile, or vcproj. If you don't want to do anything non-

standard, you can simply generate a .json file with all the information and give it to clang.

We use a tool to generate VCPROJ files, and we changed that tool to also spit out
compilation databases.

37

Clang Bootstrap Cheatsheet

class MyAction: public clang::ASTConsumer class MyFactory
public: public:
virtual bool HandleTopLevelDecl (clang::DeclGroupRef DG) clang: :ASTConsumer

. *newASTConsumer()
for (clang::DeclGroupRef::iterator
it = DG.begin(), itEnd = DG.end(); it != itEnd; ++it) return
new MyAction();
clang: :CxXXRecordbec] *pRecord =

11vm: : dyn_cast<clang: : CxxRecordDecl>(*it); }
// do something with it...

return true;

1

pCompilationDb = c1an?::tooWing::JSONCompiWationDatabase::1oadFromFi1e(strisonDb, errorMessage);
files = pJsonDb->getAllFiles();

clang::tooling::ClangTool Tool(*pCompilationDb, files);

MyFactory factor¥(pJsonDbPath);

int nError = Tool.run(clang::tooling::newFrontendActionFactory(&factory));
Tlvm::errs().flush();

TTlvm: :outs() .flush();

And here is a little cheatsheet. In your parser tool, that you carefully link with all the clang
libraries, what do you do first?

Start with implementing ASTConsumer, make a factory class for it, and then in your main()
function, load compilation database and then run an instance ClangTool. It's all here in
this slide.

One thing to remember: you may have to flush std out and std error.

38

Box Cast

ST Y

Before going further, I'd like to clarify what | mean by box cast.
We often use it in Source engine. It's like raycast, but with a box.

39

Contact

Wy S

7Oy

Just take a box, move it linearly until you hit something.
At that point, you sometimes create a contact point for the solver.
We use it for player movement a lot, so debugging it is a common thing to do.

40

Visualizing Physics In Game

N

)

S|ayer=Movementimoy,

Rochelle Coach Elli

=Run= Player_Movement.mov
Let's see what we've got for our efforts so far.

Here's a game running alongside visualization tool.

I'm walking around a room, and I'm looking at the raycasts and box casts our player

movement is making
| can look at it from the 3" person view, | can only render the relevant data.

I'm noticing something strange, there's a flurry of box casts sometimes. It might

probably result in a framerate hitch.
So I'm trying to reproduce this.
| find a place where it's happening.
And I'm flying around to see what causes it.

So far, so good. By the way, | can play with that physics at any point, but it won't

affect the game, so it's not useful in this case.

4]

When That Is Not Enough

Well, what if just looking at the problem does not present an obvious fix?

What if we have to actually debug code?

42

Debugging

Engine Parts

At least when you debug your own code, it's easy to see the parts. The components.
What they are supposed to do.
It's easy to check and see if they are actually doing it.

43

Other People's Code

Unfamiliar Code Looks Like This:

Working in a team, it's different... It's hard to see the whole picture. It's hard to check
if the parts are working properly.

44

Other People's Bugs

Bug in Unfamiliar Code Is Here:

Even when | find a bug in foreign code, there are usually many ways to fix it and I'm
never quite sure which one is the best.
Or maybe | misunderstood the code and my fix will cause another bug.

45

Tools

Tools of the trade

(N

-

Watch Window

8100 [pos=(467679441 476957658, 34 333264) e=(023G, 0 TISTTINE, 20088
67619443, €760 55, QTS LN = LI 36
TR G A0 SIS BRI ATESTISG QTN OLELETIN
P AT STISOINTE 33256130 B TS 37500

Q12117901 0I7HTETIR 0TMBYTS] =B IR, OIRTT
ATMSIATS SIS, ASETIIT, OOV
ST6779, 0788633875 028027271 Q034asET)
0297320001 (0123127304, n)*»r(r‘n orsessITs G2KTTZTL. QM)

531264

460050 et 0501042548 0198484010 0BALSETISEY
TS, 0 Mes 0067 ,-m.sscm.x 7736 ISR AASTT, S QLSS -
R 00072 1 ST G20, AL o
7318432, 0 ma

o camems ov
171476 e-ueasm eecerisi sz B0
10290058567, QOSOI3SSI6 07IGTL)

paase

T QIOTTITL ORI
350711427, com:
90 GO o QLTI ST DESIAS wn
267650 DOIIISIED 067, 902072112, DAISHET ot

© 1702 GG ISR
Raaco0003 e PeRDHEO0S IS o T TAPAES B3AIISTT 1605088
s

flon
P v 625 Oaarasones, 03307300 yd 5300 8) 1o O77DE0LE OO, QENEIIRY core

223 25128y e OEMIBIST L TMRETEE L1012320 20331 nuww asssTasy) cone

147 72833 QAN v OYARYIS LABTIIMG OZMINTEE 1 G310 7230, QARSI core

e 59, Q0116050 e, e e

pes 15 3505 34485 y R334 4AETI09 CSMRSE -] CEPESTINDT OASRETET oz e
e RO 767) o RAGTE32039, 652728936, 080453680 2 s Qi s o
T A LI R 7,07 nwacrlluw, (S9N QAIIETISR I o o

<37

por: ®

ooy &m"m sn2085816 380205
sest 374029 22077, 073eaTsss oos2s:

TR S ans s S et ST TSR soR AL ot ARESETES s SOl o SOT. AT o

Tiaeme P prese 82838867 0518787 o

141406 08210005 SO B S T, G L 4, S e

35675555 0207 o 0 526538 768203003 0258347863. 00307503090

pey—
< g LLOLLL L1 i
pragen 30459 . iags OOATIAZT] m odeCeuntald m nCHICourEald el
flow
o000 o
ey o
1 s
. g CHDYOOOLLII0D pose(SET6INEY. ST6057656 4TI 751 OTSOITSIE 297926068y 0LINITIOL O2TIIETTS, THEINTS) 1-RINSIIAN QRTTTITL s
am o OMDXCOR0T1206830 -1 ANOTDX, -1 AND0, -1 ANDI00 v
amppml preseese LAND203, 1 AND0 e
4 o

And the debugging tools we have are very basic: We have the Watch window, and

printf. That's just inadequate.

44

Second Life of Testbed

And now we have this wonderful application.. | wonder if we could use it when we step
through the breakpoints just like we use it when we walk through the game.
We need to leverage it! But how?

47

Debug Experience

rr

« wm_pParticles, 14

0x0000000011266300 (pos=(-6876.29443, -6769.97656, 364,53
pos=(-6876.29443, -6769.97656, 364.533264) x=(-0.231891751,
pos=(-6854.43750, -6699.25000, 336.452576) x=(0231891751

pos=(-6866.72510, -6739.01172, 352239136 x=(0231891751,

Pos=(-6896,30566, -6721.00684, 412660950 x(-0.621897459)
pos=(-6903.90430, -6718.92432, 419.238647) x=(-0.795030117
poss(-6892,56396, -6721.99951, 408.815186) x=(-0.576003432)
pos=(-6877.71094, -6774.56104, 366.353394) x=(-0.231891751,
Pos=(-6865.03955, -6733.55664, 350.073364) x=(0.231891751,

pos=(-6915.52539, -6715.27734, 420.790619) x=(-0.745445311]
Pos=(-686248145, -6725.27881, 346.785865) x=(0231891751,

pos=(-6925.21631, -6711.95996, 417.005035) x=(-0.674079120)
pos=(-6882.99365, -6791.65576, 373.140533) x=(-0.231891751)
pos=(-6887.22559, -6805.36816, 378.716858) x=(-0.231891751,
pos=(-6899,58838, -6845.37256, 394.600006) x=(-0.231891751]

“ * matrix3xd.t
+ e m fiMatval

+ = m DebugNsme
*m_pWorld

«m pFeModel
«m_figendUnderRelax
«m fistretchUnderRolax
«m fioverPredict

= m_nNodeCount

«m nParticleCount

+ m_pParticles

“m pPosd

~m_pPosl

“m nSimFlags

[pos=(-6304.11133, -671047217, 325.6:
pos=(-6904.11133, -671047217, 325.638428) x=(0.772891462.
pos=(690411133, 671047217, 325.638428) x»(0772891462,
0x00000000579603a0 (0x0000000057960380 (0.772891462, 0.3
pos=(-6901.78857, -6711.84180, 349.343170) x=(-0,021016858
Pos=(-6896.30273, -6697.04053, 322380066) x=(0372540712,
Pos=(-6907.72754, -672545947, 321.857361) x=(-0.086953304)
pos=(-6902.04639, -6711.83691, 364.934204) x=(0.0402162559)
Pos=(-6900,82715, -6712.28955, 380.599396) x=(0.0578526743]
pos=(-6900,03711, -6714.20801, 391.881500) x=(0.610547960,
pos=(-6892.98975, -6711.08350, 381.304016) x=(0299724787,
pos=(-6899,02979, -6720.03516, 380.205017) x=(0.599534094,
pos=(-6890.17285, -6721.56641, 397.602539) x=(0.798212171,
pos=(-6879.02051, -6716.74902, 393 418640) x=(0.136251017,
pos=(-6883.49463, -6730.60482, 392627655) x=(0.263435274,
Pos=(-6892,62842, -672141406, 408.810089) x=(-0.579993010)
84.52002, -6723.33447, 396.799957)

Nar
{m_pName=0x0000000000000000 <NULL> m_nDebuginde

m_Filter=(m_Group!
0x0000000021038419 {m nFlags=4009750271 m_nNodeCount
0,000000000

0000000000

0,000000000

14

14

0x0000000011266300 pos=(-6876.29443, -6769.97656, 364,53
0x0000000011266840 -1.4INDOOOO, -1.#INDOCCO, -1.#IND00CC)
0x0000000011266920 -1AIND00OO, -1.4INDOOGO, -1.6IND0000)
4

1

* = m_pParticles 14

0x0000000011266300 (pos=(-6876.29443, -6769.97656, 364.53|
pos=(-6576.29443, -6769.97656, 364.533264) x=(-0.231891751]
pos=(-6854.43750, -6699.25000, 336.452576) x=(0.231891751,

), -6739.01172, 352.239136) x=(0.231891751,

pos: , -6721.00684, 412.660950) x=(-0.621897459)
pos=(-6903.90430, -6718.92432, 419.238647) x={-0.795030117)
pos=(-6892.56396, -6721.99951, 408.815186) x=(-0.576003432)
pos=(-6877.71094, -6774.56108, 366.353394) x={-0.231891751,
p , -6733.55664, 350073364) x=(0.231891751,
poss(-691552539, -6715.27734, 420.790619) x(.0.745445311,
pos=(-6862.48145, -6725.27881, 346.786865) x=(0.231891751,
pos=(-6925.21631, -6711.95996, 417.005035) x=(-0,674079120)
688299365, -6791.65576, 373.140533) x=(-0.231891751
pos=(-6887.22559, -6805.36816, 378.716858) x=(-0.231891751,
pos=(-6899.58838, -6845.37256, 394.600006) x={-0.231891751,

‘o
+ © matrix3xd t
+ = m_fiMatval

* = m_DebugName

+ o m pWerld
“m_pFeModel
% m flBendUnderRelex
= m fistretchUnderRelax
 m floverPredict
 m_nNodeCount
“m nParticleCount

+ @ m pParticles

{pos=(-6904.11133, -671047217, 32563
pos=(-6904.11133, 671047217, 325.638428) x=(0.772891462,
pos=(-6904.11133, -671047217, 325.638428) x=(0.772891462,
0x00000000579603a0 {0x00000000579603a0 (0.772891462. 0.
pos=(-6901.78857, -6711.84180, 349.343170) x=(-0.021016858]
posn(-6896.30273, -6697.04053, 322.380066) x#(0,372540712,
pos=(-6907.72754, -6725.45947, 321.857361) x=(-0.086953304]
poss(690204639, 671183691, 364.934204) x=(0,0402162555)
pos=(-6900.82715, -6712.28955, 380.509396) x=(0.0578526743}
pos=(-6900.03711, -6714.20801, 391.881500) x=(0.610547960,
pos=(-6892.98975, -6711.08350, 381.304016) x=(0.299724787,
pos=(-6899.02979, -6720,03516, 380.205017) x=(0,599534094,
, -6721.56641, 397.602539) x=(0.798212171,
, -6716.74902, 393.418640) x=(0.136251017,
, -673069482, 392.627655) x=(0.263435274,
{-0.579993010)
{0.25618505!
Narme =0:000000(
{m_pName=0x0000000000000000 <NULL> m_nDebugindex=1}

m.Filter={m Group!
0x0000000011038419 (m_nFlags=4009750271 m_nNodeCount
0000000000

0000000000
0000000000

1

u

0x0000000011266300 pos=(-6876.29443, -6769.97656, 364.53:
0x0000000011266840 -1.9INDOGOO, -1.9INDOGOD, -1.9INDO0O)
0x0000000011266920 -1.#INDOGCO, -1.#INDOCCO, -1.#INDO0OO)
4

The usual debug experience consists of sifting through Watch windows, stepping
through lines of code, imagining our 3D world in our mind's eye..

48

Improved Debug Experience

r
+ = m_pParticles, 14 0x0000000011266300 (pos=(-6876.29443, -6769.97656, 364.53
pos=(-6876.29443, -6769.97656, 364.533264) x=(-0.231891751§
pos=(-6854.43750, -6699.25000, 336.452576) x=(0.231891751,
Pos=(-6866.72510, -6739.01172, 352.239136) x=(0.231891751,
posw=(-6896.30566, -6721.00684, 412.660950) x=(-0.621897459
pos=(-6903.90430, -6718.92432, 419.238647) x=(-0.795030117
pos=(-6892.56396, -6721.99951, 408.815186) x=(-0.576003432)
pos=(-6877.71094, -6774.56104, 366.353394) x=(-0.231891751§
Ppos=(-6865.03955, -6733.55664, 350.073364) x=(0.231891751,
pos=(-6915.52539, -6715.27734, 420.790619) x=(-0.745445311}
pos=(-686248145, -6725.27881, 346.786865) x=(0.231891751,
pos=(-6925.21631, -6711.95996, 417.005035) x=(-0.674079120]
pos=(-6882.99365, -6791.65576, 373.140533) x=(-0.231891751
pos=(-6887.22559, -6805.36816, 378.716858) x=(-0.231891751
Ppos=(-6899.58838, -6845.37256, 394.600006) x=(-0.231891751§

‘. 14 (pos=(-6904.11133, -671047217, 3256
01 pos=(-6904.11133, -671047217, 325.638428) x=(0.772891462.

“ * matrix3xd.t pos=(690411133, -671047217, 325.638428) x=(0.772891462,
+ e m fiMatval 0x00000000579603a0 (0x00000000579603a0 (0.772891462, 0.3

pos=(-6901.78857, -6711.84180, 349.343170) x=(-0021016858]

pos=(-6896.30273, -6697.04053, 322.380066) x=(0.372540712,
pos=(-6907.72754, -672545947, 321.857361) x=(-0.086953304]
pos=(-6902.04639, -6711.83691, 364.934204) x=(0.0402162559)

Pos=(-6900,82715, -6712.28955, 360.599396) x=(0.0578526743}
pos=(-6900,03711, -6714.20801, 391.881500) x=(0.610547960,
pos=(-6892.98975, -6711.08350, 381.304016) x=(0299724787,
pos=(-6899,02979, -6720.03516, 360.205017) x=(0.599534094,
pos=(-6890.17285, -6721.56641, 397.602539) x=(0.798212171,
pos=(-6879.02051, -6716.74902, 393 418640) x=(0.136251017,
pos=(-6883.49463, -6730.60482, 392627655) x=(0.263435274,
Pos=(-6892,62842, -672141406, 408.810089) x=(-0.579993010)
6884.5200;

a Name
= m_DebugName. 0x0000000000000000 <NULL> m nDebuginde:

+ =m pWorld (m_Filter=(m_Group!
+ % m pFeModel 0x00000000110384f3 {m nFlags=4009750271 m nNodeCount;
«m_figendUnderRelax 0.000000000
«m fistretchUnderRolax 0.000000000
«m fioverPredict 0.000000000
= m_nNodeCount 14
~m nParticleCount 1
+ % m_pParticles 0x0000000011266300 pos=(-6876.29443, -6769.97656, 364.53:
+ o m pPos0 0x0000000011266840 -1.4INDOOOO, -1.#INDOGCO, -1.#INDGOO)
+ = m pPosi 10x0000000011266920 -14TND000O, -14INDGOGO, -1.4TNDO0O)
“m nSimFlags 4

Ideally, I want to see the world just like I did in the Physics Testbed, but I also want to see it

changing iysi aResdSEeRHBraeR dnBEERKBOIYE in the Physics Testbed, but |
| waalso heeaitidaoseitoohdtgimbyitiat wotichzcasnl tebréhkpoigh Thytbvealkbeintsal for me.

That WEUIH 18RE ARG I EMREAURGHREHVEIE, WRBFheZRA AbauRigakpoint. That

would be ideal for me.
That would make debugging much more comfortable, enjoyable and
productive.

49

Let me show you what | mean.

As you can see, this is the place with too many box casts that | discovered in the
previous demo.

| place a breakpoint in the box trace function. Every time the it hits, I'm looking at the
3D world. I'm seeing the very last box cast.

This lets me step through bunch of casts, visualizing each of them in Physics
Testbed.

This whole thing happens inside of a frame.

Please note that the game didn't send any data packets to Physics Testbed. It's
casting boxes in a very tight loop. The testbed is effectively acting like a watch
window.

50

Reading Memory Directly

Game Physics Testbed

ReadProcessMemory

“Snooping”

The method that lets us do it is ReadProcessMemory API.

The Physics Testbed, acting in a way like a debugger, reads memory from the game
without the game knowing it. | call this snooping. There is no way for the
debugger to alter the game state, which is a nice benefit.

It works when process is stopped in debugger

There is no activity required from the game side besides a mutex and advertising
where to start the search (the root data structure). Both are trivial to implement
and are not intrusive.

ReadProcessMemory performance

Game Physics Debugger

~1 us ~0.001 ps

|
4 bytes

The biggest question when | thought of this idea was whether it's fast enough.
So | wrote a small benchmark.

It is slow to read every 4- or 8-byte field across the Process boundary

Every call to ReadProcessMemory descends into kernel, performs a syscall —
it costs you at least 1us, limiting your bandwidth.

But just copying 4 bytes in-process takes a thousandth of that time.

52

ReadProcessMemory performance

Game

4 KiB

—_—

blocks

Cache

int

float

charf]

Physics Debugger

| simply implemented software cache layer that reads at least 4Kb page every

time you snoop a byte and caches that page

You always know you can read the 4KiB page if you can read a single byte of

it. There will be no memory protection faults.
This cache helps a lot with reading C NULL-terminated strings, for which
length is unknown until you read the whole string one byte at a time.

53

Traversing Data Structure

Game Physics World

«— | ReadProcessMemory

Visualization

v

6
[
10010110010110... | ——

So, we can snoop the bytes from the game physics, but how do we know what to do
with them?

In fact, walking the memory of the other process is very much like serialization. If you
know your data structures, you can traverse them in another process using
ReadProcessMemory just the same as you traverse them in the same process
when you serialize them.

54

Snooper and Serializer

C++ Classes

/\

Snooper Code| |Serializer Code

We can still use Clang to understand our data structures.

We can use all our existing code as input and spit out the snooper routines.

55

Snooper: Code Generation

C++|—— |Clang] - |C++

#include "..." void CRnCapsuleShape::Snoop(CRnSnooper*pIn,
const CRnCapsuleShape *pLocalCopy)
class CRnCapsuleShape : {
public CRnShape CRnShape::Snoop(pIn, pLocalCopy);
public: m_f1Radius = pLocalCopy->m_f1Radius;
- . for(int nElement = 0;
private: R T nElement < 2; ++nElement)
vector m_vCenter[2]; {
float m_fl1Radius; ::Snoop(pIn,
AUTO_SERIALIZE; &pLoca?Co y->m_vCenter[nElement],
}; m_vcinter[nE1ementﬁ e
}

Just like with the serializer, we are transforming C++ code into additional C++
code for snooper

Something is becoming clearer now. Generating code as a bunch of printf()
statements would really be awkward. Because we now have to print out
serialize, unserialize, snoop and possibly collect statistics routines.

56

Snooper: The Same Json

C++=— Clang\ - [json

#include "..." "CRnCapsuleshape" : {
UEieldst
class CRnCapsuleshape : "m_flrRadius" : {
public CRnShape "typeName" : "float",
public: "m_vCenter" : {
; . "className" : "vector",
private: "arraysize" : 2,

vector m_vCenter[2];
float m_flRadius; T
AUTO_SERIALIZE; "bases" : [

5 SCRnShape”

}

So, we still generate the same json file as we did for serialization.

57

Snooper: Different StringTemplate

C++ |——|Clang |—|json |—|StringTemplate |——|C++

void <name>::Snoop(CRnSnooper*pIn,
const <name> *pLocalCopy)

<class.bases : {b |
::Snoop(pIn, pLocalCopy);}>

<class.fields.keys, class.fields.values:
,:snoop_fie1d(name=k,props=v)>

>

<if(class.postInitMethod)>

AfterRestore(pIn);
<endif>

The StringTemplate for the snooper looks like this. It's a different string template, but it's
small. All my snoop code is generated from a 200-line template. These are a few of those
lines. They auto-generate the code to snoop most classes in our physics engine.

You feed it the same json file as for the serializer. It spits out snooper C++ file. It's that simple.

58

Snooper: Generated Code

C++ |——|Clang |—|json

— | StringTemplate |—— |C++

void <name>::Snoop(CRnSnooper*pIn, void CRnCapsuleShape::Snoop(CRnSnooper*pIn,
(const <name> *pLocalCopy) . const CRnCapsuleShape *pLocalCopy)

<class.bases : {b | CRnShape: :Snoop(pIn, pLocalCopy);

::Snoop(pIn, pLocalCopy);}>
m_f1Radius = pLocalCopy->m_f1Radius;
<class.fields.keys, class.fields.values: for(int nElement = 0;
,V nElement < 2; ++nElement)
<snoop_field(name=k,props=v)>
::Snoop(pIn,
> &pLocalcCopy->m_vCenter[nElement],
m_vCenter[nElement]);
<if(class.postInitMethod)> }
AfterRestore(pIn); AfterRestore(pIn);

<endif> }
}
. This here is the template and the resulting generated C++ code for snooper.
. I'm snooping the whole struct into a local copy. Then | read out all the plain data

elements.
. All the non-plain data elements are recursively snooped by other overloaded Snoop
functions.

. The template is smart enough to know where | have arrays, templates, pointers to

follow and so on.

59

Snooper: Generated Code

C++ |——|Clang |—|json |—|StringTemplate |— |C++
void ::Snoop(CRnSnooper*pIn, void ::Snoop(CRnSnooper*pIn,

const

*pLocalCopy)

const

*pLocalCopy)

elements.

functions.

follow and so on.

This here is the template and the resulting generated C++ code for snooper.
I'm snooping the whole struct into a local copy. Then | read out all the plain data

All the non-plain data elements are recursively snooped by other overloaded Snoop

The template is smart enough to know where | have arrays, templates, pointers to

60

Snooper: Generated Code

C++ |——|Clang |—|json |—|StringTemplate |— |C++
void <name>::Snoop(CRnSnooper*pIn, void CRnCapsuleShape::Snoop(CRnSnooper*pIn,
const <name> *pLocalCopy) const CRnCapsuleShape *pLocalCopy)

. This here is the template and the resulting generated C++ code for snooper.

. I'm snooping the whole struct into a local copy. Then | read out all the plain data
elements.

. All the non-plain data elements are recursively snooped by other overloaded Snoop
functions.

. The template is smart enough to know where | have arrays, templates, pointers to

follow and so on.

61

Snooper: Generated Code

C++

—— | Clang |—

json

— | StringTemplate

C++

void <nal

me>: :Snoop(CRnSnooper*pIn,
const <name> *pLocalCopy)

<class.bases : {b |
::Snoop(pIn, pLocalCopy);}>

void CRnCapsuleShape::Snoop(CRnSnooper*pIn,
const CRnCapsuleShape *pLocalCopy)

CRnShape: :Snoop(pIn, pLocalCopy);

I

}

. This here is the template and the resulting generated C++ code for snooper.

. I'm snooping the whole struct into a local copy. Then | read out all the plain data
elements.

. All the non-plain data elements are recursively snooped by other overloaded Snoop
functions.

. The template is smart enough to know where | have arrays, templates, pointers to

follow and so on.

62

Snooper: Generated Code

C++ |——|Clang |—|json |—|StringTemplate |— |C++
void <name>::Snoop(CRnSnooper*pIn, void CRnCapsuleShape::Snoop(CRnSnooper*pIn,
const <name> *pLocalCopy) . const CRnCapsuleShape *pLocalCopy)
<class.bases : {b | CRnShape: :Snoop(pIn, pLocalCopy);
::Snoop(pIn, pLocalCopy);}>
m_f1Radius = pLocalCopy->m_f1Radius;
<class.fields.keys, class.fields.values: for(int nElement = 0;
,V nElement < 2; ++nElement)
<snoop_field(name=k,props=v)>
::Snoop(pIn,
> &pLocalcCopy->m_vCenter[nElement],
} m_vCenter[nElement]);
I
}
. This here is the template and the resulting generated C++ code for snooper.
. I'm snooping the whole struct into a local copy. Then | read out all the plain data
elements.
. All the non-plain data elements are recursively snooped by other overloaded Snoop
functions.

. The template is smart enough to know where | have arrays, templates, pointers to

follow and so on.

63

Snooper: Generated Code

C++ |——|Clang |—|json

— | StringTemplate |—— |C++

void <name>::Snoop(CRnSnooper*pIn, void CRnCapsuleShape::Snoop(CRnSnooper*pIn,
(const <name> *pLocalCopy) . const CRnCapsuleShape *pLocalCopy)

<class.bases : {b | CRnShape: :Snoop(pIn, pLocalCopy);

::Snoop(pIn, pLocalCopy);}>
m_f1Radius = pLocalCopy->m_f1Radius;
<class.fields.keys, class.fields.values: for(int nElement = 0;
,V nElement < 2; ++nElement)
<snoop_field(name=k,props=v)>
::Snoop(pIn,
> &pLocalcCopy->m_vCenter[nElement],
m_vCenter[nElement]);
<if(class.postInitMethod)> }
AfterRestore(pIn); AfterRestore(pIn);

<endif> }
}
. This here is the template and the resulting generated C++ code for snooper.
. I'm snooping the whole struct into a local copy. Then | read out all the plain data

elements.
. All the non-plain data elements are recursively snooped by other overloaded Snoop
functions.

. The template is smart enough to know where | have arrays, templates, pointers to

follow and so on.

64

Full Pipeline

json [— | StringTemplate |——| C++

C++ &l Clang S

void <name>:: void Shape::

#include ASTConsumer {
"fields":... snoop(). .. snoopQ). ..

"physics.h"

Just to bring the point home, here's how the full code parsing and

generation pipeline looks in our case
Parsing C++ is probably the most intimidating thing in this case. But after you spend a day or

two learning Clang's API, you might find it rather intuitive.

65

Example: Snooping Joint Stack

nIsland: :Projectloints(int

bool bAT1JointsOK = true;
or (int nloint = 0;

RnJoint* ploin
ploint->ProjectQ;
}

return bA11JointsOK;

Let's see a little demo of what we have as a result.

| configured a projection-type solver of a chain of hinge joints. As you can see, small
chains solve fine, but larger chains start to break constraints.

| wanted to see how the solver behaves inside the iteration loop.

So | put a breakpoint where each joint is solved.

After each breakpoint hits, | switch to the Testbed and snoop. | have two testbeds
here, one debugging the other. Notice that one is unresponsive — that's the one
that I'm debugging. And another one acts like a watch window.

So what we have here effectively a visualization of the internal loop of a projection
constraint solver.

606

Details

Fixing stuff, whether it's yours or not, is unavoidable. At least if you make anything
complex.

The faster you can drill down to details, the more efficient you are while debugging
problems, the more time you spend developing and not fixing stuff. Once you
make debugging 10x faster and more convenient, there's a quantum leap : you
can develop features with complexity that would otherwise be infeasible to
develop.

That's why it's important to make the process as seamless and convenient as
possible. It pays with higher productivity in the end.

There are a few more technical details, though

61

Divide and Conquer

Physics World Physics Object Physics Properties

Our Testbed is a tool for divide-and-conquer debugging. It makes it quick and
painless.

For example, we have a collision filtering system, and time to time something is not
colliding right in the game. We just fly around, click on objects that don't collide
and drill down to their flags. In most cases we see exactly what's happening
within seconds, and you don't have to be a programmer to do that.

Another example: we had an incredibly slow physics. It worked fine, but was very
slow. All contacts looked correctly. So we snooped and clicked the objects that
were awake. Their contacts looked fine. It took us some seconds to realize there
were too many contacts on them.

683

Mutex in game loop

" Physics Step

! }

Mutex Physics State

Snoop

Mutex

One consideration here is thread safety

While you cannot use the Watch window in VS IDE while the game process is
running, you can snoop.

Use Mutex to guard the physics step routine

69

SEH

L bry ook excepe (1)

Snoop

Mutex

Snooping a running process is tricky: data structures are in flux while you are
reading them.

It's impossible to crash the game by reading data from it. But the snooper
might crash if you snoop an inconsistent memory. I'm just using

(__try... _except) to catch that. Strictly speaking it's not a safe solution, but it
makes the experience smoother.

70

SEH !=try...catch

__try { try {

} __gxcept(){

} cagch(...){

: o :

*** Also, neither is necessary

Just to be clear

Structured exception handling is not the same as C++ exception handling.
This goes outside the topic of this talk.
In any case, you don't really have to use either of these.

| just find it nice to wrap my sloppy debugging tool code in case | happen to snoop
bad data structure.

If | released it as a commercial product, I'd expend the extra effort to detect that
memory is unreadable and not crash.

71

Stopped in IDE: No Mutex

" Physics Step

! }

Mutex

Physics State

———— Snoop >

When the game is stopped on a breakpoint, just ignore the Mutex. Or time it
out.

Data structures cannot change when the game is frozen, so there's a high

chance snoop will succeed if they are consistent. It depends on where you put
the breakpoint.

12

Clang Annotations

define CgANG_ATTR(ATTR) \
__attribute__((annotate(ATTR)))

#define SERIALIZE_ARRAY_SIZE(SIZE) \
CLANG_ATTR("array_size:" #SIZE)

class CSomeClass

" uintl6 *m_pNodeTocCtr]
_ SERIALIZE_ARRAY_SIZE(m_nNodeCount);
uintl6é m_nNodeCount;

bool HasAnnotatedAttr(
const clang::Decl *pbDecl,
‘ const char * pSubstr)
if(clang::AnnotateAttr *pAnnotate =
pDecl->getAttr<clang: :AnnotateAttr>()

)

ShortstringRefvector attrs;
pAnnotate->
getAnnotation().split(attrs, " ");
return std::find(attrs.begin(),
attrs.end(), pSubstr) !=
attrs.end();

return false;

Sometimes we need some annotations to our code. E.g. for each pointer you
serializer will need to know how many objects it's pointing to. It's easy to put

this in (see the left slide).

And ot's easy to add and read those annotations in the parser (see the right

slide)

73

Complex Case: Polymorphism

struct VtableRecord_t

template <typename T>
void Init(cutlstringToken name)

T* pobgect = new T; .
m_nvTable = *((uintp*)pObject);
delete pObject;

m_nClassName = name.m_nHashCode;

}

uint64 m_nvTable;
uint64 m_nClassName;

I'd like to talk about a couple of less trivial cases, like classes with Vtables.

| auto-generate a function that creates an instance of each class with Vtable,
and copies its Vtable point into a known place (an array of uintptr_t).

The snooper can then read the array and use it to recognize class type by its
vtable pointer. It's like RTTI that works across process boundaries.

74

Complex Case: Polymorphism

void InitvtableRecord(cutlvector<vtableRecord_t> *pTable)

<data.classes.keys, data.classes.values: {k,v | <register_class(name=k,class=v)> }>

register_class(name,class) ::= <<
<if(class.isLeaf)>
(*pTable)[pTable->AddToTail()].Init\<<name>\> ('"<name>");
<else>
<if(!class.isBase)>
// <name> 1is neither leaf nor base, no need to register it for auto-recognition
<endif>
>>

This is how | generate that code with StringTemplates

79

Complex Case: Polymorphism

¥oid InitVtableRecord(cUtlvector<vtabhleRecord_t> *pTable)

(*pTable)[pTable->AddToTail()].Init<CRnweldloint>("CRnweldJoint");
// CRnShadowController is neither leaf nor base, no need to register it for auto-recognition

(*pTable)[pTable->AddToTail()].Init<CRnSpringloint>("CRnSpringJoint");

And this is what the generated code looks like. One line is generated for every
class with vtable. It's done automatically, so you don’t have to remember to
add a class to the list once you add a virtual .

You don’t have to remove a class when you remove the last virtual from it
either.

76

More Complex Cases

Compound data structures Automated CodeGen
World Root These data structures change frequently
Rigid Bodies — > | Easy to generate code for
Joints Easy to mark up with clang annotations
Contacts
etc.

Primitive data types and special cases Wirite code by hand
float, int and other PODs ——» | Change infrequently
Simple types without pointers Sometimes hard to generate code for
std::vector<> and external containers Building blocks for compound data
Special containers

For some data structures, it's just easier to write serialization code by hand. The
code generator should know about leafy data types like int and float, and
generate serialization code automatically. There's no problem with structures only
consisting of those data types, those can be simply copied directly from another
process address space.

It's a bit more involved with pointers. In general, C++ does not provide enough
semantics for you to know if a pointer points to one object, or a vector of objects.
I'm using clang annotation to add that semantics. So, the code generator looks at
that annotation and computes the size of the array and serializes accordingly.

We don't use multiple heaps for our physics engine, but if you do, you'll have to
provide semantics about how to allocate the snooped or unserialized data
structures.

In strange cases, like an int that is a pointer, but the lower 2 bits have a special
meaning, you probably want to write that routine by hand. Also when you have a
union and have to run code to decide what it means.

You have a choice whether to make your code auto-generator smarter (and harder
to maintain) or snoop a specific class manually. It's a judgement call.

71

Statistics

C++ |——|[Clang |——|json |— | StringTemplate |[——|C++

Non-trivial data:

46 classes — — — A4 Y
320 fields

***All generated code is typo-free

We currently have 46 non-trivial classes with 320 fields for which serializer and
snooper code is generated.

C++

— | Clang

Statistics

——|json

StringTemplate |——| C++

Parser:

1000 lines

***All generated code is typo-free

The parser that uses clang is about 1000 lines long. | probably spent a couple
of weeks part time writing it, and I've been using it for a year.

79

C++

Clang

Statistics

——|json [— [StringTemplate |——| C++

Generated data:

2800 lines —_

***All generated code is typo-free

The generated json is 2800 lines long

80

Statistics

C++ |——|[Clang |——|json |— | StringTemplate |[——|C++

Snoop template:
200 lines

Serialize template:
400 lines

***All generated code is typo-free

Snooper template is 200 lineslong .
Serializer template is 400 lines.

81

Statistics

C++ |——|[Clang |——|json |— | StringTemplate |[——|C++

Snoop code:
2500 Tines

Serialize code:
5600 Tines

***All generated code is typo-free

Auto-generated snooper is 2500 lines long.

Serializer is 5600 lines long, because it includes 3 directions: serialize to
stream, unserialize from stream, count number of bytes used (very similar to
Serialize, but actually counts allocated memory).

It takes 2-8ms to snoop a typical game frame, which is normally maybe 10 mb
large

82

Physics in Games: Integration

Every game physics engine eventually gets integrated into a game. It makes
change-compile-test iteration much longer. Especially when artists start building a
huge map, and new exciting bugs show up that only happen in this huge map
once in a blue moon.

It makes bug hunting mind-numbingly slow. Because the game code is much, much
larger than the physics code we know so well.

83

Physics in Games: Perspective

Game code is written by many people over many years. Physics engine is self-contained
and neat, almost miniature in comparison.
At valve, the sheer amount of logic in the old game code with history is very large.

84

Physics in Games: Perspective

It's really easy to lose perspective when you work on physics for a long time.

The ultimate goal of physics in a game is to make the game better. It's not to make the best
or fastest or true to life physics simulation. That is why in-game debugging and
optimization is very important.

If the game wants to cast a lot of rays, we need to optimize that first. Games don't generally
have stacks of cubes everywhere, so that's not the best benchmark for a game physics
engine. It's best to put it in the game and debug and profile it in the game, if you want it
to perform well in the game.

85

Game Data Visualization

Run Generating_Nav

Here's another example of an unexpected benefit of visualizing everything in physics engine.
Testbed records and displays all traces. And left4dead navigation system does a lot of
traces. So, when connected to the game, Testbed visualizes an Al algorithm.

86

Set Your Priorities

| suggest we can all spend a couple of weeks up front to make our life more
comfortable and deliver a better product. Sometimes you can't do that, but
generally if your time horizon is years, you can afford a couple of weeks.

What I'm describing is pretty general technique. Game physics is just an example,
but it's usable in any complex software.

87

Debugging Visually

DG by Debugain) - Mitoro Vi Sk o Pla
BE BN gOw VASSTS BORCT BAD DGUG ToM 10 T ANAVE WROOW P S
°- R - P Costoue = = ” =0 e R, ot LR

Proces: | (5916 physics tstbed ne < Theend | (12900 -| X Stack o | Cnlnd-Schve

— - Pores S Crecey Pk ok ring) - . m_Contacts, 0x00000000300t43a8 (0¥0000000005954d0 (. CRnContact *(282]
WVelocityBuffer[2 % nBody + 0 1 = pBody->IntegrateForces(vGravity, dt); 4@[0] 0000000059540 (m, Caches(m SimplexCax CRaContact *
pBody->C learf orc ® ® [CRN [m_Cache=(m_SimplexCache=m_fiMetric=1401 CRnConvexContact
m_velocityBuffer[2 + nBody + 1] = pBody->IntegrateTorques(dt b e CRAO [¢
dy->ClearTorques ();

© mac9

@ m_nT CONTACT_CONVEX (0) RnContactType_t

@ m.oFl0 int

Prepare constraints @ maP 1 unsigned short
int nContactCount = m_nContactCount @ mow (1) CUtVector<Manifok
uint8% pContactConstraintBuffer = NULL; A mak0 it

if (ncontactCount > 0) ; + % m_TC (m_flAiphs=1.00000000 m_nManifolda-1] RnTOIEventt
© (1] 0:00000000059€5440 m.Caches={m_SimplexCac CRiContact *
ISLANDPROFILEC Preparecontacts); b @ [CR (m_Cache{m, SimplexCache {m_Iietrc 1401 CRrComvexContact
int nManifoldCount = v o RO (0400000000(C
int nContact = 0; nContact < m_nContactCount; ssnContact) P im. _
{ o
act* pContact = m.Contacts[ncontact 1; @ m_nT CONTACT_CONVEX (0) ReContactType.t
fanifoldcount s pContact--Getnant foldCont(

int
m_rManifoldCount = nManifoldCount; AnaAL. gesknad shoe,
CAREFUL: We Create one contact constraint per MANIFOLD and *not* per CONTACT (can be more o m) CutiVector <Manifok:
pContactConstraintBuffer new uir ‘[rManifoldCount * CRnCon! GetMaxConstraintBuffersize
Preparecontacts(ncontactcount, peontactConstraintBurfer, 1.0f 7 dt, nSertings > .Mm.,. flAYpha=100000000 m_nManifold=-1] RaTOIEvent t
5300 (m_Cache «(m_SimplexCa« CRnContact
int nlointCount = m_nlointCoun @ [CRAK (m_Cache={m._ Sm‘ctex(a((m_fiMetric=1401 CRnConvexContact
uint6* plointConstraintBuffer = NULL; $ wuo {0:00000000k
© mac int
o rGmeintcomt.s 03 @ mat mNmr,to«vsx © RnContactType.t
ISLAND_PROFILEC Preparedoints); & msi
uint njointConstraintBufferSize = nlointCount * CRnJoint::GetmaxConstraintbuffersizeQ; o mP 1 unsigned short
plointConstraintsuff Snt8[niointConstraintoutfersize); @ mMe (1] CUtiVector <Manifoic
uint8 *plointConstraintBufferind = Prepareloints(nlointCount, plointConstraintBuffer, 1.0f / -
NOTE_UNUSED(plofintConstraintBufferend
Assertobg(plointConstraintBufferind <= pIointc + nJointc ze)

b @ m_TC (m_flAipha=1.00000000 m_nManifold=-1] RATOIEvent t
> 3] | 0x000000000595080 (m_Cache={m. SimpiexCad CRnContact *
+ @ [CRC (m_Cache |, SimplexCache m_MMitrice1401 CRoCorvexContact
Solve constraints » @ CRnO (m, (0%00000000(C}
AND_PROFILE(Satisfy); b b
for (int nIteration = 0; nIteration < nvelocityIterations; +snIteration) DR CONTACT.CONAX ReCantactiypet
@ m
satisfyloints(nlointCount, plointConstraintBuffer); % mop 1 unsigned short
Satisfycontacts(ncontactCount, pcontactConstraintBufer); & m M (1] CUtiVector <Manifok

@ mat 0 int
© @ m_TC (m_fiAipha=1.00000000 m_nManifol RTOlEvent

Eventually, | want my Visual Studio to look like this when I'm debugging.

You can make a debugger extension with VS Extensibility, and | might make one
some day. But when | experimented with it, it was very inconvenient to write a VS
extension of such complexity.

88

AutoExp.dat, *.natvis

[AutoExpand]
Vector =x=<x,g> y=<y,g> z=<z,g>
Quaternion= x=<x,g> y=<y,g> z=<z,g> w=<w,g>

[Visualizer]
CStrongHandle<*> {
preview(Sc.m pBinding->m Name->m ResourceNameSymbol.u.m pAsString)
children (
(
Data: ($T1 *) ($c.m pBinding->m pData),
[raw members]: [Sc,!]

| hope everyone knows about autoexp.dat. It lets you visualize in text, so to say.
| strongly suggest you just put all your data structures in there. Try to make them
more readable - in your Watch window. It helps a lot.

89

Organizing Data Structures

Physics World Root***

| External Object |

4 External Object |
/\ External Object |
Physics Data

Structures

*** Published to snooper

A word about organizing your data strucutres.

It's most convenient to have a root object from which you can crawl all your data.

| just gather all the globals in one object, and only publish a pointer to that one object
to the snooper.

Physics will have some data structures. You'll parse and process them.

You'll probably have some external pointers, like pointers to the vertex and index
buffers for debug drawing.

You can write routines for snooping and serialization of those things manually

90

Out-of-Game Visualization

Game Physics World

Bit Stream

10010110010110...

Transport

. TCPIP
. FilelO

« Other ...

« Shared Memory
« ReadProcessMemory

Visualization

Another thought. Visualizing in an external app doesn't have to use

ReadProcessMemory API.

91

Using TCP/IP

Game Network Physics Debugger

W

All the leading physics engine have some sort of over-TCP/IP visualization.

Unfortunately it doesn't work when the game is stopped in debugger, frozen or
crashed. Unless you stream your game state all the time, and that spends CPU. If
you don't know where the problem is, and stream a lot of detailed data, it really
takes a lot of CPU. And you have to remember to turn it on.

But it works on remote machine. So it's a viable option.

92

Using Shared Memory

Game Shared Memory Physics Debugger

Memory 1
Addvess: | O400000310F 786060
'] 0743560 00000001 000000C
00000000 00000000 0f73eal
0f7434e8 00000001 0997 ee7

0f73c788 00000001 04b7378
00000000 00000000 000000
00000000 00000000 000000C
00000001 00000000 0f743f
0762420 00000001 0f7b6lc
00000002 00000000 000000C
04bbdda0 00000000 000000C
0f76a380 00000001 0f7c77¢
0f743£90 00000001 000040C
0f73c788 00000001 04b737¢
00000000 00000000 000000C
00000001 00000000 04bbddc
04ad7A78_00000000_N00000C

An alternative to TCP/IP that works when the game is stopped in debugger (or
frozen or crashed) would be to use shared memory.

Win32 API allows processes to share memory directly. One way is to use a memory-
mapped file, but you need to dedicate a region of memory for sharing, and some
of the memory would be passed down from the game (like pointer to collision
resources), and it would be very inconvenient to make sure all of that is allocated
in the shared memory region

93

Game-centric Viz

Hopefully we'll eventually be able to save/load/rewind the whole game with this
method. Our game code base is much bigger than physics engine though, so
that's a lot of work.

94

Serialization

class Contact_Serialized

int m_nShapeIndex[2 1;

int m_nNextIndex[2];

}s

\ 10010110010110...

class Contact
i

Shape* m_pShape[2];
GraphEdge< Shape > m_Next[2];

AUTO_SERIALIZE_BASE;

We are using the same framework to generate serialize/unserialize code.
Every time we change our data structures, we just re-run the parser/generator,
and it's all updated

We serialize/unserialize a byte stream. But another variant would be e.g. to
generate a reflected version of all your data, with indices instead of pointers. If
you have reflection API, it will let you version the serialized data

Techniques: The Summary

Technology Technique
. Clang « Detailed Statistics
« String Template Serialization
« ReadProcesMemory API . Streaming
« Snooping
. efc.

To summarize, we were talking about a few uses of two technologies: Clang
and String Template, and one simple Windows API. ReadProcessMemory.
Together, these technologies can enable very powerful and complete
serialization, an interesting debugging technique | call snooping, gathering
detailed statistics without tedious coding and without that code going stale the
next time someone adds a new array somewhere.

The same serialization template can also be used to send data over TCP/IP,
and/or serialize into an alternative data structure with reflection API (e.g. into a
series of dictionaries) that can be saved and loaded into newer versions of the
engine, and many more uses.

It is possible to use snooping to read and display every frame in your game
You will probably skip some frames unless you take care to synchronize

You will probably waste time at the mutex, for the game has to wait for the
snooper to finish, and it's less efficient to snoop than to pack local game data
and send it through a pipe or socket.

It is much faster to let the game actively serialize the world delta every frame
and send it over the wire. It will also guarantee no skipped frames.

It is easier to just reuse existing serialization and send every frame over the
wire

For a quick fix, just see the biggest pieces of data (probably mesh
descriptions) and cut them out of the stream if you already sent them

When visualizing streamed physics, | tied the Vbs/IBs directly into the world
data structures.

This automatically recreated Vbs/IBs on every streamed frame

96

To fix that, | had to cache those debug objects off and have special callbacks
reuse them. | did it with clang's annotations.

96

Pros & Cons

Pros Con
. Reliable Process - Implementation
. Repeatable Debugging Complexity

« Human Error Excluded
« Neither Tedious nor
Outdated Code

Full-world serialization of this type includes everything, and has very high
reliability. You don't have to worry about missing a thing or two: the
parser/generator is unlikely to make a human error.

This is usable to dump suspicious game frames for later examination, or
streaming them. When debugging later, it's very much like debugging in-game,
but it's repeatable and much more convenient.

| don't like manual non creative work, and serialization code is always very low
in creativity. Getting rid of it makes iteration faster and doesn't distract me from
the creative process.

Among the drawbacks, this method is more complex to start using it. You can
still use the old methods in parallel with this method.

97

Make work fun! It pays to do that.

98

Special Thanks: Content & Delivery

Erwin Coumans
Dirk Gregorius
Dennis Gustafsson
Julien Merceron

Special Thanks: Art & Style

Ricardo Ariza
Jason Brashill
Cam Fielding
Tristan Reidford

99

References

Clang - http://clang.llvm.org/

StringTemplate - http://www.stringtemplate.org/
ANTLR - http://www.antlr.org/

Valve — http://www.valvesoftware.com/

Steam - http://store.steampowered.com/
SteamDevDays - http://www.steamdevdays.com/
My email — sergiy@valvesoftware.com

100

