
SCRIPTING PARTICLES
Getting Native Speed from a Virtual Machine

Niklas Frykholm
System Architect, Bitsquid

THE CASE FOR DYNAMIC CONTENT

• More flexibility!	

• Faster iterations!	

• Artists in control!

FLEXIBILITY VS PERFORMANCE

• Scripting is great, but too slow for high performance tasks	

Even with JIT	

• Some high performance areas that would benefit from increased flexibility	

Particle simulation	

Wind simulation (and other vector field effects)	

Sound processing	

...	

• How can we make scripting work for them?

WHAT WE WANT:
 FULLY SCRIPTED FX WITH NEAR NATIVE PERFORMANCE	

(PROGRAMMER ART)

EXISTING SOLUTIONS

• Stack of C “modifiers” or “filters”	

Good performance, limited flexibility	

Must get C programmers to add new filters	

Bad for generic & reusable engine	

!

• Runtime code compile	

Promising but tricky to get right	

Need compilers for all platforms (server?)	

Need runtime linking on all platforms (iOS)	

Must be converted to static code for “final” release

Artist selects filters and parameters in tool	

 gravity(0,0,-9.82), whirlwind(0, 0, 5)	

Loop with switch statement in C code	

Apply one filter at a time

Artist creates effect in tool	

Tool generates C code for running the effect	

C code gets compiled for target platforms	

Runtime linked with running executable

WHY ARE SCRIPT INTERPRETERS SLOW?

Decode instruction	

Jump to opcode	

Execute instruction	

!
Decode instruction	

Jump to opcode	

Execute instruction	

!
Decode instruction	

Jump to opcode	

Execute instruction	

!
... 

Virtual machine Native
Execute instruction	

!
Execute instruction	

!
Execute instruction	

!
Execute instruction	

!
Execute instruction	

!
... 

These parts are identical:  
 same machine instruction  

This part is the
overhead of using
bytecode instead of
native

addps xmm0, xmm1

DATA WIDE VIRTUAL MACHINE

• Perform each instruction on MANY data
items	

• Cost of decoding & branching is amortized	

• Byte code just as fast as native?	

Can’t keep data in registers	

More loads & stores	

Touches more cache memory

Decode instruction	

Jump to opcode	

Execute instruction	

Execute instruction	

Execute instruction	

...	

!
Decode instruction	

Jump to opcode	

Execute instruction	

Execute instruction	

Execute instruction	

...	

...

Virtual machine Native
Execute instruction	

!
Execute instruction	

!
Execute instruction	

!
Execute instruction	

!
Execute instruction	

!
... movaps xmm0, xmmword ptr [edx]	

addps xmm0, xmmword ptr [ecx]	

movaps xmmword ptr [eax], xmm0

LOOP ORDERS
Native Modifier stack Wide VM

object1	

!
!
!
!
object2	

!
!
!
!
...	

!
objectk 

op1	

op2	

...	

opn	

!
op1	

op2	

...	

opn

modifier1	

!
!
!
!
!
!
!
!
modifier2	

!
!
!
!
...	

modifierj 

op1_1	

...	

op1_n1	

!
op1_1	

...	

!
!
!
op2_1	

...	

op2_n2	

!
!
!

object1	

!
!
!
object2	

!
...	

objectk	

!
object1	

!
!
...	

objectk	

!
!
!
!

op1	

!
!
!
!
op2	

!
!
!
!
...	

!
opn	

!

object1	

object2	

...	

objectk	

!
object1	

object2	

...	

objectk	

!
!
!
!
!
 

HOW IT WORKS: DATA-WIDE INTERPRETER

• Built on top of Vector4 intrinsic
abstraction	

• Input/output data are channels
(arrays of SIMD vectors)	

• Byte code contains instructions for
operating on channels	

pos = ADD pos move	

• After decoding instruction,
interpreter applies it to n objects at
a time	

Vector4 *a = (decode channel ref);	

const Vector4 *b = (decode channel ref);	

const Vector4 *c = (decode channel ref);	

Vector4 *ae = a + n;	

while (a < ae) {	

 *a = *b + *c;	

 ++a; ++b; ++c;	

}

BYTECODE DETAILS: CONSTANTS
• Constants	

age = age + delta_time;	

• Stored as a Vector4 in-place in the byte code	

age = ADDconstant age (0.0 0.0 0.0 0.0)delta_time	

Note: The bytecode uses a separate ADDconstant opcode when adding a channel and a constant	

• The compiler keeps track of location of all bytecode constants	

Before running the bytecode you patch the values of all constants	

patch_constant(bytecode, hash(“delta_time”), vector4(0.33, 0.33, 0.33, 0.33));	

age = ADDconstant age (0.33 0.33 0.33 0.33)delta_time	

When the bytecode runs, no lookup is needed for constants → maximum speed	

constant for all particles during frame

BYTECODE DETAILS: TEMPORARY VARIABLES

r0 = MUL vel delta_time	

pos = ADD pos r0	

• We use temporary Vector4 buffers for temporary (and local) variables	

To virtual machine, no distinction between temp buffers and channels	

Temp buffers do not have to be as big as the input channel	

Only as big as n, the number of items we process at a time	

• Balance between memory use and performance	

We want high n to amortize the cost of instruction decoding	

We want low n to minimize temporary memory use	

n = 128 is a decent compromise

THE BIG PICTURE
• Offline	

Data compiler parses code	

pos = pos + vel * delta_time	

Generates bytecode, introduces temporary variables as necessary	

r0 = MUL vel (0.0 0.0 0.0 0.0)delta_time	

pos = ADD pos r0	

Bytecode is optimized (Temporary variable elimination)	

• Runtime	

Patch the constants in the bytecode	

Execute the instructions

IMPLEMENTATION DETAILS

• Very simple hand-written tokenizer and recursive decent parser	

~1000 lines	

• Trivial bytecode format	

OPERATOR operand1 operand2	

No packing/unpacking necessary, we do not need to optimize for bytecode size	

• Very simple virtual machine implementation	

Big switch statement	

~250 lines

REAL-WORLD EXAMPLE
// Source syntax inspired by HLSL  
const float4 center = float4(0,0,0,0);	

const float4 up = float4(0,0,1,0);	

const float4 speed = float4(1,1,1,1);	

const float4 radius = float4(5,5,5,5);	

!
struct vf_in	

{	

	
 float4 position : CHANNEL0;	

	
 float4 wind : CHANNEL1;	

};	

!
struct vf_out	

{	

	
 float4 wind : CHANNEL1;	

};	

!
void whirl(in vf_in in, out vf_out out)	

{	

	
 float4 r = in.position - center ;	

	
 out.wind = in.wind + speed * cross(up, r) / dot(r,r) * radius;	

}

// Resulting bytecode	

// r0, r1 correspond to CHANNEL0, CHANNEL1	

// r2--r5 are temporary variables	

!
r2 = SUB r0 (0,0,0,0)center	

r3 = CROSS	
(0,0,1,0)up r2	

r4 = MUL (1,1,1,1)speed r3	

r3 = DOT r2 r2	

r5 = DIV r4 r3	

r3 = MUL r5 (5,5,5,5)radius	

r1 = ADD r1 r3

USE CASE 1: WIND SIMULATION

• Wind is simulated as a superposition of
effects	

Effect: Cull box + script with constants	

Script returns wind at position	

• Evaluation at a large number of points	

Positions of particles and physics objects	

Apply culling to find relevant effects	

Merge the bytecode to a single function (for
performance)

USE CASE 2: PARTICLE SIMULATION
• A “particle” is just a collection of channels	

Position, velocity, color, size, etc	

Editor completely defines what channels exist	

For example there could be two position channels (for a “beam“ particle).	

• Particle effects written in vector language	

Editor allows using existing effects	

Or writing completely new ones	

• We are transitioning to this system	

Runs in parallel with old less dynamic particle system	

COMPARING PERFORMANCE TO NATIVE

• Example: 64K particles with
gravity and one collision surface	

• ~34 % overhead over native 
~18 % overhead over modifiers	

Source: loads & stores 	

Compare to typical bytecode
overhead: x10 – x20	

• On the console, the modifier
solution exhausts L2 cache	

With smaller data set x1.28

Native Modifiers Scripted

Modern PC
0.402 ms 0.455 ms 0.539 ms

x1.0 x1.13 x1.34

X360 PS3
gen console

5.398 ms 10.196 ms 7.006 ms
x1.0 x1.89 x1.30

void update(in vf in, out vf out)	

{	

	
 float4 vel = in.vel + gravity*dt;	

 	
 out.pos = in.pos + vel*dt;	

 	
 float4 collide = dot(in.pos - plane_p, plane_n) < 0;	

 	
 float4 travelling_down = dot(vel, plane_n) < 0;	

 	
 out.vel = vel - 2 * vel * collide * travelling_down;	

};

BUT WAIT — WE CAN DO BETTER!
• Rewrite the bytecode

interpreter in AVX	

Process 8 floats at a time	

Now we run faster than native! 	

• Fair comparison?	

We could rewrite the native
code in AVX as well	

But will you take the time to
rewrite all your handwritten
code to use AVX?	

Will you maintain multiple
versions for SSE, AVX, Neon, etc?

Native Modifiers Scripted AVX

Modern
PC

0.402 ms 0.455 ms 0.539 ms 0.373 ms

x1.0 x1.13 x1.34 x0.92

CONCLUSIONS

• The “data wide interpreter” model is a viable solution for high-
performance scripting	

Completely configurable behaviors	

Fully dynamic: can be quickly reloaded, no engine recompile necessary	

18 % overhead over traditional modifier stack solution (34 % over native)	

AVX enabled scripted solution is faster than native solution	

• Future	

One channel per component (pos.x, pos.y, pos.z)	

More backends: JIT compiler, GPU Compute, SPU…

QUESTIONS

niklasfrykholm

www.bitsquid.se

niklas.frykholm@bitsquid.se

www.youtube.com/bitsquid

