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Introduction
● The Sims franchise is the best-selling PC game franchise of 

all time 
● We have a really broad, diverse audience 
● We work hard to provide a good experience on a really 

broad range of PC hardware 
● We run on less recent PCs by most standards 
● We pay a lot of attention to laptops w/ integrated graphics



Delivering The Sims
● We must deliver a quality experience on all hardware that 

we support 
● We have to look “like a Sims game” 
● Precise synchronization and registration between Sims/objects 
● Sequence integrity 
● No skipping important steps 
● No harsh interruptions 

● The simulation is king 
● Always in charge of what happens and how



Challenges
● Running our deep simulations at consistently interactive 

frame rates is difficult 
● Inherently spike-prone 
● Huge set of options for each Sim at any given time 

● We’re constantly adding new complexity 
● The Sims 4 has taken on some performance-sensitive problems 

like multi-tasking 
● Every expansion adds even MORE options for the Sims to 

consider



Implementation Goals
● Decouple the simulation from the renderer entirely 
● Protect the renderer from simulation spikes 
● Protect the simulation from difficult performance requirements 

● Keep all impactful decision making in the simulation 
● Path planning, animation selection, etc. 

● Move all high-frequency behavior to the renderer 
● Path following, animation playback, etc.



Variable Time Shifting
● We allow for variable time shifting on the renderer 
● Perceived delta from the simulation timeline may be different 

depending on which object(s) you are observing 
● Especially important when dealing with transient 

divergences from the simulation timeline on the renderer, 
due to… 
● Animation branch restrictions 
● Dynamic avoidance 
● Etc.
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Operations and Channels
● Operations are things the renderer can do… 
● Set a transform 
● Play some animation 
● Follow a path 
● Play a sound 
● Start VFX 
● Trigger some UI 
● Etc. 

● An Operation consists of a payload and a set of channels



Operations and Channels
● Channels define timelines 
● Each Sim/object in the world is a channel 
● We create other channels too 

● A Channel (for us) consists of… 
● An Object ID 
● A 32-bit mask (used for “multi-part” objects)



Operations and Channels
● Channels determine what operations must be executed 

serially, and which can be run in parallel 
● There may be multiple, unrelated chains of serial 

operations (timelines) at any given time, which can merge 
and split as necessary 

● Operations are inserted into the Operation Queue, which is 
responsible for maintaining these timelines
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The Operation Queue
● Entirely passive - it is not actively ticked 
● Only does work via one of the three public functions 
● Enqueue, AddBarrier, RemoveBarrier 
● All work is performed synchronously 

● Enqueue and RemoveBarrier can invoke operation handlers 
● When an operation is handled, it is removed from the 

queue immediately afterward



Enqueue
● On Enqueue, an operation is blocked if any of its channels 

overlap with the channels of any operation ahead of it in 
the queue 
● The overlap test is (a.id == b.id && a.mask & b.mask) 

● If the new operation is blocked, it is pushed onto the back 
of the queue 

● If not, its handler is invoked immediately
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Barriers & Taking Time
● We use barriers as a way to let external systems gate 

progress through the queue 
● Barriers are simply a special type of Operation which are 

not processed upon becoming unblocked. RemoveBarrier 
must be called to remove them 

● When barriers are removed, we check to see whether any 
operations located behind the barrier in the queue are now 
unblocked, and if so, their handlers are run immediately



Barriers & Taking Time
● Barriers are added from an operation handler, function, 

and are added immediately behind the operation being 
handled 

● Barriers are generally removed from separate systems 
(e.g. animation) when they have reached a logical place to 
clear them 
● For animation, we use “eligible for branch out”… More on this 

later 
● When we remove a barrier, we re-evaluate all operations behind 

the barrier in the queue to see if they are unblocked
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Animation Request Block (ARB)
● We need a generic way to specify multi-actor animation for 

serialization, including support for frame-accurate 
synchronization 
● Because we may be time-shifting things on the renderer, simply 

starting the animations at the same time is not an option 
● We need to support sequences with reliable internal 

animation blending



ARB Structure
● ARBs contain a sequence of controller records, each of 

which contains… 
● Controller 
● Target Actor 
● Animation Clip 
● IK Information 
● Etc. 

● Blending Info 
● Synchronization Group ID 
● Flags
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Skippable Content
● Animation scheduled as “skippable” is key to ensuring 

good gap coverage 
● Each ARB generally ends with some interruptible/skippable 

content 
● Designed to be unobtrusive and easy to blend quickly out of, 

but just active enough not to look dead 
● If we’ve received another ARB affecting the actor in 

question before the skippable content would start, the 
skippable content is discarded entirely
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ARB Handling (Simulation)
● We do not actually run the animation system on the 

simulation thread 
● We load just enough to support the construction of ARBs 
● When the simulation executes an ARB, we compute a 

rough estimated duration for the ARB which related 
tasklets then sleep for 
● This duration is generally fairly accurate, and takes into account 

blend times, but is not perfect



ARB Handling (Renderer)
● When the ARB operation is handled, we… 
● Add barriers to the queue - one for each affected actor/event 
● These barriers are removed when the last non-skippable clip is 

eligible for blend out 
● For non-interruptible clips, this is (duration - blend out time) 
● For interruptible clips, this is when the clip is started 

● This allows us to unblock each actor individually as soon as 
possible, allowing for smoother transitions when timelines split



Animation Events
● We make heavy use of animation events to support frame-

accurate changes to state, like… 
● Reparenting objects 
● Playing sounds 
● Triggering UI 
● Etc. 

● Many of these events require the simulation to make 
decisions about how to handle them 
● Handling them on the renderer would require replicating a 

tremendous amount of state and logic



ARB Structure - Event Records
● ARBs also contain a sequence of event records, each of 

which contains… 
● Event Channel 
● Event Source Record 
● Which of the controller records generates the event 

● Event Type/ID



Animation Event Handling (Simulation)
● On the simulation, event handlers are run synchronously 

when the ARB is started 
● For each event we run handlers for, we allocate a unique 

channel that doesn’t map to a real object 
● Event handlers can do most supported operations 

● Any operations that get enqueued during this time are 
automatically blocked ONLY on the event channel



Animation Event Handling (Renderer)
● We add barriers for each event channel, along with the 

per-actor barriers 
● We remove these barriers when the event is actually fired 

in the animation system 
● All event-blocked operations are handled synchronously 

● The renderer does handle SOME events natively 
● Simple sound events, one-shot FX, etc. 
● The simulation dictates everything else
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Issues
Nothing’s perfect



Complexity
● Decoupling adds a fair amount of complexity to feature 

implementation 
● Requires implementing simulation-side and renderer-side 

functionality to support a feature 
● This may sound familiar to some of you… 

● Careful design of which Operations you support can 
mitigate the issue 
● The more re-usable/composable the better



Managing Desync
● Transient desync is okay (and expected) 
● Excessive, persistent desync is not 
● For ops that take time/create barriers... 
● Timestamp 
● Scale 
● Interrupt/Skip 
● Work with your content partners to come up with visually appealing 

“filler”



Managing Desync
● Many of our interactions involve interruptible looping 

content that runs on the simulation for a tunable amount of 
time, which is time we can get back when necessary 

● We do the vast majority of our “catch up” during route 
following, where we have a variety of good looking options 
for recovering the drift 

● In hard to manage cases, the renderer can talk back to the 
simulator to limit desync 
● Effectively implements a “re-sync” on certain operations



Debugging
● The most common trap that catches people when working 

with this system is inadvertently creating operations whose 
blocking channel sets do not match the actual behavior in 
the simulator 
● This manifests as… 
● Operations happening too early, or “out of order” 
● MASSIVE desynchronization due to operations being serialized 

on the renderer, but not on the simulator



Debugging
● Having good debugging tools is a big help here 
● Our toolset consists of… 
● A timestamped simulation side log of all operations and their 

channels sent to the renderer 
● A cheat command which outputs the current contents of the 

queue (all pending operations/barriers and their associated 
channels) 
● Between these two, we can pretty easily reconcile discrepancies 

and problems without having to touch the debugger



Other Applications



Dynamic Cutscene Sequencing
● Allow for in-gameplay cutscenes 
● No need to interrupt in-progress behaviors 
● No need to warp actors at synchronization points 
● Could run in parallel to regular gameplay



Latency-Tolerant Online
● Our approach could be used to build online games where 

sequences are more important than sync 
● Probably excludes MOST competitive games 

● Can scale down to very tight synchronization, so long as 
operations know how to scale/sync themselves 
● Relatively straightforward, with some visual degradation



Summary



Summary
● Allowing for variable time shifting has given us the 

flexibility to decouple completely, while retaining the “look” 
of The Sims 
● Sequences are preserved 
● Individual steps are shortened or skipped, but only when we’ve 

specifically allowed it



Summary
● Decoupling our simulation and renderer has allowed both 

systems to deliver a higher quality experience 
● Rendering frame rates are more predictable 
● The simulation is allowed to do the work it needs to, when it 

needs to



Summary
● Having a robust multi-actor sequencer that supports 

dynamic behaviors is broadly applicable 
● Applicable to any scenario where… 
● Sequentiality is important 
● Multiple actors are involved and are sometimes synchronized 
● Simulation runs separately from rendering
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