
Brian Bell 
Sr. Software Engineer, Maxis/EA 
bmbell@ea.com

Multi-Actor Behavior 
Sequencing in The Sims 4

mailto:bellbri2@gmail.com


Introduction
● The Sims franchise is the best-selling PC game franchise of 

all time 
● We have a really broad, diverse audience 
● We work hard to provide a good experience on a really 

broad range of PC hardware 
● We run on less recent PCs by most standards 
● We pay a lot of attention to laptops w/ integrated graphics



Delivering The Sims
● We must deliver a quality experience on all hardware that 

we support 
● We have to look “like a Sims game” 
● Precise synchronization and registration between Sims/objects 
● Sequence integrity 
● No skipping important steps 
● No harsh interruptions 

● The simulation is king 
● Always in charge of what happens and how



Challenges
● Running our deep simulations at consistently interactive 

frame rates is difficult 
● Inherently spike-prone 
● Huge set of options for each Sim at any given time 

● We’re constantly adding new complexity 
● The Sims 4 has taken on some performance-sensitive problems 

like multi-tasking 
● Every expansion adds even MORE options for the Sims to 

consider



Implementation Goals
● Decouple the simulation from the renderer entirely 
● Protect the renderer from simulation spikes 
● Protect the simulation from difficult performance requirements 

● Keep all impactful decision making in the simulation 
● Path planning, animation selection, etc. 

● Move all high-frequency behavior to the renderer 
● Path following, animation playback, etc.



Variable Time Shifting
● We allow for variable time shifting on the renderer 
● Perceived delta from the simulation timeline may be different 

depending on which object(s) you are observing 
● Especially important when dealing with transient 

divergences from the simulation timeline on the renderer, 
due to… 
● Animation branch restrictions 
● Dynamic avoidance 
● Etc.





Route

Dependent Timelines

Hug
Route

Time

Swoon

Route Watch TVIdle



Route

Dependent Timelines

Hug
Route

Time

Swoon

Route Watch TVIdle



Route

Dependent Timelines

Hug
Route

Time

Swoon

Route Watch TV



Route

Dependent Timelines

Hug
Route

Time

Swoon

Route Watch TVWe’ll address what 
happens here later



Implementation



The Sims 4 Simulation Architecture

Renderer

Simulation Thread Objects

Path 
Following 

Operation QueueJournal

Operations

Animation 
(light) 

Path 
Planning 

AutonomyInteractions

Animation

Renderer Thread

Messaging



The Sims 4 Simulation Architecture

Renderer

Simulation Thread

Renderer Thread

Objects

Animation
Path 

Following 

Operation QueueJournal

Operations

Animation 
(light) 

Path 
Planning 

AutonomyInteractions

Messaging



The Sims 4 Simulation Architecture

Renderer

Simulation Thread Objects

Animation
Path 

Following 

Operation QueueJournal

Operations

Animation 
(light) 

Path 
Planning 

AutonomyInteractions

Renderer Thread

Messaging



Operations and Channels
● Operations are things the renderer can do… 
● Set a transform 
● Play some animation 
● Follow a path 
● Play a sound 
● Start VFX 
● Trigger some UI 
● Etc. 

● An Operation consists of a payload and a set of channels



Operations and Channels
● Channels define timelines 
● Each Sim/object in the world is a channel 
● We create other channels too 

● A Channel (for us) consists of… 
● An Object ID 
● A 32-bit mask (used for “multi-part” objects)



Operations and Channels
● Channels determine what operations must be executed 

serially, and which can be run in parallel 
● There may be multiple, unrelated chains of serial 

operations (timelines) at any given time, which can merge 
and split as necessary 

● Operations are inserted into the Operation Queue, which is 
responsible for maintaining these timelines



Route

Dependent Timelines

Hug
Route

Time

Swoon

Route Watch TVIdle



The Operation Queue
● Entirely passive - it is not actively ticked 
● Only does work via one of the three public functions 
● Enqueue, AddBarrier, RemoveBarrier 
● All work is performed synchronously 

● Enqueue and RemoveBarrier can invoke operation handlers 
● When an operation is handled, it is removed from the 

queue immediately afterward



Enqueue
● On Enqueue, an operation is blocked if any of its channels 

overlap with the channels of any operation ahead of it in 
the queue 
● The overlap test is (a.id == b.id && a.mask & b.mask) 

● If the new operation is blocked, it is pushed onto the back 
of the queue 

● If not, its handler is invoked immediately



Operations and Channels

Animation (Hug)

Yellow

Blue

FollowRoute

Yellow

FollowRoute

Blue

Animation (Swoon)

Yellow

Animation (Watch TV)

Blue

FollowRoute

Blue



Operations and Channels

Animation (Hug)

Yellow

Blue

FollowRoute

Yellow

FollowRoute

Blue

Animation (Swoon)

Yellow

Animation (Watch TV)

Blue

FollowRoute

Blue



Barriers & Taking Time
● We use barriers as a way to let external systems gate 

progress through the queue 
● Barriers are simply a special type of Operation which are 

not processed upon becoming unblocked. RemoveBarrier 
must be called to remove them 

● When barriers are removed, we check to see whether any 
operations located behind the barrier in the queue are now 
unblocked, and if so, their handlers are run immediately



Barriers & Taking Time
● Barriers are added from an operation handler, function, 

and are added immediately behind the operation being 
handled 

● Barriers are generally removed from separate systems 
(e.g. animation) when they have reached a logical place to 
clear them 
● For animation, we use “eligible for branch out”… More on this 

later 
● When we remove a barrier, we re-evaluate all operations behind 

the barrier in the queue to see if they are unblocked



Barriers In Practice

Animation (Hug)

Yellow

Blue

FollowRoute

Yellow

FollowRoute

Blue

Animation (Swoon)

Yellow

Animation (Watch TV)

Blue

FollowRoute

Blue



Barriers In Practice

Animation (Hug)

Yellow

Blue

FollowRoute

Blue

Animation (Swoon)

Yellow

Animation (Watch TV)

Blue

FollowRoute

Blue

Barrier (FollowRoute)

Yellow



Barriers In Practice

Animation (Hug)

Yellow

Blue

Animation (Swoon)

Yellow

Animation (Watch TV)

Blue

FollowRoute

Blue

Barrier (FollowRoute)

Yellow

Barrier (FollowRoute)

Blue



Barriers In Practice

Animation (Hug)

Yellow

Blue

Animation (Swoon)

Yellow

Animation (Watch TV)

Blue

FollowRoute

Blue

Barrier (FollowRoute)

Blue

Still blocked on Blue



Barriers In Practice

Animation (Hug)

Yellow

Blue

Animation (Swoon)

Yellow

Animation (Watch TV)

Blue

FollowRoute

Blue



Barriers In Practice

Animation (Swoon)

Yellow

Animation (Watch TV)

Blue

FollowRoute

Blue

Barrier (Animation)

Yellow

Barrier (Animation)

Blue



Multi-Actor Animation

Renderer

Simulation Thread Objects

Animation
Path 

Following 

Operation QueueJournal

Operations

Animation 
(light) 

Path 
Planning 

AutonomyInteractions

Renderer Thread

Messaging



Multi-Actor Animation

Renderer

Simulation Thread Objects

Animation
Path 

Following 

Operation QueueJournal

Operations

Animation 
(light) 

Path 
Planning 

AutonomyInteractions

Renderer Thread

Messaging



Animation Request Block (ARB)
● We need a generic way to specify multi-actor animation for 

serialization, including support for frame-accurate 
synchronization 
● Because we may be time-shifting things on the renderer, simply 

starting the animations at the same time is not an option 
● We need to support sequences with reliable internal 

animation blending



ARB Structure
● ARBs contain a sequence of controller records, each of 

which contains… 
● Controller 
● Target Actor 
● Animation Clip 
● IK Information 
● Etc. 

● Blending Info 
● Synchronization Group ID 
● Flags



Route

Gap Coverage?

Hug
Route

Time

Swoon

Route Watch TV



Skippable Content
● Animation scheduled as “skippable” is key to ensuring 

good gap coverage 
● Each ARB generally ends with some interruptible/skippable 

content 
● Designed to be unobtrusive and easy to blend quickly out of, 

but just active enough not to look dead 
● If we’ve received another ARB affecting the actor in 

question before the skippable content would start, the 
skippable content is discarded entirely



Route

Dependent Timelines

Hug
Route

Time

Swoon

Route Watch TVIdle

Skippable Content



ARB Handling (Simulation)
● We do not actually run the animation system on the 

simulation thread 
● We load just enough to support the construction of ARBs 
● When the simulation executes an ARB, we compute a 

rough estimated duration for the ARB which related 
tasklets then sleep for 
● This duration is generally fairly accurate, and takes into account 

blend times, but is not perfect



ARB Handling (Renderer)
● When the ARB operation is handled, we… 
● Add barriers to the queue - one for each affected actor/event 
● These barriers are removed when the last non-skippable clip is 

eligible for blend out 
● For non-interruptible clips, this is (duration - blend out time) 
● For interruptible clips, this is when the clip is started 

● This allows us to unblock each actor individually as soon as 
possible, allowing for smoother transitions when timelines split



Animation Events
● We make heavy use of animation events to support frame-

accurate changes to state, like… 
● Reparenting objects 
● Playing sounds 
● Triggering UI 
● Etc. 

● Many of these events require the simulation to make 
decisions about how to handle them 
● Handling them on the renderer would require replicating a 

tremendous amount of state and logic



ARB Structure - Event Records
● ARBs also contain a sequence of event records, each of 

which contains… 
● Event Channel 
● Event Source Record 
● Which of the controller records generates the event 

● Event Type/ID



Animation Event Handling (Simulation)
● On the simulation, event handlers are run synchronously 

when the ARB is started 
● For each event we run handlers for, we allocate a unique 

channel that doesn’t map to a real object 
● Event handlers can do most supported operations 

● Any operations that get enqueued during this time are 
automatically blocked ONLY on the event channel



Animation Event Handling (Renderer)
● We add barriers for each event channel, along with the 

per-actor barriers 
● We remove these barriers when the event is actually fired 

in the animation system 
● All event-blocked operations are handled synchronously 

● The renderer does handle SOME events natively 
● Simple sound events, one-shot FX, etc. 
● The simulation dictates everything else



Event Handling

Animation (Hug)

Yellow

Blue

FollowRoute

Yellow

FollowRoute

Blue

Animation (Swoon)

Yellow

Animation (Watch TV)

Blue

FollowRoute

Blue

Let’s add an event!



Event Handling

Animation (Hug)

Yellow

Blue



Event Handling

Animation (Hug)

Yellow

Blue

EVENT

VFX (Hearts)

EVENT

Sound (Awww)

EVENT



Event Handling

VFX (Hearts)

EVENT

Barrier (Animation)

Yellow

Barrier (Animation)

Blue

Barrier (AnimationEvent)

EVENT

Sound (Awww)

EVENT



Event Handling

VFX (Hearts)

EVENT

Barrier (Animation)

Yellow

Barrier (Animation)

Blue

Sound (Awww)

EVENT



Event Handling

Barrier (Animation)

Yellow

Barrier (Animation)

Blue



Issues
Nothing’s perfect



Complexity
● Decoupling adds a fair amount of complexity to feature 

implementation 
● Requires implementing simulation-side and renderer-side 

functionality to support a feature 
● This may sound familiar to some of you… 

● Careful design of which Operations you support can 
mitigate the issue 
● The more re-usable/composable the better



Managing Desync
● Transient desync is okay (and expected) 
● Excessive, persistent desync is not 
● For ops that take time/create barriers... 
● Timestamp 
● Scale 
● Interrupt/Skip 
● Work with your content partners to come up with visually appealing 

“filler”



Managing Desync
● Many of our interactions involve interruptible looping 

content that runs on the simulation for a tunable amount of 
time, which is time we can get back when necessary 

● We do the vast majority of our “catch up” during route 
following, where we have a variety of good looking options 
for recovering the drift 

● In hard to manage cases, the renderer can talk back to the 
simulator to limit desync 
● Effectively implements a “re-sync” on certain operations



Debugging
● The most common trap that catches people when working 

with this system is inadvertently creating operations whose 
blocking channel sets do not match the actual behavior in 
the simulator 
● This manifests as… 
● Operations happening too early, or “out of order” 
● MASSIVE desynchronization due to operations being serialized 

on the renderer, but not on the simulator



Debugging
● Having good debugging tools is a big help here 
● Our toolset consists of… 
● A timestamped simulation side log of all operations and their 

channels sent to the renderer 
● A cheat command which outputs the current contents of the 

queue (all pending operations/barriers and their associated 
channels) 
● Between these two, we can pretty easily reconcile discrepancies 

and problems without having to touch the debugger



Other Applications



Dynamic Cutscene Sequencing
● Allow for in-gameplay cutscenes 
● No need to interrupt in-progress behaviors 
● No need to warp actors at synchronization points 
● Could run in parallel to regular gameplay



Latency-Tolerant Online
● Our approach could be used to build online games where 

sequences are more important than sync 
● Probably excludes MOST competitive games 

● Can scale down to very tight synchronization, so long as 
operations know how to scale/sync themselves 
● Relatively straightforward, with some visual degradation



Summary



Summary
● Allowing for variable time shifting has given us the 

flexibility to decouple completely, while retaining the “look” 
of The Sims 
● Sequences are preserved 
● Individual steps are shortened or skipped, but only when we’ve 

specifically allowed it



Summary
● Decoupling our simulation and renderer has allowed both 

systems to deliver a higher quality experience 
● Rendering frame rates are more predictable 
● The simulation is allowed to do the work it needs to, when it 

needs to



Summary
● Having a robust multi-actor sequencer that supports 

dynamic behaviors is broadly applicable 
● Applicable to any scenario where… 
● Sequentiality is important 
● Multiple actors are involved and are sometimes synchronized 
● Simulation runs separately from rendering



Q&A
bmbell@ea.com

mailto:bellbri2@gmail.com

