
OpenGL® ES 3.0 and Beyond
How To Deliver Desktop Graphics on Mobile Platforms

Chris Kirkpatrick, Jon Kennedy

Legal
Copyright © 2014 Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE
FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE
INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND
THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF,
DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR
NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice.

All products, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.

Intel processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current
characterized errata are available on request.

Any code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for release. Customers, licensees and other third
parties are not authorized by Intel to use code names in advertising, promotion or marketing of any product or services and any such use of Intel's internal code names is at the sole
risk of the user.

Intel product plans in this presentation do not constitute Intel plan of record product roadmaps. Please contact your Intel representative to obtain Intel’s current plan of record product
roadmaps.

Performance claims: Software and workloads used in performance tests may have been optimized for performance only on Intel® microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when
combined with other products. For more information go to
http://www.Intel.com/performance

Iris™ graphics is available on select systems. Consult your system manufacturer.

Intel, Intel Inside, the Intel logo, Intel Core and Iris are trademarks of Intel Corporation in the United States and other countries.

2

Why is OpenGL ES 3.0 and Beyond Important?

3

IOS

36%
Microsoft

2%

Android

62%

Android is dominant in the market

ES 2.0

92%

ES 3.0

8%

OpenGL ES 3.0 is gaining market share

Worldwide Tablet Sales to End Users 2013
http://www.gartner.com/newsroom/id/2674215
(Feb 2014)

Android OpenGL ES Version Support Distribution
https://developer.android.com/about/dashboards/index.html
(Feb 2014)

OpenGL ES 3.1 specification is released at GDC 2014.
http://www.khronos.org/registry/gles/

OpenGL ES 3.1 is reaching parity with desktop

 GL1.x GL2.x GL3.x GL4.x

 DX8 DX9 DX10 DX11

ES1.x ES2.0 ES3.0 ES3.1

’92 ’03 ’07 ‘12 ‘14

http://www.gartner.com/newsroom/id/2674215
https://developer.android.com/about/dashboards/index.html

New Features for OpenGL ES 3.0

Main new features
 Multiple Render Targets

 Occlusion Queries

 Instanced rendering

 Uniform Buffer Objects (UBO) and Uniform
Blocks

 Transform feedback

 Primitive restart

 Program Binary

Enhanced texturing functionality
 Swizzles, 3D textures, 2D array textures,

LOD/MIP level clamps, seamless cube maps,
immutable textures, NPOT textures, sampler
objects

New renderbuffer and texture formats
 Floating point formats

 Shared exponent RGB formats

 ETC/EAC texture compression

 Depth and depth/stencil formats

 Single and dual channel texture
– (R and RG)

ES Shading Language Version 3.00
 Full support for 32 bit integer/floating point

data types (IEEE754)

 In/out storage qualifier
– value copied to/from subsequent/previous

pipeline stage

 Array constructors and operations

 New built-in functions

 4

OpenGL ES 3.0 - Multi-Render Targets

What is it?

 Enables writing to multiple framebuffer

color buffer attachment points with a single

pass

Why is it useful?

 Techniques requiring multiple passes can

be condensed into a single pass to save

redundant execution of the vertex shader

 Useful for Deferred Shading and Screen

Space Ambient Occlusion

5

OpenGL ES 3.0 - Multi-Render Targets

Enabled by attaching framebuffer-attachable images to GL_COLOR_ATTACHMENTi of a
created FBO

 Support for at least 4 attachment points

 Intel supports 8

 Maximum specified by GL_MAX_COLOR_ATTACHMENTS

Most often used in deferred shading i.e.

 1 colour buffer for the surface colours

 1 colour buffer for the surface normals

 1 colour buffer for the depth values

 1 colour buffer for extra lighting information, such as specular or ambient occlusion

6

OpenGL ES 3.0 - Multi-Render Targets Sample

GL ES API Code Snippet

// Create FBO and bind it

glGenFramebuffers(1, &fbo);

glBindFramebuffer(GL_FRAMEBUFFER, fbo);

// Create 2 textures, allocate storage and attach to FBO

glGenTextures(2, texBuf);

…

glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, texBuf[0], 0);

glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT1, texBuf[1], 0);

// Set the list of draw buffers.

Glenum drawBuffers[2] = {GL_COLOR_ATTACHMENT0, GL_COLOR_ATTACHMENT1};

glDrawBuffers(2, drawBuffers);

GLSL Fragment Shader Snippet

out vec4 my_FragData[2];

void main(void)

{

 my_FragData[0] = vec4(1.0, 0.0, 0.0, 1.0);

 my_FragData[1] = vec4(0.0, 1.0, 0.0, 1.0);

}

7

OpenGL ES 3.0 - Occlusion Queries

What is it?

 A hardware method for detecting whether an object is visible

 Works by testing if samples pass the depth test

 Queries are asynchronous, but blocking call available if required

Why is it useful?

 Remove complex scene geometry by culling large batches of geometry via bounding box

tests

 Best on large scenes with large nearby occluders

8

OpenGL ES 3.0 - Occlusion Queries Sample

9

GL ES API Code Snippet

glGenQueries(1, &query);

glBeginQuery(GL_ANY_SAMPLES_PASSED, query);

// Draw some primitives

…

glEndQuery(query);

// Check if the result is available

glGetQueryObjectuiv(query, GL_QUERY_RESULT_AVAILABLE, &result);

if (result == GL_TRUE)

{

 // This is a blocking call

 glGetQueryObjectuiv(query, GL_QUERY_RESULT, &anyPassed);

}

OpenGL ES 3.0 - Instanced Rendering

What is it?

 Enables rendering multiple geometry

instances with a single draw call

 Instances may be provided with unique

attributes (transformation, bones, etc.)

Why is it useful?

 Reduces API call overhead when rendering

duplicate meshes

10

OpenGL ES 3.0 - Instanced Rendering

Non-instanced

 BO’s store Vertex, Normal, Tex data

 Transformations stored as uniform data

 Set per-instance with glUniformMatrix*

Instanced

 BO’s store Vertex, Normal, Tex data

 Transformations stored in a BO

 glVertexAttribDivisor handles the creation of
“instanced attributes”

11

Attrib0Vertex0 Vertex1 VertexN

Attrib1Norm0 Norm1 NormN

Attrib2Tex0 Tex1 TexN

Mat0 Mat1 MatN Uniform0

...

Attrib0Vertex0 Vertex1 VertexN

Attrib1Norm0 Norm1 NormN

Attrib2

Tex0 Tex1 TexN

Mat0 Mat1 MatN Attrib3-6
for (int i = 0; i < NumInstances; ++i) {
 …
 glUniformMatrix4fv(…);
 ….
 glDrawElements(…);
}

glVertexAttribDivisor(3, 1);
…
glDrawElementsInstanced(…, NumInstances);

OpenGL ES 3.0 - Instanced Rendering Sample

12

GL ES API Code Snippet

// Attrib 0 (vertex information) changes per vertex

glVertexAttribDivisor(0,0)

// Attrib 1 (matrix data) changes per instance

glVertexAttribDivisor(1,1)

…

// When rendering

glDrawArraysInstanced(Mode, First, Count,

 NumberOfInstances);

// or

glDrawElementsInstanced(Mode, Count, IndType, Indicies,

 NumOfInstances);

GLES Vertex Shader Code Snippet

// By default attributes have a divisor of zero—advancing per vertex

// Attributes with a positive divisor will advance every divisor instances

// The built-in variable gl_InstanceID holds the current instance

// Default value is zero; safe to reference when not using instanced draw

// calls

in vec3 Position;

// Takes attribute positions 1,2,3,4

in mat4 WorldPosition;

// Pass the instance id on to the pixel shader

flat out int InstanceID;

void main()

{

 gl_Position = vec4(WorldPosition + Position, 1.0);

 InstanceID = gl_InstanceID;

};

OpenGL® ES 3.1

13

OpenGL ES 3.1

Intel announced support for the OpenGL ES 3.1 specification on the Bay Trail
platform for Android.

http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-
graphics-evolution/
“Product is based on a published Khronos Specification, and is expected to pass the Khronos Conformance Testing Process
when available. Current conformance status can be found at www.khronos.org/conformance.”

Intel has extended support beyond the core specification to include Geometry
Shaders, Tesselation and Intel Pixel Sync Technology.

OpenGL ES 3.1 Specification and header files can be found here :
http://www.khronos.org/registry/gles/

14

http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
https://www.khronos.org/conformance

OpenGL ES 3.1 on Intel’s Bay Trail Platform

15

Shader Stages

Compute
Shaders

EXT:
Tesselation

EXT: Geometry
Shaders

Shader I/O

Shader Image
Load Store

Shader Storage
Buffer Objects

Shader
Synchronisation

Atomic
Counters

OES: Shader
Image Atomics

INTEL:
Fragment

Shader Ordering

API Helpers

Indirect Draw
Commands

Framebuffer No
Attachments

Program
Interface Query

Separate
Shader Objects

Vertex
Attribute
Binding

Textures

Texture
Storage

Multisample

OES: Texture
Stencil 8

Blending

KHR: Blend
Equation
Advanced

GLSL

Array of Arrays

Explicit Uniform
Locations

Shader Bitfield
Operation

Shader Layout
Binding

Texture Gather

Stencil
Texturing

GLSL
Extensions

OES: Shader
Multisample
Interpolation

OES: Sample
Shading

OES: Sample
Variables

Extension

Core

OpenGL ES 3.1 - Compute Shaders

What are they?

 A compute shader is used for general compute on shader defined
inputs with shader defined outputs.

 Run logically independent of the 3D pipeline.

 Although well pipelined with 3D primitives.

 Run at a user defined frequency.

 Similar to OpenCL® Kernels.

 Allow better integration into 3D applications.

 Can directly access OpenGL ES textures, images and buffer objects.

 Can be efficiently pipelined with 3D primitives.

 Lightweight.

Why are they useful?

 Compute shaders are frequently used on the desktop for image post-
processing, deferred rendering, visibility culling, computer vision,
particle physics, etc…

16

HDR using compute shaders

Cloth using compute shaders

OpenGL ES 3.1 - Compute Shaders

Compute shaders work on:

 Workgroups

 Each workgroups consists of a number of compute shader
threads,

 The user defines the workgroup size and number of workgroups.
Both parameters are in 3 dimensions.

 The workgroup size is fixed at compilation time,

 The number of workgroups is specified at dispatch time.

 Compute Shader Threads

 Each thread can share data with other members of the
workgroup via special shared variables,

 Each thread can issue memory and control barriers to
synchronise with other members of the workgroup,

 Data can not be effectively shared between workgroups, unless
via images, buffer objects or atomic counters,

 Each thread can uniquely identify itself within a workgroup and
globally with builtin variables. This is the only method for a
thread to determine where to get its input and where to write its
output.

17

OpenGL ES 3.1 - Compute Shaders

Compute shaders also bring:

 Shader Image Load Store

 Random read/write access to a single level of a texture
map

 Atomic operations

 Shader Storage Buffer Objects

 Random read/write access to variables stored within a
buffer object

 Atomic operations

 Shader Atomic Counters

 Backed by buffer object memory

 They allow the proper sequencing of memory accesses
between workgroups

These are also available to other shader stages.

GL ES API Code Snippet

glGenTextures(1, &texHandle);

glBindTexture(GL_TEXTURE_2D, texHandle);

glTexImage2D(GL_TEXTURE_2D, 0, GL_R32F, 512, 512, 0, GL_RED, GL_FLOAT, NULL);

// Bind the texture to an image so it can be written to

glBindImageTexture(0, texHandle, 0, GL_FALSE, 0, GL_WRITE_ONLY, GL_R32F);

glUseProgram(computeHandle);

GLuint loc = glGetUniformLocation(computeHandle, "roll");

glUniform1f(loc, frame*0.01f);

// 512^2 threads in blocks of 16^2

glDispatchCompute(512/16, 512/16, 1);

GLSL Compute Shader Code Snippet

uniform float roll;

uniform image2D destTex;

layout (local_size_x = 16, local_size_y = 16) in; // 16x16 threads per workgroup

void main()

{

 ivec2 storePos = ivec2(gl_GlobalInvocationID.xy);

 float localCoef = length(vec2(ivec2(gl_LocalInvocationID.xy)-8)/8.0);

 float globalCoef = sin(float(gl_WorkGroupID.x+gl_WorkGroupID.y)*0.1 + roll)*0.5;

 imageStore(destTex, storePos, vec4(1.0-globalCoef*localCoef, 0.0, 0.0, 0.0));

}

18

OpenGL ES 3.1 EXT Extensions –Tessellation Shaders

What is it?

• An optional stage in the rendering pipeline that is capable of
generating additional geometry

• More efficient than geometry shaders for high levels of
geometry expansion; tessellation can not be used for culling
patches.

• The control shader operates on control points and is responsible for
specifying tessellation levels, per-control point position and per patch
varyings for the evaluation shader.

• The evaluation shader outputs the positions/normal/etc. using
abstract coordinates from the tesselator

• Each invocation operates on a single vertex within the
tessellated patch

Why do you want it?

• Reduces memory bandwidth/footprint

What can you do with it?

• Progressive LOD, Displacement mapping, Sub-D surfaces, Complex
hair modelling

19

Tessellation Control
Shader

Vertex Shader

Tessellation Evaluation
Shader

Geometry Shader

Tessellator Clipping

Rasterization

OpenGL ES 3.1 EXT Extensions - Geometry Shaders

What are they?

 A shader which processes the output of the primitive
assembler (or the tessellation evaluation shader)

 Full access to the assembled primitive (points, lines,
lines with adjacency, triangles, triangles with
adjacency)

 Output new geometry (points, line strips, triangle
strips)—does not have to match the input stage

Why are they useful?

 Impostors, Wireframe rendering, NPR, Procedural
Geometry, Shadow Volume Extrusion, Geometry Culling

 Layered rendering(with the appropriate extensions)—
rendering a single primitive to multiple images without
changing render targets

20

Tessellation Control
Shader

Vertex Shader

Tessellation Evaluation
Shader

Geometry Shader

Tessellator

Clipping

Rasterization

OpenGL ES 3.1 Intel Extensions – Pixel Sync

What is it?

• An Intel OpenGL|ES Extension:

 GL_INTEL_fragment_shader_ordering

• Allows synchronisation to unordered memory accesses from within a

shader

• Add a single builtin to your shader at the point of synchronization

 beginFragmentShaderOrderingINTEL();

Why do you want it?

• Fragments mapping to the same pixel using unordered memory accesses

can cause data races

• Fragments can be shaded out-of-order

What can you do with it?

• Order independent transparency

• Programmable blending

• Adaptive volumetric shadow maps

• Etc

http://software.intel.com/en-us/articles/pixel-synchronization-solving-old-graphics-problems-with-new-data-structures

Adaptive Volumetric Shadow Maps (AVSM)

21

No AVSM

With AVSM

Codemasters Grid 2 in-game screenshots

OpenGL ES 3.1 – More Information

• More demos can be seen at the Intel Booth (#1016) in the South Hall.

• You can hear more about OpenGL ES 3.1 and its use in real games by visiting

further Intel talks entitled:

• “SSX: Bringing a PS3 game to Android”

– Thursday 10-11AM

• “Adding High-end Graphical Effects to GT Racing 2 on Android x86”

– Thursday 2:30-3:30

• “Rendering in Codemasters’ GRID2 and beyond: Achieving the ultimate graphics on both

PC and tablet”

– Thursday 4-5PM

22

24

Ready for More? Look Inside™.

Keep in touch with us at GDC and beyond:

• Game Developer Conference
Visit our Intel® booth #1016 in Moscone South

• Intel University Games Showcase
Marriott Marquis Salon 7, Thursday 5:30pm
RSVP at bit.ly/intelgame

• Intel Developer Forum, San Francisco
September 9-11, 2014
intel.com/idf14

• Intel Software Adrenaline
@inteladrenaline

• Intel Developer Zone
software.intel.com
@intelsoftware

Up Next…

25

3:30 – 4:30

Multi-player, multi-touch game development: Developing games

for the fastest growing segment in desktop!

Presented by:

Alex Guo - Symbio Games & Faisal Habib - Intel

