
Advanced Linux
Game Programming

Leszek Godlewski
Programmer, Nordic Games

Nordic Games GmbH

• Started in 2011 as a sister company to Nordic Games Publishing
(We Sing)

• Base IP acquired from JoWooD and DreamCatcher (SpellForce, The
Guild, Aquanox, Painkiller)

• Initially focusing on smaller, niche games
• Acquired THQ IPs in 2013 (Darksiders, Titan Quest, Red Faction, MX
vs. ATV)

• Now shifting towards being a production company with internal devs
• Since fall 2013: internal studio in Munich, Germany (Grimlore
Games)

2

Leszek Godlewski
Programmer, Nordic Games
• Ports

● Painkiller Hell & Damnation (The Farm 51)
● Deadfall Adventures (The Farm 51)
● Darksiders (Nordic Games)

• Formerly generalist programmer on PKHD & DA at TF51

3

Objective of this talk
Your game engine on Linux, before porting:

4

Missing!

Objective of this talk (cont.)
Your first “working” Linux port:

5

Oops. Bat-Signal!

Objective of this talk (cont.)
Where I want to try helping you get to:

6

In other words, from this:

7

To this:

8

And that's mostly debugging
All sorts of debuggers!

9

apitrace

Demo code available
is.gd/GDCE14Linux

10

http://is.gd/GDCE14Linux

Intended takeaway
● Build system improvements
● Signal handlers
● Memory debugging with Valgrind
● OpenGL debugging techniques

11

Intended takeaway Agenda
● Build system improvements
● Signal handlers
● Memory debugging with Valgrind
● OpenGL debugging techniques

12

Build systems
What I had initially with UE3:
● Copy/paste of the Mac OS X toolchain
● It worked, but...

● Slow
● Huge binaries because of debug symbols
● Problematic linking of circular dependencies

13

Build systems (cont.)
● 32-bit binaries required for

feature/hardware parity with Windows
● Original solution: a chroot jail with an

entire 32-bit Ubuntu system just for
building

14

Cross-compiling for 32/64-bit
● gcc -m32/-m64 is not enough!

● Only sets target code generation
● Not headers & libraries (CRT, OpenMP, libgcc etc.)

● Fixed by installing gcc-multilib
● Dependency package for non-default architectures

(i.e. i386 on an amd64 system and vice versa)

15

Clang (ad nauseam)
● Clang is faster

● gcc: 3m47s
● Clang: 3m05s
● More benchmarks at Phoronix [LARABEL13]

● Clang has different diagnostics than gcc

16

Clang (cont.)
● Preprocessor macro compatibility

● Declares __GNUC__ etc.

● Command line compatibility
● Easily switch back & forth between Clang & gcc

17

Clang – caveats
● C++ object files may be incompatible with

gcc & fail to link (need full rebuilds)
● Clang is not as mature as gcc

● Occasionally has generated faulty code for me
(YMMV)

18

Clang – caveats (cont.)
● Slight inconsistencies in C++ standard

strictness
● Templates
● Anonymous structs/unions
● May need to add this-> in some places
● May need to name some anonymous types

19

So: Clang or gcc?
Both:
● Clang – quick iterations during

development
● gcc – final shipping binaries

20

Linking – GNU ld
● Default linker on Linux
● Ancient
● Single-threaded
● Requires specification of libraries in the order

of reverse dependency...
● We are not doomed to use it!

21

Linking – GNU gold
● Multi-threaded linker for ELF binaries

● ld: 18s
● gold: 5s

● Developed at Google, now officially part of
GNU binutils

22

Linking – GNU gold (cont.)
● Drop-in replacement for ld

● May need an additional parameter or toolchain
setup
● clang++ -B/usr/lib/gold-ld ...
● g++ -fuse-ld=gold ...

● Still needs libs in the order of reverse
dependency...

23

Linking – reverse dependency
● Major headache/game-breaker with

circular dependencies
● ”Proper” fix: re-specify the same libraries

over and over again
● gcc app.o -lA -lB -lA

24

Linking – reverse dep. (cont.)

25

app

A B

Linking – reverse dep. (cont.)

26

app A

B

Linking – reverse dep. (cont.)

27

app A B

Linking – reverse dep. (cont.)

28

app A B A

Just the missing
symbols

Linking – library groups
● Declare library groups instead

● Wrap library list with --start-group, --end-
group
● Shorthand: -(, -)
● g++ foo.obj -Wl,-\(-lA -lB -Wl,-\)

● Results in exhaustive search for symbols

29

Linking – library groups (cont.)
● Actually used for non-library objects (TUs)
● Caveat: the exhaustive search!

● Manual warns of possible performance hit
● Not observed here, but keep that in mind!

30

Running the binary in debugger
inequation@spearhead:~/projects/largebinary$ gdb -–
silent largebinary
Reading symbols from /home/inequation/projects/larg
ebinary/largebinary...
[zzz... several minutes later...]
done.

(gdb)

31

Caching the gdb-index
● Large codebases generate heavy debug

symbols (hundreds of MBs)
● GDB does symbol indexing at every

single startup �
● Massive waste of time!

32

Caching the gdb-index (cont.)
● Solution: fold indexing into the build

process
● Old linkers: as described in [GNU01]
● New linkers (i.e. gold): --gdb-index

● May need to forward from compiler driver:
-Wl,--gdb-index

33

Agenda
● Build system improvements
● Signal handlers
● Memory debugging with Valgrind
● OpenGL debugging techniques

34

Signal handlers
● Unix signals are async notifications
● Sources can be:

● the process itself
● another process
● user
● kernel

35

Signal handlers (cont.)
● A lot like interrupts

● Jump to handler upon first non-atomic op

36

Normal program
flow

Normal flow
resumes

Signal
handler

execution

SIGNAL

Signal handlers (cont.)
● System installs a default handler

● Usually terminates and/or dumps core
● Core ≈ minidump in Windows parlance, but entire

mapped address range is dumped (truncated to
RLIMIT_CORE bytes)

● See signal(7) for default actions

37

Signal handlers (cont.)
● Can (should!) specify custom handlers
● Get/set handlers via sigaction(2)

● void handler(int, siginfo_t *, void *);
● Needs SA_SIGINFO flag in sigaction() call

● Extensively covered in [BENYOSSEF08]

38

Interesting siginfo_t fields
● si_code – reason for sending the signal

● Examples: signal source, FP over/underflow,
memory permissions, unmapped address

● si_addr – memory location (if relevant)
● SIGILL, SIGFPE, SIGSEGV, SIGBUS and
SIGTRAP

39

Interesting signals
● Worth catching

● SIGSEGV, SIGILL, SIGHUP, SIGQUIT, SIGTRAP,
SIGIOT, SIGBUS, SIGFPE, SIGTERM, SIGINT

● Worth ignoring
● signal(signum, SIG_IGN);
● SIGCHLD, SIGPIPE

40

Signal handling caveats
● Prone to race conditions

● Signals may be nested

41

Normal
flow

Signal
handler

SIGNAL

Signal
handler

SIGNAL SIGNAL

Signal handling caveats (cont.)
● Prone to race conditions

● Can't share locks with the main program

42

Lock
mutex

Lock mutex
Deadlock ☹

Signal
handler

SIGNAL
Normal

flow

Signal handling caveats (cont.)
● Prone to race conditions

● Can't call async-unsafe/non-reentrant
functions
● See signal(7) for a list of safe ones
● Notable functions not on the list:

● printf() and friends (formatted output)
● malloc() and free()

43

Signal handling caveats (cont.)
● Not safe to allocate or free heap memory

44

STOMPED?
STOMPED?
STOMPED?
STOMPED?
STOMPED?
STOMPED?
STOMPED?
STOMPED?
STOMPED?
STOMPED?
STOMPED?

Source: [LEA01]

file:///home/inequation/Dropbox/lectures/GDC%20Europe%202014/%23Special%20thanks

Signal handling caveats (cont.)
● Custom handlers do not dump core

● At handler installation time:
● Raise RLIMIT_CORE to desired core size

● Inside handler, after custom logging:
● Restore default handler using signal(2) or

sigaction(2)
● raise(signum);

45

Safe stack walking
● glibc provides backtrace(3) and friends
● Symbols are read from the dynamic

symbol table
● Pass -rdynamic at compile-time to populate

46

Safe stack walking (cont.)
● backtrace_symbols() internally calls
malloc()
● Not safe... ☹
● Still, can get away with it most of the time

(YMMV)

47

Example “proper” solution
● Fork a watchdog process in main()

● Communicate over a FIFO pipe

● In signal handler:
● Collect & send information down the pipe
● backtrace_symbols_fd() down the pipe

● Demo code: is.gd/GDCE14Linux

48

http://is.gd/GDCE14Linux

Agenda
● Build system improvements
● Signal handlers
● Memory debugging with Valgrind
● OpenGL debugging techniques

49

Is this even related to porting?
● Yes! Portability bugs easily overlooked
● Hardcoded struct sizes/offsets
● OpenGL buffers
● Incorrect binary packing/unpacking
● “How did we/they manage to ship that?!”

50

What is Valgrind?
● Framework for dynamic, runtime analysis
● Dynamic recompilation

● machine code IR tool machine code→ → →
● Performance typically at 25-20% of unmodified

code
● Worse if heavily threaded – execution is serialized

51

What is Valgrind? (cont.)
● Many tools in it:

● Memory error detectors (Memcheck,
SGcheck)

● Cache profilers (Cachegrind, Callgrind)
● Thread error detectors (Helgrind, DRD)
● Heap profilers (Massif, DHAT)

52

Memcheck basics
● Basic usage extremely simple

● …as long as you use the vanilla libc malloc()
● valgrind ./app

● Will probably report a ton of errors on the
first run!
● Again: “How did they manage to ship that?!”

53

Memcheck basics (cont.)
● Many false positives, esp. in 3rd parties

● Xlib, NVIDIA driver

● Can suppress them via suppress files
● Call Valgrind with --gen-suppressions=yes to

generate suppression definitions
● Be careful with that! Can let OpenGL bugs slip!

54

Contrived example
#include <stdlib.h>
int main(int argc, char *argv[]) {
 int foo, *ptr1 = &foo;
 int *ptr2 = malloc(sizeof(int));
 if (*ptr1)
 ptr2[1] = 0xabad1dea;
 else
 ptr2[1] = 0x15bad700;
 ptr2[0] = ptr2[2];
 return *ptr1;
}

55

Demo code:
is.gd/GDCE14Linux

http://is.gd/GDCE14Linux

Valgrind output for such
==8925== Conditional jump or move depends on
 uninitialised value(s)
==8925== Invalid write of size 4
==8925== Invalid read of size 4
==8925== Syscall param exit_group(status)
 contains uninitialised byte(s)
==8925== LEAK SUMMARY:
==8925== definitely lost: 4 bytes in 1 blocks

56

What about custom allocators?
● Custom memory pool & allocation algo
● Valgrind only “sees” mmap()/munmap() of

multiples of entire memory pages
● All access within those pages – now valid!
● How to track errors?

57

Client requests
● Allow annotation of custom allocators
● ~20 C macros defined in valgrind.h

● Common and per-tool requests exist

● Can be cut out with -DNVALGRIND
● Detailed description in [VALGRIND01]

58

Example: Instrumenting dlmalloc
● 2.8.4 instrumentation from [CRYSTAL01]
● Demo code: is.gd/GDCE14Linux

● Compile the sample with -DDLMALLOC
● Similar results to libc malloc()

59

http://is.gd/GDCE14Linux

Other uses of client requests
● Pointer validation

● Is address mapped? Is it defined?

● Mid-session leak checks
● Level transitions

60

Other uses of client req. (cont.)
● Poisoning memory regions

● Ensuring signal handlers don't touch the heap
● Ensuring geometry buffers aren't read on CPU

61Source: [LEA01]

file:///home/inequation/Dropbox/lectures/GDC%20Europe%202014/%23Special%20thanks

Debugging inside Valgrind
● A gdbserver for “remote” debugging
● SIGTRAP (breakpoint) on every error
● Unlimited memory watchpoints!

● Data breakpoints in Visual Studio parlance
● Cf. 4 single-word hardware debug registers on

x86

62

Debugging inside Valgrind (cont.)
● Terminal A:

● valgrind --vgdb=yes --vgdb-error=0
./MyGame

● Terminal B:
● gdb ./MyGame
● target remote | vgdb

63

Agenda
● Build system improvements
● Signal handlers
● Memory debugging with Valgrind
● OpenGL debugging techniques

64

Ye Olde Way
● Call glGetError() after each OpenGL call
● Get 1 of 8 (sic!) error codes
● Look up the call in the manual
● See what this particular error means in

this particular context…

65

Ye Olde Way (cont.)
● …Then check what was actually the case

● 6 possible reasons for GL_INVALID_VALUE in
glTexImage*() alone! See [OPENGL01]

● Usually: attach a debugger, replay the
scenario…

● This sucks!

66

Ye Olde Way (cont.)
● …Then check what was actually the case

● 6 possible reasons for GL_INVALID_VALUE in
glTexImage*() alone! See [OPENGL01]

● Usually: attach a debugger, replay the
scenario…

● This sucks! used to suck ☺

67

Debug callback
● Never call glGetError() again!
● Much more detailed information

● Incl. performance tips from the driver
● Good to check what different drivers say

● May not work without a debug OpenGL
context (GLX_CONTEXT_DEBUG_BIT_ARB)

68

Debug callback (cont.)
● Provided by either of (ABI-compatible):
GL_KHR_debug [OPENGL02],
GL_ARB_debug_output [OPENGL03]

69

OpenGL OpenGL
ES

NVIDIA
(official)

AMD
(official)

Intel
(Mesa)

AMD
(Mesa)

ARB
_debug
_output

√ × √ √ √ √

KHR
_debug √ √ √ √ × ×

Debug callback (cont.)
void callback(GLenum source,
 GLenum type,
 GLuint id,
 GLenum severity,
 GLsizei length,
 const GLchar* message,
 const void* userParam);

70

Filter by
source, type,
severity or
individual
messages

Debug callback (cont.)
● Verbosity can be controlled (filtering)

● glDebugMessageControl[ARB]()
● [OPENGL02][OPENGL03]

● Turn to 11 (GL_DONT_CARE) for valuable
perf information!
● Memory type for buffers, unused mip levels…

71

API call tracing
● Record a trace of the run of the application
● Replay and review the trace

● Look up OpenGL state at a particular call
● Inspect state variables, resources and objects:

textures, shaders, buffers...

● apitrace or VOGL

72

Well, this is not helpful...

73

Much better!

74

KHR_debug EXT
_debug
_marker

EXT
_debug
_label

GREMEDY
_string
_marker

GREMEDY
_frame

_terminator

One-off
messages √ √ × √ ×
Call grouping √ √ × × ×
Object labels √ × √ × ×
Frame
terminators × × × × √

Support Good Limited Limited Limited Limited

Annotating the call stream

75

Annotating the call stream (cont.)
● All aforementioned extensions supported

by apitrace regardless of driver
● Recommended: GL_KHR_debug

76

Annotating the call stream (cont.)
● Call grouping

● glPushDebugGroup()/glPopDebugGroup()

● One-off messages
● glDebugMessageInsert[ARB]()
● glStringMarkerGREMEDY()

77

Object labelling
● glObjectLabel(), glGetObjectLabel()

● Buffer, shader, program, vertex array, query, program pipeline,
transform feedback, sampler, texture, render buffer, frame
buffer, display list

● glObjectPtrLabel(),
glGetObjectPtrLabel()
● Sync objects

78

Annotation caveats
● Multi-threaded grouping may break

hierarchy
● glDebugMessageInsert() calls the debug

callback, polluting error streams
● Workaround: drop if source ==
GL_DEBUG_SOURCE_APPLICATION

79

Example 1: PIX events emulation
#define D3DPERF_BeginEvent(colour, name) \

 if (GLEW_KHR_debug && threadOwnsDevice()) \

 glPushDebugGroup(GL_DEBUG_SOURCE_APPLICATION,\

 (GLuint)colour, -1, name)

#define D3DPERF_EndEvent() \

 if (GLEW_KHR_debug && threadOwnsDevice()) \

 glPopDebugGroup()

80

Example 2: Game tech demo
● University assignment

from 2009 ☺
● Annotated OpenGL 1.4
● Demo code:

is.gd/GDCE14Linux

81

http://is.gd/GDCE14Linux

Takeaway
● gcc-multilib is the prerequisite for 32/64-

bit cross-compilation
● Switching back and forth between Clang

and gcc is easy and useful
● Link times can be greatly improved by

using gold

82

Takeaway (cont.)
● Caching the gdb-index improves

debugging experience
● Crash handling is easy to do, tricky to get

right

83

Takeaway (cont.)
● Valgrind is an enormous aid in memory

debugging
● Even when employing custom allocators
● OpenGL debugging experience can be

vastly improved using some extensions

84

Questions?

@ lgodlewski@nordicgames.at

t @TheIneQuation

K inequation.org

85

mailto:lgodlewski@nordicgames.at
https://twitter.com/TheIneQuation
http://www.inequation.org/

Thank you!

Further Nordic Games information:

K www.nordicgames.at

Development information:

K www.grimloregames.com

86

http://www.nordicgames.at/
http://www.grimloregames.com/

References
● LARABEL13 – Larabel, M. “Clang 3.4 Performance Very Strong Against GCC 4.9” [link]
● GNU01 – “Index Files Speed Up GDB” [link]
● GNU02 – “Options for Debugging Your Program or GCC” [link]
● BENYOSSEF08 – Ben-Yossef, G. “Crash N' Burn: Writing Linux application fault handlers” [link]
● LEA01 – Lea, D. “A Memory Allocator” [link]
● VALGRIND01 – “The Client Request mechanism” [link]
● CRYSTAL01 – “Crystal Space 3D SDK” [link]
● OPENGL01 – “glTexImage2D” [link]
● OPENGL02 – “ARB_debug_output” [link]
● OPENGL03 – “KHR_debug” [link]
● XDG01 – “XDG Base Directory Specification” [link]
● <page>(<section>), e.g. sigaction(2) – “Linux Programmer's Manual”; to view, type man

<section> <page> into a terminal or a web search engine

87

http://www.phoronix.com/scan.php?page=article&item=llvm34_gcc49_compilers&num=1
https://sourceware.org/gdb/onlinedocs/gdb/Index-Files.html
https://gcc.gnu.org/onlinedocs/gcc-4.9.0/gcc/Debugging-Options.html#Debugging-Options
http://pl.scribd.com/doc/3726406/Crash-N-Burn-Writing-Linux-application-fault-handlers
http://g.oswego.edu/dl/html/malloc.html
http://valgrind.org/docs/manual/manual-core-adv.html#manual-core-adv.clientreq
http://sourceforge.net/p/crystal/code/HEAD/tree/CS/trunk/libs/csutil/dlmalloc.c
https://www.khronos.org/opengles/sdk/docs/man/xhtml/glTexImage2D.xml
https://www.opengl.org/registry/specs/ARB/debug_output.txt
https://www.opengl.org/registry/specs/KHR/debug.txt
http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html

Special thanks
Fabian Giesen

Katarzyna Griksa
Damian Kobiałka

Jetro Lauha
Eric Lengyel

Krzysztof Narkowicz
Reinhard Pollice

Bartłomiej Wroński
Kacper Ząber

88

Bonus slides!
● OpenGL resource leak checking
● Intel i965 driver vs stack
● Locating user data according to

FreeDesktop.org guidelines
● Thread priorities in Linux
● Additional/new debug features

89

FREE!!!FREE!!!

OpenGL resource leak checking
Courtesy of Eric Lengyel & Fabian Giesen
static void check_for_leaks()

{

 GLuint max_id = 10000; // better idea would be to keep track of assigned names.

 GLuint id;

 // if brute force doesn't work, you're not applying it hard enough

 for (id = 1 ; id <= max_id ; id++)

 {

#define CHECK(type) if (glIs##type(id)) fprintf(stderr, "GLX: leaked " #type " handle 0x%x\n", (unsigned int) id)

 CHECK(Texture);

 CHECK(Buffer);

 CHECK(Framebuffer);

 CHECK(Renderbuffer);

 CHECK(VertexArray);

 CHECK(Shader);

 CHECK(Program);

 CHECK(ProgramPipeline);

#undef CHECK

 }

}

90

Intel i965 vs stack
● Been chasing a segfault on a call instruction

down _mesa_Clear() (glClear())
● Region of code copy/pasted from D3D renderer
● Address mapped, so not an invalid jump...
● Only 16 function frames – surely this can't be

a stack overflow?

91

Intel i965 vs stack (cont.)
● Oh no, wait:

● Check ESP against /proc/[pid]/maps
● Yup, encroaching on unmapped address space

● Moral: cut your render some stack slack
(160+ kB), or Mesa will blow it up with
locals (e.g. in clear shader generation)

92

Locating user data
● There is a spec for that – see [XDG01]
● Savegames, screenshots, options etc.:

● $XDG_CONFIG_HOME or ~/.config/<app>

● Caches of all kinds:
● $XDG_CACHE_HOME or ~/.cache/<app>

● Per-user persistent data (e.g. DLC):
● $XDG_DATA_HOME or ~/.local/share/<app>

93

Locating user data (cont.)
● <app> subdirectory currently unregulated

● De-facto standard: simplified or “Unix name”
● Lowercase, “safe” ASCII characters, e.g. blender

● When asked, XDG people suggest rev-DNS
● com.company.appname

94

Thread priorities in Linux
● Priority elevation requires root permissions �

● No user will ever grant you root (scary!)
● Reason: DoS protection in servers (probably)

● Priority can be tweaked with nice()
● Think “how nice the process is to others”
● Being nice to everyone will starve your process
● Niceness can be negative (but only with root)

95

Thread priorities in Linux (cont.)
● Why not setpriority(2)?

● Also sets scheduling algorithm here be dragons→
● Priority values have different meaning per scheduler
● Still needs root

● What about capabilities(7)?
● This might actually work if your users trust you
● Demo code: is.gd/GDCE14Linux

96

http://is.gd/GDCE14Linux

Thread priorities in Linux (cont.)
● Don't all threads in a process share

niceness?
● They should, according to POSIX, but they

don't!
● One of the few cases where Linux is non-

compliant

97

Additional/new debug features
● Additional debug info: -g3

● Including #defines (macros)

● Better debugger performance [GNU02]:
● -fdebug-types-section: improved layout
● -gpubnames: new format for index

98

	Title slide
	About the speaker
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	References
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98

