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Nordic Games GmbH

• Started in 2011 as a sister company to Nordic Games Publishing 
(We Sing)

• Base IP acquired from JoWooD and DreamCatcher (SpellForce, The 
Guild, Aquanox, Painkiller)

• Initially focusing on smaller, niche games
• Acquired THQ IPs in 2013 (Darksiders, Titan Quest, Red Faction, MX 
vs. ATV)

• Now shifting towards being a production company with internal devs
• Since fall 2013: internal studio in Munich, Germany (Grimlore 
Games)
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Leszek Godlewski
Programmer, Nordic Games
• Ports

● Painkiller Hell & Damnation (The Farm 51)
● Deadfall Adventures (The Farm 51)
● Darksiders (Nordic Games)

• Formerly generalist programmer on PKHD & DA at TF51
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Objective of this talk
Your game engine on Linux, before porting:
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Missing!



Objective of this talk (cont.)
Your first “working” Linux port:
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Oops. Bat-Signal!



Objective of this talk (cont.)
Where I want to try helping you get to:
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In other words, from this:
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To this:
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And that's mostly debugging
All sorts of debuggers!
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apitrace



Demo code available
is.gd/GDCE14Linux
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Intended takeaway
● Build system improvements
● Signal handlers
● Memory debugging with Valgrind
● OpenGL debugging techniques
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Intended takeaway Agenda
● Build system improvements
● Signal handlers
● Memory debugging with Valgrind
● OpenGL debugging techniques
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Build systems
What I had initially with UE3:
● Copy/paste of the Mac OS X toolchain
● It worked, but...

● Slow
● Huge binaries because of debug symbols
● Problematic linking of circular dependencies
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Build systems (cont.)
● 32-bit binaries required for 

feature/hardware parity with Windows
● Original solution: a chroot jail with an 

entire 32-bit Ubuntu system just for 
building
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Cross-compiling for 32/64-bit
● gcc -m32/-m64 is not enough!

● Only sets target code generation
● Not headers & libraries (CRT, OpenMP, libgcc etc.)

● Fixed by installing gcc-multilib
● Dependency package for non-default architectures 

(i.e. i386 on an amd64 system and vice versa)
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Clang (ad nauseam)
● Clang is faster

● gcc: 3m47s
● Clang: 3m05s
● More benchmarks at Phoronix [LARABEL13]

● Clang has different diagnostics than gcc
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Clang (cont.)
● Preprocessor macro compatibility

● Declares __GNUC__ etc.

● Command line compatibility
● Easily switch back & forth between Clang & gcc
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Clang – caveats
● C++ object files may be incompatible with 

gcc & fail to link (need full rebuilds)
● Clang is not as mature as gcc

● Occasionally has generated faulty code for me 
(YMMV)
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Clang – caveats (cont.)
● Slight inconsistencies in C++ standard 

strictness
● Templates
● Anonymous structs/unions
● May need to add this-> in some places
● May need to name some anonymous types
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So: Clang or gcc?
Both:
● Clang – quick iterations during 

development
● gcc – final shipping binaries
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Linking – GNU ld
● Default linker on Linux
● Ancient
● Single-threaded
● Requires specification of libraries in the order 

of reverse dependency...
● We are not doomed to use it!
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Linking – GNU gold
● Multi-threaded linker for ELF binaries

● ld: 18s
● gold: 5s

● Developed at Google, now officially part of 
GNU binutils
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Linking – GNU gold (cont.)
● Drop-in replacement for ld

● May need an additional parameter or toolchain 
setup
● clang++ -B/usr/lib/gold-ld ...
● g++ -fuse-ld=gold ...

● Still needs libs in the order of reverse 
dependency...
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Linking – reverse dependency
● Major headache/game-breaker with 

circular dependencies
● ”Proper” fix: re-specify the same libraries 

over and over again
● gcc app.o -lA -lB -lA
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Linking – reverse dep. (cont.)
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Linking – reverse dep. (cont.)
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app A
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Linking – reverse dep. (cont.)
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app A B



Linking – reverse dep. (cont.)
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app A B A

Just the missing 
symbols



Linking – library groups
● Declare library groups instead

● Wrap library list with --start-group, --end-
group
● Shorthand: -(, -)
● g++ foo.obj -Wl,-\( -lA -lB -Wl,-\)

● Results in exhaustive search for symbols
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Linking – library groups (cont.)
● Actually used for non-library objects (TUs)
● Caveat: the exhaustive search!

● Manual warns of possible performance hit
● Not observed here, but keep that in mind!
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Running the binary in debugger
inequation@spearhead:~/projects/largebinary$ gdb -–
silent largebinary
Reading symbols from /home/inequation/projects/larg
ebinary/largebinary...
[zzz... several minutes later...]
done.

(gdb)
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Caching the gdb-index
● Large codebases generate heavy debug 

symbols (hundreds of MBs)
● GDB does symbol indexing at every 

single startup �
● Massive waste of time!
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Caching the gdb-index (cont.)
● Solution: fold indexing into the build 

process
● Old linkers: as described in [GNU01]
● New linkers (i.e. gold): --gdb-index

● May need to forward from compiler driver: 
-Wl,--gdb-index
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Agenda
● Build system improvements
● Signal handlers
● Memory debugging with Valgrind
● OpenGL debugging techniques
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Signal handlers
● Unix signals are async notifications
● Sources can be:

● the process itself
● another process
● user
● kernel
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Signal handlers (cont.)
● A lot like interrupts

● Jump to handler upon first non-atomic op
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Signal handlers (cont.)
● System installs a default handler

● Usually terminates and/or dumps core
● Core ≈ minidump in Windows parlance, but entire 

mapped address range is dumped (truncated to 
RLIMIT_CORE bytes)

● See signal(7) for default actions
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Signal handlers (cont.)
● Can (should!) specify custom handlers
● Get/set handlers via sigaction(2)

● void handler(int, siginfo_t *, void *);
● Needs SA_SIGINFO flag in sigaction() call

● Extensively covered in [BENYOSSEF08]
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Interesting siginfo_t fields
● si_code – reason for sending the signal

● Examples: signal source, FP over/underflow, 
memory permissions, unmapped address

● si_addr – memory location (if relevant)
● SIGILL, SIGFPE, SIGSEGV, SIGBUS and 
SIGTRAP
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Interesting signals
● Worth catching

● SIGSEGV, SIGILL, SIGHUP, SIGQUIT, SIGTRAP, 
SIGIOT, SIGBUS, SIGFPE, SIGTERM, SIGINT

● Worth ignoring
● signal(signum, SIG_IGN);
● SIGCHLD, SIGPIPE

40



Signal handling caveats
● Prone to race conditions

● Signals may be nested
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Signal handling caveats (cont.)
● Prone to race conditions

● Can't share locks with the main program

42

Lock
mutex

Lock mutex
Deadlock ☹

Signal
handler

SIGNAL
Normal

flow



Signal handling caveats (cont.)
● Prone to race conditions

● Can't call async-unsafe/non-reentrant 
functions
● See signal(7) for a list of safe ones
● Notable functions not on the list:

● printf() and friends (formatted output)
● malloc() and free()
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Signal handling caveats (cont.)
● Not safe to allocate or free heap memory
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Source: [LEA01]
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Signal handling caveats (cont.)
● Custom handlers do not dump core

● At handler installation time:
● Raise RLIMIT_CORE to desired core size

● Inside handler, after custom logging:
● Restore default handler using signal(2) or 

sigaction(2)
● raise(signum);
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Safe stack walking
● glibc provides backtrace(3) and friends
● Symbols are read from the dynamic 

symbol table
● Pass -rdynamic at compile-time to populate
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Safe stack walking (cont.)
● backtrace_symbols() internally calls 
malloc()
● Not safe... ☹
● Still, can get away with it most of the time 

(YMMV)
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Example “proper” solution
● Fork a watchdog process in main()

● Communicate over a FIFO pipe

● In signal handler:
● Collect & send information down the pipe
● backtrace_symbols_fd() down the pipe

● Demo code: is.gd/GDCE14Linux
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Agenda
● Build system improvements
● Signal handlers
● Memory debugging with Valgrind
● OpenGL debugging techniques
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Is this even related to porting?
● Yes! Portability bugs easily overlooked
● Hardcoded struct sizes/offsets
● OpenGL buffers
● Incorrect binary packing/unpacking
● “How did we/they manage to ship that?!”
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What is Valgrind?
● Framework for dynamic, runtime analysis
● Dynamic recompilation

● machine code  IR  tool  machine code→ → →
● Performance typically at 25-20% of unmodified 

code
● Worse if heavily threaded – execution is serialized
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What is Valgrind? (cont.)
● Many tools in it:

● Memory error detectors (Memcheck, 
SGcheck)

● Cache profilers (Cachegrind, Callgrind)
● Thread error detectors (Helgrind, DRD)
● Heap profilers (Massif, DHAT)
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Memcheck basics
● Basic usage extremely simple

● …as long as you use the vanilla libc malloc()
● valgrind ./app

● Will probably report a ton of errors on the 
first run!
● Again: “How did they manage to ship that?!”
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Memcheck basics (cont.)
● Many false positives, esp. in 3rd parties

● Xlib, NVIDIA driver

● Can suppress them via suppress files
● Call Valgrind with --gen-suppressions=yes to 

generate suppression definitions
● Be careful with that! Can let OpenGL bugs slip!
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Contrived example
#include <stdlib.h>
int main(int argc, char *argv[]) {
    int foo, *ptr1 = &foo;
    int *ptr2 = malloc(sizeof(int));
    if (*ptr1)
        ptr2[1] = 0xabad1dea;
    else
        ptr2[1] = 0x15bad700;
    ptr2[0] = ptr2[2];
    return *ptr1;
}
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Valgrind output for such
==8925== Conditional jump or move depends on
    uninitialised value(s)
==8925== Invalid write of size 4
==8925== Invalid read of size 4
==8925== Syscall param exit_group(status)
    contains uninitialised byte(s)
==8925== LEAK SUMMARY:
==8925==    definitely lost: 4 bytes in 1 blocks
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What about custom allocators?
● Custom memory pool & allocation algo
● Valgrind only “sees” mmap()/munmap() of 

multiples of entire memory pages
● All access within those pages – now valid!
● How to track errors?
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Client requests
● Allow annotation of custom allocators
● ~20 C macros defined in valgrind.h

● Common and per-tool requests exist

● Can be cut out with -DNVALGRIND
● Detailed description in [VALGRIND01]
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Example: Instrumenting dlmalloc
● 2.8.4 instrumentation from [CRYSTAL01]
● Demo code: is.gd/GDCE14Linux

● Compile the sample with -DDLMALLOC
● Similar results to libc malloc()
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Other uses of client requests
● Pointer validation

● Is address mapped? Is it defined?

● Mid-session leak checks
● Level transitions
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Other uses of client req. (cont.)
● Poisoning memory regions

● Ensuring signal handlers don't touch the heap
● Ensuring geometry buffers aren't read on CPU

61Source: [LEA01]
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Debugging inside Valgrind
● A gdbserver for “remote” debugging
● SIGTRAP (breakpoint) on every error
● Unlimited memory watchpoints!

● Data breakpoints in Visual Studio parlance
● Cf. 4 single-word hardware debug registers on 

x86
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Debugging inside Valgrind (cont.)
● Terminal A:

● valgrind --vgdb=yes --vgdb-error=0 
./MyGame

● Terminal B:
● gdb ./MyGame
● target remote | vgdb
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Agenda
● Build system improvements
● Signal handlers
● Memory debugging with Valgrind
● OpenGL debugging techniques

64



Ye Olde Way
● Call glGetError() after each OpenGL call
● Get 1 of 8 (sic!) error codes
● Look up the call in the manual
● See what this particular error means in 

this particular context…
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Ye Olde Way (cont.)
● …Then check what was actually the case

● 6 possible reasons for GL_INVALID_VALUE in 
glTexImage*() alone! See [OPENGL01]

● Usually: attach a debugger, replay the 
scenario…

● This sucks!
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Ye Olde Way (cont.)
● …Then check what was actually the case

● 6 possible reasons for GL_INVALID_VALUE in 
glTexImage*() alone! See [OPENGL01]

● Usually: attach a debugger, replay the 
scenario…

● This sucks! used to suck ☺
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Debug callback
● Never call glGetError() again!
● Much more detailed information

● Incl. performance tips from the driver
● Good to check what different drivers say

● May not work without a debug OpenGL 
context (GLX_CONTEXT_DEBUG_BIT_ARB)
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Debug callback (cont.)
● Provided by either of (ABI-compatible): 
GL_KHR_debug [OPENGL02], 
GL_ARB_debug_output [OPENGL03]
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OpenGL OpenGL 
ES

NVIDIA 
(official)

AMD 
(official)

Intel 
(Mesa)

AMD 
(Mesa)

ARB
_debug
_output

√ × √ √ √ √

KHR
_debug √ √ √ √ × ×



Debug callback (cont.)
void callback(GLenum source,
              GLenum type,
              GLuint id,
              GLenum severity,
              GLsizei length,
              const GLchar* message,
              const void* userParam);
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Debug callback (cont.)
● Verbosity can be controlled (filtering)

● glDebugMessageControl[ARB]()
● [OPENGL02][OPENGL03]

● Turn to 11 (GL_DONT_CARE) for valuable 
perf information!
● Memory type for buffers, unused mip levels…
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API call tracing
● Record a trace of the run of the application
● Replay and review the trace

● Look up OpenGL state at a particular call
● Inspect state variables, resources and objects: 

textures, shaders, buffers...

● apitrace or VOGL
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Well, this is not helpful...
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Much better!
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KHR_debug EXT
_debug
_marker

EXT
_debug
_label

GREMEDY
_string
_marker

GREMEDY
_frame

_terminator

One-off 
messages √ √ × √ ×
Call grouping √ √ × × ×
Object labels √ × √ × ×
Frame 
terminators × × × × √

Support Good Limited Limited Limited Limited

Annotating the call stream
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Annotating the call stream (cont.)
● All aforementioned extensions supported 

by apitrace regardless of driver
● Recommended: GL_KHR_debug
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Annotating the call stream (cont.)
● Call grouping

● glPushDebugGroup()/glPopDebugGroup()

● One-off messages
● glDebugMessageInsert[ARB]()
● glStringMarkerGREMEDY()
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Object labelling
● glObjectLabel(), glGetObjectLabel()

● Buffer, shader, program, vertex array, query, program pipeline, 
transform feedback, sampler, texture, render buffer, frame 
buffer, display list

● glObjectPtrLabel(), 
glGetObjectPtrLabel()
● Sync objects
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Annotation caveats
● Multi-threaded grouping may break 

hierarchy
● glDebugMessageInsert() calls the debug 

callback, polluting error streams
● Workaround: drop if source == 
GL_DEBUG_SOURCE_APPLICATION
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Example 1: PIX events emulation
#define D3DPERF_BeginEvent(colour, name)             \

    if (GLEW_KHR_debug && threadOwnsDevice())        \

        glPushDebugGroup(GL_DEBUG_SOURCE_APPLICATION,\

                         (GLuint)colour, -1, name)

#define D3DPERF_EndEvent() \

    if (GLEW_KHR_debug && threadOwnsDevice()) \

        glPopDebugGroup()
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Example 2: Game tech demo
● University assignment 

from 2009 ☺
● Annotated OpenGL 1.4
● Demo code: 

is.gd/GDCE14Linux
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Takeaway
● gcc-multilib is the prerequisite for 32/64-

bit cross-compilation
● Switching back and forth between Clang 

and gcc is easy and useful
● Link times can be greatly improved by 

using gold
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Takeaway (cont.)
● Caching the gdb-index improves 

debugging experience
● Crash handling is easy to do, tricky to get 

right
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Takeaway (cont.)
● Valgrind is an enormous aid in memory 

debugging
● Even when employing custom allocators
● OpenGL debugging experience can be 

vastly improved using some extensions
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Questions?

@ lgodlewski@nordicgames.at

t @TheIneQuation

K inequation.org
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Thank you!

Further Nordic Games information:

K www.nordicgames.at

Development information:

K www.grimloregames.com
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Bonus slides!
● OpenGL resource leak checking
● Intel i965 driver vs stack
● Locating user data according to 

FreeDesktop.org guidelines
● Thread priorities in Linux
● Additional/new debug features
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OpenGL resource leak checking
Courtesy of Eric Lengyel & Fabian Giesen
static void check_for_leaks()

{

    GLuint max_id = 10000; // better idea would be to keep track of assigned names.

    GLuint id; 

    // if brute force doesn't work, you're not applying it hard enough

    for ( id = 1 ; id <= max_id ; id++ )

    {

#define CHECK( type ) if ( glIs##type( id ) ) fprintf( stderr, "GLX: leaked " #type " handle 0x%x\n", (unsigned int) id )

        CHECK( Texture );

        CHECK( Buffer );

        CHECK( Framebuffer );

        CHECK( Renderbuffer );

        CHECK( VertexArray );

        CHECK( Shader );

        CHECK( Program );

        CHECK( ProgramPipeline );

#undef CHECK

    }

}
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Intel i965 vs stack
● Been chasing a segfault on a call instruction 

down _mesa_Clear() (glClear())
● Region of code copy/pasted from D3D renderer
● Address mapped, so not an invalid jump...
● Only 16 function frames – surely this can't be 

a stack overflow?
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Intel i965 vs stack (cont.)
● Oh no, wait:

● Check ESP against /proc/[pid]/maps
● Yup, encroaching on unmapped address space

● Moral: cut your render some stack slack 
(160+ kB), or Mesa will blow it up with 
locals (e.g. in clear shader generation)
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Locating user data
● There is a spec for that – see [XDG01]
● Savegames, screenshots, options etc.:

● $XDG_CONFIG_HOME or ~/.config/<app>

● Caches of all kinds:
● $XDG_CACHE_HOME or ~/.cache/<app>

● Per-user persistent data (e.g. DLC):
● $XDG_DATA_HOME or ~/.local/share/<app>
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Locating user data (cont.)
● <app> subdirectory currently unregulated

● De-facto standard: simplified or “Unix name”
● Lowercase, “safe” ASCII characters, e.g. blender

● When asked, XDG people suggest rev-DNS
● com.company.appname
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Thread priorities in Linux
● Priority elevation requires root permissions �

● No user will ever grant you root (scary!)
● Reason: DoS protection in servers (probably)

● Priority can be tweaked with nice()
● Think “how nice the process is to others”
● Being nice to everyone will starve your process
● Niceness can be negative (but only with root)

95



Thread priorities in Linux (cont.)
● Why not setpriority(2)?

● Also sets scheduling algorithm  here be dragons→
● Priority values have different meaning per scheduler
● Still needs root

● What about capabilities(7)?
● This might actually work if your users trust you
● Demo code: is.gd/GDCE14Linux
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Thread priorities in Linux (cont.)
● Don't all threads in a process share 

niceness?
● They should, according to POSIX, but they 

don't!
● One of the few cases where Linux is non-

compliant
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Additional/new debug features
● Additional debug info: -g3

● Including #defines (macros)

● Better debugger performance [GNU02]:
● -fdebug-types-section: improved layout
● -gpubnames: new format for index
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