
Securing Skill Based Games 
A survey of common hacks and  

techniques for remediation 



Attacking the Server 

•  dDOS 

–  No real value for the attacker (unless perhaps, they’re your competition :-) 

–  Usually just ”kids having fun” 

•  Penetration and subversion of the server itself 

–  Difficult, but real value for the attacker, so it attracts the grownup bad guys 

–  Certainly not impossible, as evidenced by the JP Morgan Chase intrusion over 
the summer, where the attackers had obtained root credentials on at least 90 of 
JPMC’s internal servers. 

 
•  Network packet manipulation 

–  Alter the servers state by forging network traffic 

–  Usually accomplished from the client side, but technically an attack on the 
servers state 

 
 



Attacking the Client (server indirectly) 

•  Game Data Snooping and/or Input Grooming 

–  Aimbots / Triggerbots 

–  Radars / ESP 

•  Game Asset Modification 

–  Texture Hacks 
 

•  Game Logic Modification 

–  Collision Detection Disable 

–  Network Traffic Forgery 
 
 



Aimbots / Triggerbots 
  



Aimbots / Triggerbots 

•  Aimbot definition 
–  Internal or external machine that tracks objects within a game view 

and automatically aims and/or triggers the players weapon 



Aimbots / Triggerbots 

•  Background 

–  Three basic classes of Aimbots 

•  Color / Object Tracking Aimbots (COT) 
•  Client Hook Aimbots (CH) 
•  Graphics Driver Aimbots (GD) 

–  General Characteristics of Aimbot classes 

•  COT Aimbots 
–  Minimally invasive 
–  Computationally intensive 

•  CH Aimbots 
–  Maximally invasive 
–  Computationally lightweight 

•  GD Aimbots 
–  Balance between invasiveness and computational load 



Color / Object Tracking Aimbots 

•  Theory of operation 

–  Screen scrape for color / objects 
–  Calculate vector 
–  Inject input via input drivers 

•  Detectability / Preventability 

–  Practically impossible to detect 
–  Effect can be mitigated with intelligent asset design 
–  Some hack augmentation such as asset color manipulation that 

improves effectiveness can be effectively prevented 



Client Hook Aimbots 

•  Theory of operation 

–  Hook particular functions within game client 
–  Scan game memory for objects 
–  Calculate vector 
–  Directly invoke firing functions or inject input via drivers or by 

modification of game client resident buffers 

•  Detectability / Preventability 

–  Generally easy to detect 
–  Generally easy to prevent 



Graphics Driver Aimbots 

•  Theory of operation 

–  Hook particular functions within the graphics driver DLL (mapped by 
the game client) 

•  Often the hooked graphics function provides direct access to the 
memory representing object coordinates 

–  Calculate vector 
–  Directly invoke firing functions or inject input via drivers or by 

modification of game client resident buffers 

•  Detectability / Preventability 

–  Generally easy to detect 
–  Moderately straightforward to prevent 



Radars 
  



Radars / ESP 

•  Radar definition 
–  Internal or external machine that tracks objects within world and 

provides overview of target coordinates (usually a “top down” fixed 
camera view) 



Radars / ESP 

•  Theory of Operation 

–  Scans the local game memory identifying targets 

•  Requires knowledge of the game data structure 

•  Typically Hackers reverse engineer and publish offsets of data members 

•  Theoretically automated processing could be performed to reverse 
engineer coordinate data by motion vector analysis of random data 
triples and recording addresses that produce “sensible” vectors 

•  Detectability / Preventability 

–  If done properly, practically impossible to detect 
–  Preventable by runtime obfuscation of data 



Texture Hacks 
  



Texture Hacks 

•  Texture hack definition 
–  Modification of texture data, usually to obtain transparency or 

camouflage 



Texture Hacks 

•  Background 

–  Two common classes of texture hacks 

•  Wall hacks 

–  Make walls transparent 

–  Alter texture to visually expose enemies 

•  Chamming 
 
–  Alter enemy texture to visually highlight them 

 



Texture Hacks 

•  Theory of operation 

–  Alter texture data on disk 
–  Alter texture data in memory 

•  Detectability / Preventability 

–  If done properly, difficult to detect, if done poorly, easy to detect 
–  Prevented through use of white-box cryptography and anti-tamper 



Collision Detection Disable 
  



Collision Detection Disable 

•  Collision detection disable definition 

–  Modification of functions used to perform collision detection 



Collision Detection Disable 

•  Theory of operation 

–  Alter functions that check for character / object collision 
–  Typically all that is required is to disable the code (patch a return) 

•  Detectability / Preventability 

–  Easily detected 
–  Easily prevented with code hardening 



Network Packet Manipulation 
  



Network Packet Manipulation 

•  Network packet manipulation definition 

–  Modification or temporal disordering of data packets destined for 
either the server or the client 



Network Packet Manipulation 

•  Background 

–  Network packet manipulation can be used to accomplish many types of 
hacks 

•  Artificial lag 
–  Software based “lag-switch” (slow down rate at which all packets are tx’d/rx’d) 

•  Look-ahead 
–  Software induced latency (see what other user action is, then send your action 

with a prior timestamp) 
•  Hack report sinking 

–  Identify hack reports going to server and disable or “undo” them 

–  General Characteristics of network packet manipulation 

•  Although in theory packet manipulation is possible outside of process space 
most client/server games implement encryption which (if properly done) 
renders this impractical 



Network Packet Manipulation 

•  Theory of operation 

–  Hook the functions that encrypt/decrypt packets within the game 
client process 

–  Because the hooked is in the code, pre/post encryption, encryption 
offers no protection 

•  Detectability / Preventability 

–  Easily detected 
–  Easily prevented with code hardening 



Questions? 
  



How Can Arxan Help? 
  



Arxan Technology 

•  Anti-Reverse Engineering 

–  Prevent the attacker from understanding the code 
•  Obfuscation (at the machine code level) 
•  Encryption of .text (forces attacker to memory dump) 

–  Effective 
•  Immediately raises the barrier 

•  Software Anti-tamper 

–  Software version of the epoxy encapsulation for hardware  

–  Active guards that are injected into your games client binary at the 
machine code level 

•  If attacker attempts to “pull the code apart” the code will “self-destruct” 
•  Code can cloak itself and only reveal itself once it is committed to completing 

its function (e.g. hack report function) 



Arxan Technology 

•  Software based whitebox cryptography 

–  Secures key material 

•  Key material remains encrypted at all times, even during cipher 
operation 

•  Key lifting is extremely difficult 

–  When combined with code hardening, the code cannot be lifted from 
game client binary 

•  Code hardening becomes the “epoxy” over the crypto chip 
•  Difficulty of lifting a key becomes similar in magnitude to lifting a key 

from a hardware TPM 
•  If the white-box is eventually compromised (typically measured in years) 

breach mitigation is only a software update away 



Arxan Code Hardening 

CPI/IP	
  Code	
  
Iden*fied	
  
Cri*cal	
  Code	
  
Iden*fied	
  

Cri*cal	
  Code	
  
Protected	
  by:	
  
Repair	
  Guard	
  

Cri*cal	
  Code	
  
Protected	
  by:	
  
Checksum	
  Guard	
  

Call Graph 

Guard	
  Protected	
  by:	
  
Checksum	
  Guard	
  

Guard	
  Protected	
  by:	
  
Encryp*on	
  Guard	
  

Encryp*on	
  

Checksum	
  

Guards	
  Protected	
  by:	
  
Obfusca*on	
  Guard	
  

Obfusca*on	
  

Image	
  Protected	
  by:	
  
Checksum	
  Guard	
  

•  Network of “guards” 
–  Use	
  mul*ple	
  “guards”	
  to	
  protect	
  a	
  single	
  code	
  

segment	
  
–  When	
  aFack	
  is	
  detected,	
  “guards”	
  ‘fire’,	
  reac*on	
  is	
  

fully	
  programmable	
  
–  Layered	
  Protec*on	
  
–  Many	
  implementa*ons	
  of	
  given	
  “guard,”	
  so	
  no	
  

global	
  signature	
  
–  “guards”	
  protect	
  selected	
  ranges	
  of	
  code	
  
–  “guards”	
  protect	
  en*re	
  image	
  
–  “guards”	
  protect	
  each	
  other	
  

Checksum	
  

Checksum	
  

Repair	
  



Arxan Confidential 

Unprotected Program 

Notice: 
Easily 

disassembled 
instructions 

Strong cross 
references. 

Valid, readable 
string references 



Arxan Confidential 

Arxan Protected Program 

Notice: 
Ida is unable to 

disassemble  
Cross references 
unknown 

Encrypted, 
damaged, or 
missing strings 

Forced manual 
analysis 

 



Specify guards that should be injected 

 
 



Invoke Engine to Process the Binary 

 
 



Test the Protection 

 
 

Without	
  tampering	
   With	
  tampering	
  

Fired!	
  



Aimbots: GuardIT™ Specific Remediation 

•  Color/Object Tracking 

–  Encrypt all character assets 
•  Prevents augmentation for color tracking (i.e. changing asset colors to make 

characters easily identifiable) 

•  Client Hook 

–  Checksum functions that are used for weapon aiming or character 
movement 

–  Repair functions that are tampered 

•  Graphics Driver 

–  Where the graphics driver DLL (e.g. DirectX) is the attack vector, utilize 
the hook detection guard (will fire if any standard DLL entry points are 
hooked) 

–  Repair functions that are tampered 



Radars/ESP: GuardIT™ Specific Remediation 

•  Generally not detectable if implemented by pure memory 
scanning 

•  Prevention is generally the only viable option 

–  Use Data Obfuscation Guards to scramble character position data 



Texture Hacks: GuardIT™ Specific Remediation 

•  Detection of manipulation of texture data on disk can be 
performed using checksums of asset data 
–  Use Data Obfuscation Guard and Checksum Guards to protect the asset 

checksum (in the game memory) from tampering 

•  Detection of manipulation of texture data in runtime memory can 
be manually coded 
–  Calculate in-memory checksum of texture data at load time and store 

this value using Data Obfuscation Guard to protect the checksum value 
from discovery 

•  Preventable by using white-box crypto to maintain all assets in 
encrypted form at runtime 
–  By linking environmental checks (e.g. debugger detection) to encrypted 

routines that damage internal white-box data, texture assets will only be 
properly constructed in memory if the game client is not being observed 
or tampered 



Coll. Detector Hack: GuardIT™ Specific Remediation 

•  Detection easily accomplished with GuardIT™ Checksum 
Guards 

–  Typically the coll. detector routines are relatively compact so 
checksum is fast 

•  Preventable by utilizing repair guards to repair the tampered 
code 

–  Since the detector routines are relatively compact, the performance 
impact of prevention is moderate and is only paid by the hackers 



Network Packet Hack: GuardIT™ Specific Remediation 

•  Detection easily accomplished using GuardIT™ Checksum 
Guards 

–  Checksum all network packet encryption functions 
–  No need to checksum the downstream functions as the data is 

already encrypted 

•  Preventable with use of GuardIT™ Repair Guards and 
TransformIT™ white-box cryptography 

–  Repair guards will restore tampered packet encryption functions 
–  White-box crypto will prevent attackers lifting the keys (which would 

otherwise enable downstream attacks) 









42	
  ARXAN	
  CONFIDENTIAL	
  



43	
  ARXAN	
  CONFIDENTIAL	
  



44	
  ARXAN	
  CONFIDENTIAL	
  



45	
  ARXAN	
  CONFIDENTIAL	
  



46	
  ARXAN	
  CONFIDENTIAL	
  



47	
  ARXAN	
  CONFIDENTIAL	
  



48	
  ARXAN	
  CONFIDENTIAL	
  



49	
  ARXAN	
  CONFIDENTIAL	
  


