
Advanced Real-time
Pathhfind in Dynamic
Environment in
Supernauts

Harri Hatinen
Lead Programmer, Grand Cru

The Problem (1/2)

• A* is an optimal pathfind algorithm

• Ways to improve performance:

• Better heuristics

• Smaller data structure

The Problem (2/2)

• Navigation Mesh is a standard in modern
games

• However there isn’t a good standard for
user generated content and changing
environments.

Grand Cru

• 20 employees

• Helsinki, Finland

Harri Hatinen

• Co-founder

• Lead Programmer

• harri.hatinen@grandcrugames.com

Supernauts

• Everything is User Generated

Supernauts

• Everything is built from cubes

Supernauts

• Pathfind is used for:

• movement controls

• AI

• [Demo video]

Problem Solving

• Step 1: Experiment

• Step 2: Research

• Step 3: Innovate

Step 1: Experiment

• Do we even need a costly and advanced
path-find algorithm?

• Don’t waste effort on wrong features

• Make simple and fast implementation

-> Figure out requirements and limitations
quickly

A B

A* in a linear Grid

• From current node, expand
the path in neighbouring
nodes.

• Choose node with most
promising path

• Repeat

A B

A* in a linear Grid

Path X

Path Y

• How can we know the most
promising path?

• Length of Path X = Length of
Path Y
• Which one is better?

• By heuristics
• Score = Path + Heuristics

• Smaller score = better

A B

A* in a linear Grid

The best path could look
something like this.

Experiment: Result

• 1-2 hours to implement

• Proved the need for a pathfind algorithm.

• However, it quickly became apparent that
it is way too slow.

Step 2: Research

• Now we know that

• A) We need a path-find algorithm

• B) Simple implementation is not enough

-> Find out all the existing knowledge on
the subject

Research

• A* is the most optimal spatial search
algorithm

• Optimization focuses on improving data
structures

• NavMesh is de facto standard in modern
video games

What is NavMesh?
11
1

1 2

3

4

5

1 2

3

5

4
74 Nodes
114 Edges

5 Nodes
5 Edges

NavMesh in Supernauts

1 2

3

5

4

A* on NavMesh

A B

A B

1 3

2

5

4

2

3

5

• Similar than in grid
• Just iterate to neighbour

nodes and use the
heuristics

A* on NavMesh

A B

1 3

2

5

4
1 3 4

A B

Straight paths in NavMesh

1

2

3

4

A
A B

Shortest Path
is clearly: B

5

1 2 5 3 4

But how to form
the path?

Straight paths in NavMesh

1

2

3

4

A

1

A

B
5

2a

2b

3a

3b

4a

4b

• Expand to neighbour
nodes with two
alternative routes

• Furthest ends of
common edge

Straight paths in NavMesh

1

2

3

4

A

1

B
5

2a 3a

1 3a

4a

4b

• On each iteration,
trace path
backwards as much
as possible

Straight paths in NavMesh

1

2

3

4

A
B

5

1 4b

5a

5b

Generating NavMesh

• Greedy Selection yields near-optimal
result

• Iterate walkable and free positions and
expand as much as possible

• Repeat until all positions filled

Updating NavMesh

A B

1 3

2

5

4 1 2

3

5

4

Updating NavMesh

A B

1 3

5

4 1

3

5

4 2

Updating NavMesh

A B

1

3

5

4

1 3

5

4
6

7 8

9

6

7

8

9

Research: Result

• We have a fast enough pathfind!

• But: Generating & updating is still slow!

Step 3: Innovate

• Now it’s time for the most fun part:
inventing something new!

• Let’s break the problem apart:

• A) Slow initialization

• B) Slow update

A) Slow initialization

• Even simplest greedy selection iterates
huge amount of blocks

• Algorithm needs to find all surfaces and iterate
them

• Practically N3 Complexity, huge amount of blocks

• Because of user generated content and
constantly changing environment, no
precomputation is possible!

B) Slow update

• When changing environment on large
node large area needs to be re-itarated.

Problems…

• So carefully analyzing we have manged to
break the problem into smaller problems:

• World has too many blocks to iterate over

• Nodes are too large

…and their solutions

• Too many iterations

• -> Iterate only blocks we need

• Too large nodes

• -> Limit node size

Innovation!

• Too many iterations

• -> Limit size of NavMesh!

• -> Yields an upper limit for node size, no
problematic updates!

• But small NavMesh can’t contain whole level

• -> Let’s add as many small NavMeshes as needed!

• -> Allows us to iterate areas that are only needed!

Supernauts NavMesh

• 10x1x10 mini navmesh

Supernauts NavMesh

• 10x1x10 mini navmesh

Supernauts NavMesh

• Whole world split evenly in mini NavMeshes

Supernauts NavMesh

• Whole world split evenly in mini NavMeshes

Mini NavMesh

EMPTY state
Can be just a NULL
pointer.

BUILT state
Nodes are built, but
not connected

1 2

3 4

1 2

3 4

CONNECTED state
Nodes are built and
connected

1 2

3 4

1 2

3 4

A* in Supernauts NavMesh

A* in Supernauts NavMesh

A* in Supernauts NavMesh

• Initially the whole world can be just array
of NULL mini NavMeshes.

A* in Supernauts NavMesh

A

B

A* in Supernauts NavMesh

A

A* in Supernauts NavMesh

• Build nodes

A
1 2

3 4
1 2

3 4

A* in Supernauts NavMesh
• …and connect the nodes

• But! That is not yet everything.

• We need to know connections to outside, otherwise
we’ll never get out!

A
1 2

3 4
1 2

3 4

A* in Supernauts NavMesh
• We need to check all 4 x 3 neighbors because the
character can climb 1 block and drop 1 block.

• Upgrade neighbouring nodes to BUILT state so we
can connect nodes to outside.

A
1 2

3 4
1 2

3 4

A* in Supernauts NavMesh

A

B

BUILT

CONNECTED

A* in Supernauts NavMesh

A
1 2

3 4
1 2

3 4

A* in Supernauts NavMesh

BUILT

CONNECTED

B

A

A* in Supernauts NavMesh

BUILT

CONNECTED

B

A

Updating Supernauts NavMesh

• What about updating?

• Solution is surprisingly simple!

Updating Supernauts NavMesh

BUILT

CONNECTED

Updating Supernauts NavMesh

1
2

3 4
1 2

3 4

• The structure doesn’t represent reality anymore

• Because mini NavMesh is tiny…

Updating Supernauts NavMesh

1
2

3 4

• The structure doesn’t represent reality anymore

• Because mini NavMesh is tiny…

• We can just dispose it!

Updating Supernauts NavMesh

BUILT

CONNECTED

Improving Supernauts NavMesh
• In Supernauts characters can walk stairs up and
down.

• This can be used to reduce number of nodes

Improving Supernauts NavMesh
• -> 8 nodes

• The character can move freely along the nodes.

• Can we merge them in any way?

Improving Supernauts NavMesh
• Multiple mini NavMeshes share the same node

• A height field for each node to help distuingish
overlapping nodes.

4 4 4 4 4 3 2 1 1 1 2 3 4 4 4 4 4 4

Video demonstrating NavMesh in
practice

Example Implementation

NavMesh

Navigation

Node

NodeContainer

Game
• Data
• Navigation Requests
• Data Change Events

Portal

class Node {

 int id;

 IntBounds bounds;

 int [,] heightField;

 List <Portal> connections;

};

class Portal {

 int positionA, positionB;

 int nodeA, nodeB;

};

A

B

Node & Portal

0 1 2 3 4 5

6

7

8

9

10

11

12 13 14 15 16 17

18

19

20

21

22

23

new Portal {

 positionA = 3,

 positionB = 6,

 nodeA = A,

 nodeB = B

};

class NavMesh {

 private NodeContainer [,] nodeLookUp;

 public Node GetAndCreateNode(Vector3 point);

 public Node GetNode(int id);

};

class NodeContainer {

 private int [,,] positionToNode;

 private State [] sliceStates;

 private HashSet<int> [] nodeSetsPerSlice;

 private Dictionary<int, Node> nodesIndexed;

 // ...

};

NodeContainer

class NodeContainer {

 private int [,,] positionToNode;

 private State [] sliceStates;

 private HashSet<int> [] nodeSetsPerSlice;

 private Dictionary<int, Node> nodesIndexed;

 // ...

};

Y

NavMesh

X

NodeContainer [,] nodeLookUp;

Z

class Navigation {

 private NavMesh navMesh;

 public Path FindPath(Vector3 start, Vector3 target);

 public Path FindPath(Vector3 start, Bounds area);

 public bool PathExists(Vector3 start, Vector3 target);

 public Vector3 GetRandomPosition(Bounds area);

 public Vector3 GetRandomReachablePosition(Vector3 point);

 public void Invalidate(Bounds area);

};

public bool PathExists(Vector3 start, Vector3 target);

public bool PathExists(Vector3 start, Vector3 target);

public Path FindPath(Vector3 start, Vector3 target);

public Path FindPath(Vector3 start, Bounds area)

• Destination doesn’t need to be a point, it
can be an area.

• Simply end the algorithm when it enters the
bounds.

• Simply querying if path exists is much faster
than finding the path, because you don’t
have to form the path itself.

public Vector3 GetRandomPosition(Bounds area);

public Vector3 GetRandomReachablePosition(Vector3 point);

• You can also get evenly distributed
random positions easily.

• Simply weight the random selection by node
surface area.

Conclusion

• Each game has unique requirements.

• Complicated problem can become simple
when

• Divided in small pieces

• Iteratively developed better instead of doing
the most advanced solution at first

• Avoid doing more than your game actually
needs!

Thank You!

• Q&A

• harri.hatinen@grandcrugames.com

