
AI POSITIONING AND SPATIAL
EVALUATION: A PRIMER
Damián Isla, Co-Founder, The Molasses Flood

“Spatial Awareness”
(A Theme, not a technique, or technology, or algorithm)

S
p
a
t
i
a
l

A
b
i
l
i
t
i
e
s

i
n

H
a
l
o

2

 Static Pathfinding
 Navigation mesh (ground)
 Waypoint network (airborne)
 Raw pathfinding
 Path-smoothing
 Hint integration (jumping, hoisting, climbing)
 Static scenery-based hints
 Static scenery carved out of environment mesh

 Static feature extraction
 Ledges and wall-bases
 Thresholds
 Corners
 Local environment classification

 Object features
 Inherent properties (size, mass)
 Oriented spatial features
 Object behaviors (mount-to-uncover, destroy

cover)

 Dynamic Pathfinding
 Perturbation of path by dynamic obstacles
 “Meta-search” / Thresholds / Error stages
 Obstacle-traversal behaviors

 Vaulting, hoisting, leaping, mounting,
smashing, destroying

 Path-following
 Steering on foot (with exotic movement modes)
 Steering a vehicle (e.g. ghost, warthog, banshee)

 Interaction with behavior
 What does behavior need to know about the way

its requests are being implemented?
 How can pathfinding impact behavior?

 Body configuration
 Flying, landing, perching
 Cornering, bunkering, peeking

 Spatial analysis
 Firing position selection
 Destination evaluation based on line-of-sight,

range-to-target, etc.

 “Local spatial behaviors”
 Line-tracing (e.g. for diving off cliffs)
 Not facing into walls
 Crouch in front of each other
 Don’t walk into the player’s line of fire
 Curing isolation
 Detecting blocked shots

 Reference frames
 The viral nature of the reference frame

 Cognitive model / Object persistence
 Honest perception
 Simple partial awareness model

 Search
 Simple by design
 Group search

 Spatial conceptualization
 DESIGNER-PROVIDED
 Zones, Areas (areas), Firing positions (locations)

The Most Fundamental of Questions

Where do I stand right now?

 Depends on a huge amount of context.
 Internal: goals, intentions, behaviors, etc.
 External: target position, actions, obstacles, etc.

 Extremely player-facing / gameplay relevant

 Should be in the hands of the designers.

Position Selection

1. Gather potential positions

2. Score each [accessible] position with F(x)

3. Choose the best one

4. Go there

Representation

Point cloud (Halo 2) +
Navigation Mesh

Navigation Graph (Killzone)
(Image from Killzone’s AI: Dynamic Procedural Combat Tactics, by

R. Straatman, W. Van Der Sterren, A. Beij, GDC 2005)

Representation

Regular Grid (Third Eye Crime)

Gather Step

 Point clouds
 Points assigned by designers (e.g. Halo 2)

 Spatial query (points within radius or box)

 Nav-mesh & Regular Grid
 all the above, plus

 Dijkstra’s algorithm to find accessible positions

Dijkstra’s Algorithm

Find
 Accessible points

 Path distances

 Reconstruct paths

0.0

Dijkstra’s Algorithm

Find
 Accessible points

 Path distances

 Reconstruct paths

0.0

0.8

1.1

1.2

1.1

2.2

Dijkstra’s Algorithm

0.0

0.8

1.1

1.2

2.1

1.1

1.6

2.2

2.0

2.3

1.9

Find
 Accessible points

 Path distances

 Reconstruct paths

Position Scoring

F(x)

The Apples-to-Oranges problem.

Range(x)

Line of sight(x) Threat(x)

Distance(x)

42

“Spatial Function”

Spatial Function

Inputs

 A(x) = range from x to target

 B(x) = path distance to x

 C(x) = line of sight from x to target
 (1.0 = 100% clear)

 D(x) = distance to occupied space

 ...

RE-use Dijkstra’s from
gather phase

(Nav-mesh or grid)

Spatial Function Inputs

range LOS

Spatial Function

 Simplest form

 F(x) = k1A(x) + k2B(x) + k3C(x) + ...

 With remapping:

 F(x) = f1(A(x)) + f2(B(x)) + f3(C(x)) + ...

Remapping

“flee”

“charge”

“maintain distance”

Remapping

“find” “cover”

x

Spatial Function

 Simplest form
 F(x) = k1A(x) + k2B(x) + k3C(x) + ...
 With remapping:
 F(x) = f1(A) + f2(B) + f3(C) + ...
 Ideally, use a flexible syntax:

 F(x) = k(f1(A) - f2(B)) / (f3(C)*f4(C)) ...
 Our own idiosyncratic form:
 F(x) = (((f1(A) + f2(B)) + f3(C)) * f4(D)) + f5(E) ...

“Layer”

Implementation

Layers

 Input source
 range
 los
 path-distance
 etc.

 Combination method
 Additive
 Multiplicative

 Remapping Function
 output = F(input)

 Global modifications
 Blur factor
 Normalization

Data

Code

DEMO

Position Selection + Pathfinding

The criteria for choosing points is not the same as
the criteria for getting there

e.g. “choose a spot with clear LOS but try and stay
covered while you travel there”

Observation #1

Input functions are expensive
 LOS, path-distance, obstacle-distance, etc.

BUT remapping / combining/sharing is relatively cheap

Therefore:

Once we’ve computed the input layers, we can likely
afford to run multiple spatial functions

Observation #2

Advantage of Spatial Reps w/ Connectivity:

SINCE we probably have expensive spatial input already
computed on grid cells / navgraph vertices

And SINCE Dijkstra/A* can accommodate penalty functions

We can use a SEPARATE spatial function to specify a
Dijkstra/A* penalty function
 specify both where to go, and how to get there

However...

All paths were built into the gather-phase Dijkstra

Demo Solution: Use Dijkstra for gather but NOT for final path
creation
 Once position selected, run A* from scratch to that destination using

penalty function
 Expensive...

... And still wrong!

 The path-distance input was provided by Dijkstra.

 Not accurate if penalty function is distorting path

Where to Stand vs. How to Get There

Flame in the Flood Solution: Use separate spatial
functions for A* penalty (pass 1) and position scoring
(pass 2)

Result of penalty function feeds into Dijkstra gather

phase of pass 2
 Note that this probably impacts any path-smoothing that

you do
 avoid smoothing through masked-out areas

Where to Stand vs. How to Get There

ALSO means two distinct gather phases

 Gather #1: all X within bounding box
 assume no expensive inputs used
 or if they are, those input are shareable with pass 2

(e.g. los)

 Gather #2: Dijkstra

 using penalty values computed in pass 1

All Behavior is Spatial

Spatial functions can be used for more than just position
evaluation

 A* penalty

 path speed
 aim on/off

 target bias

 weapon choice
 ...

Remember: Input sources are expensive, but
recombining them is cheap

(share inputs across layers, functions and AIs)

Spatial Behavior

Target bias

Weapon
choice

A* Penalty

Position
selection

Aiming

Shooting

Positioning

Speed

Targeting

Spatial Behavior

Conclusions

 Apples-to-oranges is defeated through great
visualization and iteration tools

 Respect the code/data boundary

 Subtle interaction between position selection
and pathfinding

 Spatial functions for many aspects of behavior

Thanks!

Questions?

