
Sparse Fluid Simulation in DirectX

Alex Dunn
Dev. Tech. – NVIDIA
adunn@nvidia.com

Agenda

● We want more fluid in games

● Eulerian (grid based) fluid.

● Sparse Eulerian Fluid.

● Feature Level 11.3 Enhancements!

● (Not a talk on fluid dynamics)

Why Do We Need Fluid in Games?

● Replace particle kinematics!

● more realistic == better immersion

● Game mechanics?

● occlusion
●smoke grenades

●interaction

● Dispersion
●air ventilation systems

●poison, smoke

● Endless opportunities!

Eulerian Simulation #1

Inject

Advect

Pressure

Vorticity

Evolve

2x Velocity

2x Pressure

1x Vorticity

My (simple) DX11.0 eulerian fluid simulation:

Eulerian Simulation #2

Inject

Advect

Pressure

Vorticity

Evolve

 Add fluid to simulation

 Move data at, XYZ (XYZ+Velocity)

 Calculate localized pressure

 Calculates localized rotational flow

 Tick Simulation

(some imagination required)

Too Many Volumes Spoil the…

● Fluid isn’t box shaped.

● clipping

● wastage

● Simulated separately.

● authoring

● GPU state

● volume-to-volume interaction

● Tricky to render.

Problem!

● N-order problem

● 64^3 = ~0.25m cells

● 128^3 = ~2m cells

● 256^3 = ~16m cells

● …

● Applies to:

● computational complexity

● memory requirements

0

1024

2048

3072

4096

5120

6144

7168

8192

0 256 512 768 1024

M
e
m

o
r
y
 (

M
b

)

Dimensions (X = Y = Z)

Texture3D - 4x16F

And that’s just 1 texture…

Bricks

● Split simulation space into groups of cells (each
known as a brick).

● Simulate each brick independently.

Brick Map

● Need to track which bricks contain fluid

● Texture3D<uint>

● 1 voxel per brick

● 0 Unoccupied

● 1 Occupied

● Could also use packed binary grids [Gruen15], but this
requires atomics

● Initialise with emitter

● Expansion (unoccupied occupied)

● if { V|x|y|z| > |Dbrick| }

● expand in that axis

● Reduction (occupied unoccupied)

● inverse of Expansion

● handled automatically

Tracking Bricks

Sparse Simulation

Inject

Advect

Pressure

Vorticity

Evolve*

Clear Tiles

Fill List

Reset all tiles to 0
(unoccupied) in
brick map.

Texture3D<uint> g_BrickMapRO;
AppendStructredBuffer<uint3> g_ListRW;

if(g_BrickMapRO[idx] != 0)
{
 g_ListRW.Append(idx);
}

Read value from
brick map.

Append brick
coordinate to list
if occupied.

*Includes expansion

Uncompressed Storage

Allocate everything; forget
about unoccupied cells

Pros:
• simulation is coherent in memory.
• works in DX11.0.

Cons:
• no reduction in memory usage.

Compressed Storage

Similar to, List<Brick>

Pros:
• good memory consumption.
• works in DX11.0.

Cons:
• allocation strategies.
• indirect lookup.

• “software translation”
• filtering particularly costly

Indirection Table

Physical Memory

1 Brick = (4)3 = 64

1 Brick = (1+4+1)3 = 216

• New problem;
• “6n2 +12n + 8” problem.

Can we do better?

Enter; Feature Level 11.3
● Volume Tiled Resources (VTR)!

● Extends 2D functionality in FL11.2

● Must check HW support: (DX11.3 != FL11.3)

ID3D11Device3* pDevice3 = nullptr;
pDevice->QueryInterface(&pDevice3);

D3D11_FEATURE_DATA_D3D11_OPTIONS2 support;
pDevice3->CheckFeatureSupport(D3D11_FEATURE_D3D11_OPTIONS2,
 &support,
 sizeof(support));

m_UseTiledResources = support.TiledResourcesTier ==
 D3D11_TILED_RESOURCES_TIER_3;

Tiled Resources #1

Pros:
• only mapped memory is

allocated in VRAM

• “hardware translation”

• logically a volume texture

• all samplers supported

• 1 Tile = 64KB (= 1 Brick)

• fast loads

Tiled Resources #2

Gotcha: Tile mappings must be updated from CPU

1 Tile = 64KB (= 1 Brick)

BPP Tile Dimensions

8 64x32x32

16 32x32x32

32 32x32x16

64 32x16x16

128 16x16x16

Latency Resistant Simulation #1

Naïve Approach:

● clamp velocity to Vmax

● CPU Read-back:

● occupied bricks.

● 2 frames of latency!

● extrapolate “probable” tiles.

Frame N+1 Frame N+2 Frame N+3 Frame N

Frame N+1 Frame N Frame N+2

N;
Data Ready

N+1;
Data Ready

N+2;
Data Ready

N; Tiles Mapped

CPU:
GPU:

Latency Resistant Simulation #2

Tight Approach:

● CPU Read-back:

● occupied bricks.

● max{|V|} within brick.

● 2 frames of latency!

● extrapolate “probable” tiles.

Frame N+1 Frame N+2 Frame N+3 Frame N

Frame N+1 Frame N Frame N+2

N;
Data Ready

N+1;
Data Ready

N+2;
Data Ready

N; Tiles Mapped

CPU:
GPU:

Latency Resistant Simulation #3

Sparse
Eulerian

Simulation

Readback
Brick List

CPU
Readback
Ready?

Yes

Prediction
Engine

Emitter
Bricks

No

UpdateTile
Mappings

CPU GPU

Demo

Performance #1

NOTE: Numbers captured on a GeForce GTX980

2.3

19.9

64.7

0.4 1.8 2.7 2.9
6.0

128 256 384 512 1024

S
im

.
T

im
e
 (

m
s
)

Grid Resolution

Full Grid

Sparse Grid

Performance #2

NOTE: Numbers captured on a GeForce GTX980

80

640

2,160

11

46 57
83

138

128 256 384 512 1024

M
e
m

o
r
y
 (

M
B

)

Grid Resolution

Full Grid

Sparse Grid

Scaling

● Speed ratio (1 Brick) =

● ~75% across grid resolutions.

Time{Sparse}

Time{Full}

Summary

● Fluid simulation in games is justified.

● Fluid is not box shaped!

● One volume is better than many small.

● Un/Compressed storage a viable fallback.

● VTRs great for fluid simulation.

● Other latency resistant algorithms with tiled resouces?

Questions?

Alex Dunn - adunn@nvidia.com

Twitter: @AlexWDunn

Thanks for attending.

mailto:adunn@nvidia.com

