
Visual Effects in Star Citizen

Alistair Brown
Director of Graphics Engineering, 
Cloud Imperium Games / Foundry 42



Introduction to Star Citizen

●Ambitious futuristic space-sim

●First person perspective

●Space combat, exploration, trading, mining

●‘Instanced’ MMO

●Full single player campaign – Squadron 42

●Crowd funded project



CryEngine

●Mature FPS and Multi-platform Code Base

●AAA standard technology and effects

●Physically based rendering pipeline

●Deferred/Tiled-Deferred/Forward+

●10 different modes of Anti-Aliasing









Visual Quality

Video…



Visual Quality

●Extremely high-end visuals

●Long term focus on quality

●High system specs

●Current high-spec PC will be mid-spec by release

●Currently DX11 only









Ship Complexity

●Extremely high poly ships
●60%-40% split between texture and geometry memory 
rather than more typical 80-20

●Far more assets than can fit into typical 
GPU memory

●Heavy use of streaming



Ship Complexity

●Initially we allocated more geometry than 
we had space for on the GPU

●Mostly fine because only a small % on 
screen at once

●Different LODs

●Mutually exclusive assets (damage states)



Ship Complexity

●However memory paging to GPU 
eventually reared its ugly head

●Difficult to predict and avoid

●‘GPU View’ tool can be useful in tracking this

●As can GPU hardware vendors' assistance 

●DX12 would help avoid/diagnose these from 
the application



Ship Complexity
●Ideally predict meshes required in advance

●Easy for LODs

●Impossible to predict when damage will occur 
and therefore require damage meshes

●Need to stay within GPU memory budget 
as much as possible

●Avoid rarely-used / mutually-exclusive assets



Ship Complexity



Ship Complexity
●Discrete damage models for each ship part

●0%, 25%, 50%, 75%, 100%

●Switch independently

●All need LODs

●10+ parts, 5 damage states, 4 LODs

●200+ meshes for one ship!



Ship Damage – Goals
●Identified need to improve system

●Key goals were:

●Less art intensive

●Better use of modern hardware & DX11

●Lower memory usage

●More accurate and location specific damage

●Maintain or improve on visual fidelity



Ship Damage



Ship Damage



Ship Damage – Overview

●Key idea was to ditch decals and 25% / 50% / 75% damage 
states as these are primarily just surface damage

●Store data about any damage on the GPU and feed this into 
the pixel shader to visualize the damage

●Use DX11 & DirectCompute to enable more complex 
damage model and improved visuals

●Keep 100% damage state for major silhouette changes



Graphics pipeline

DirectCompute

Ship Damage – Overview

Mesh Data

Impact Data

Position Map

Damage Map

Screen

Rasterize

Scatter

Update

Rasterize



Ship Damage – Damage Model

●We chose to model some more physical 
properties that just ‘damage’ to achieve more 
complex and dynamic results

●Deformation

●Thickness

●Temperature

●Burn



Ship Damage – Damage Model



Ship Damage – Damage Model

●Need to decide which space to store this data

●Mostly just surface damage

●Needs consistent resolution

●Opted for 2D textures as opposed to 3D textures 
or vertices

●Considered more complex structures such as 
octree’s but overhead was considered too high



Ship Damage - Damage Model

●Need geometric representation of ship on GPU in 
order to paint into this Damage Map

●Solution is to use object space texture

●However ship parts animate

●Store bone ID in alpha channel



Ship Damage – Damage Model



Ship Damage – Adding Damage

●Arbitrary artist-defined UV layout

●Read of position map and skinning limit 
performance

●However most impacts only effect <5% of 
damage map

●~95% of the GPU work required to determine this



Ship Damage – Adding Damage

●Potentially multiple hits on multiple ships in a 
single frame

●Especially for larger ships

●In heavy combat could be a major performance hit

●Need to find a way to direct GPU work to the 
desired parts of the damage map



Ship Damage – Adding Damage

●Texture is 99% spatially coherent

●Logical to split into smaller tiles to avoid work

●Calculate bounds of each tile

●Use like Hi-Z buffer to early out

●However texels aren’t static but are skinned! 

●Moving flaps / wings / turrets



Ship Damage – Adding Damage

●Hard to avoid wasted work with pixel shader

●Every pixel still needs to read some memory, do some 
calculations then bail out – usually bandwidth limited

●Compute shaders open up many different ways to 
optimize

●Thread group shared memory

●DispatchIndirect



Ship Damage – Adding Damage

●Calculate N bounding spheres per tile

●N isn’t fixed, but in practice has an upper limit of about 4

●Each thread tests one bounding sphere against 
the impact location

●Only shade pixels if at least one passes

●Distributes the cost – much quicker rejection

●But most threads still idle during this stage



Ship Damage – Adding Damage

●Most impacts last multiple frames, and larger 
ships will likely receive many hits at once

●Use idle threads to calculate multiple hits

●threadGroupSize = maxBonesPerTile * maxHits

●More hits would require a loop per thread



Ship Damage – Adding Damage

●Alternate approach is to perform one tile-bone-
impact calculation per thread and store results in a 
buffer and accumulate number of tiles visible

●DispatchIndirect can be used to trigger a 2nd

compute on just the required tiles

●Theoretically less wastage, but overhead of 
intermediate buffer and 2nd dispatch are significant



Ship Damage – Extras
●Parallax occlusion mapping for internals

●Perfect use case as silhouette is hidden and poly count 
needs to be low for memory & performance

●Screen space height-map

●Use the differential to calculate surface gradient and 
perturb normal [Mikkelson 2010]

●ddx/ddy on bilinear filtering looks bad under magnification

●Take 2 extra samples and manually calculate forward 
difference



Ship Damage – Extras

●Heat dissipation in compute shader

●Hole cutting

●clip()

●Needs including in depth/shadow pass when close-up 

●Investigating the possibility of identifying bones that have 
holes in the compute shader and using DispatchIndirect to 
limit the number of polys using clip()



no damage



+burn albedo



+ dent normals



+ burn normals



+ bare metal



+ hole cutting



+ cut height/normals



no damage



no damage



no damage



Ship Damage – Results

Video…



Ship Damage – Extensions

●But we’re just scratching the surface! 

●Pun intended 

●Geometry Morphing

●Create second version of ship which panels shrunk inwards

●Export offsets in compacted 32bit RGBE format

●Push vertices towards offset as they are dented

●Could potentially use tessellation for more accuracy



Ship Damage – Extensions

●GPU particles

●Spawn in compute shader when thickness is modified

●Use position map for location/orientation

●Use thickness, temperature & diffuse map for color

●Complete GPU solution for VFX 

●But need to efficiently manage variable particle count



Ship Damage – Extensions

●Many GPU particle implementations don’t handle arbitrary 
particle counts

●Can use append/consume buffer as free-list for spare slots 
in a fixed sized array – but hard avoid cost of empty slots in 
particle update & render

●Instead make the upper bound of the number of particles 
that can be spawned from each hit deterministic

●Treat particle array as a ring-buffer



Ship Damage – Extensions

●Keep track of start/end points

●Dispatch updates just for the 
particles we need

●Skip unused particles in compute 
shader

●Different ring buffers for different 
particle life-times



Ship Damage – Extensions

●Sparse / Tiled memory

●Most tiles are empty most of the time

●Especially on larger ships

●Ideally allocate on demand 

●Tiled resource in DX11.2

●Our current min-spec is DX11.1 

●Revisit later in development



Scale Issues



Scale Issues

●Enormous scale

●No ‘faked’ UI or FPS arms/body

●Everything is ‘in the world’ 

●UI is ~3cm from camera

●Ships up to a mile long with ~100 rooms

●Planets are hundreds/thousands of miles wide

●Inter-planetary travel



Scale Issues

●Quickly reached 32bit precision issues

●Upgraded CryEngine to 64bit transforms

●Renderer stays 32bit camera-relative

●Depth buffer changed to inverted 32f

●No performance hit on modern hardware



Scale Issues

Brano Kemen - http://outerra.blogspot.co.uk/2012/11/maximizing-depth-buffer-range-and.html



Environments

●Due to the MMO part of the game we require a 
LOT of environments and so opted for a modular 
approach

●Modular ‘kits’ are built that easily snap together

●Simplifies art pipeline (e.g. out-sourcing)

●Very flexible for level designers

















Environments

●We immediately hit many performance issues

●Poly count due to desired fidelity

●Texel density too high for baking textures

●Tiling textures means many draw calls per mesh

●Lots of meshes to build a room

●Even more meshes for a space-station!

●LOTS of draw calls



Environments
●Texture arrays are a potential solution

●Resolution limitation means streaming is difficult

●Instead use low-resolution texture arrays just for LODs

●No need to stream individual textures – entire texture 
array at 256x256 for a level is < 15Mb

●Can now render LODs with a single draw call! 

●Vertex buffers sorted by material ID so can still use high-
res textures if required



Environments

●Mesh merging solution similar to KillZone

●Build LODs for each individual modular asset

●Iterative heuristic algorithm to combine LODs to 
build a hierarchy with min draw calls and memory

●Relies on aggressive LODs but can drastically 
reduce draw calls with no manual artist work



Future

●That’s just a tiny sub-set of what we’re doing, 
there’s lots more to come…

●Gas-clouds

●Asteroid fields

●Stars

●Planets

●Worm-holes



Thanks

●Thanks for listening!

●Special thanks to our awesome team at CIG, especially these lot:

Nicolas Thibieroz, Chris Roberts, Erin Roberts, Neil McKnight, Bjorn Seinstra, Nathan 
Dearsley, Okka Kyaw, Geoff Birch, Muhammad Ahmad, Matt Intrieri, Mark Abent



Obligatory “We’re Hiring” Slide

https://cloudimperiumgames.com/jobs
Manchester (UK) + Frankfurt + Santa Monica

https://cloudimperiumgames.com/jobs


Questions?

alistair.brown@cloudimperiumgames.com



References

●Rendering Wounds in Left 4 Dead 2

●http://www.valvesoftware.com/publications/2010/gdc2010_vlachos_l4d2wounds.pdf

●Making of Killzone 3

●https://www.youtube.com/watch?v=QfvBIHFex9Y

●Maximizing Depth Buffer Range – Brano Kemen

●http://outerra.blogspot.co.uk/2012/11/maximizing-depth-buffer-range-and.html

●Bump Mapping Unparametrized Surfaces on the GPU - Morten S. Mikkelsen

●https://dl.dropboxusercontent.com/u/55891920/papers/mm_sfgrad_bump.pdf

http://www.valvesoftware.com/publications/2010/gdc2010_vlachos_l4d2wounds.pdf
https://www.youtube.com/watch?v=QfvBIHFex9Y
http://outerra.blogspot.co.uk/2012/11/maximizing-depth-buffer-range-and.html
https://dl.dropboxusercontent.com/u/55891920/papers/mm_sfgrad_bump.pdf


Fan Trailer…
Watch on YouTube

Unofficial Trailer

https://www.youtube.com/watch?v=lJJ9TcGxhNY

