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Why not use machine learning?

Too slow

Too opaque

Too unreliable



Slow?



Opaque?



Unreliable?



Maybe it’s you

Few game AI programmers are skilled enough at ML to effectively evaluate it

 They teach programmers about Neural Networks and Genetic Algorithms, because 

they're easy, and cool

 They teach statisticians all the other stuff

Effective ML requires stepping outside your comfort zone



ML can be really useful

ML can solve problems which are not easily coded up directly

 Based on what we’ve seen, what is the underlying process?

Replace manual tweaking with automated refinement

Turn gameplay traces into bots

Tons of neat stuff



Before we get started, 

some terminology…



Primary goal is generalizability

Based on examples, how to learn a model which allows us to predict, 

classify, or cluster new examples?

Examples

Model
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Examples
Decision

Training

Usage



Primary goal is generalizability

First step is to train the model using the examples we have already
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Model
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Primary goal is generalizability

The trained model is then tried on new examples it’s never seen before

Examples

Model
New

Examples
Decision

Usage



Models

Representation of the underlying process

Encodes how inputs relate to output

Examples

Model
New

Examples
Decision

Examples: Decision 

trees, k-NN, linear 

regression, neural nets, 

naive bayes, support 

vector machines, and 

many more!



Features

ML inputs are called features

Features are typically stored together in big feature vectors
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Features

ML inputs are called features

Features are typically stored together in big feature vectors

Example: Image features

32x32 pixel image 1x1024 feature vector



Features

ML inputs are called features

Features are typically stored together in big feature vectors

Example: Motion feature

5 keyframe motion

(Keyframe1,  Keyframe2, Keyframe3, Keyframe4, Keyframe5)

where each Keyframe = (Joint1_Rotation, …, Joint33_Rotation)



Features

ML inputs are called features

Features are typically stored together in big feature vectors

Example: Emails

IT TRAINING TUITION 
SCHOLARSHIPS FOR COLLEGE 
FACULTY, STUDENTS AND STAFF 

National Education Foundation 
CyberLearning, a non-profit 
organization dedicated to bridging 
the Digital Divide since 1994, is 
offering "No Excuse" tuition-free on-

(word1_count,  word2_count, …, wordM_count)



Features in matrix form

𝑋 =

𝑥11 𝑥12 ⋯ 𝑥1𝑀
𝑥21 ⋱

𝑥𝑁1 𝑥𝑁2 ⋯ 𝑥𝑁𝑀

X is our features. This can be 

either our training set or new 

examples we’ve never seen 
before.

X has dimensions N x M 
(N examples, M features)



Features in matrix form

𝑋 =

𝑥11 𝑥12 ⋯ 𝑥1𝑀
𝑥21 ⋱

⋮
𝑥𝑁1 𝑥𝑁2 ⋯ 𝑥𝑁𝑀

Each row is an example



Features in matrix form

𝑋 =

𝑥11 𝑥12 ⋯ 𝑥1𝑀
𝑥21 ⋱

⋮
𝑥𝑁1 𝑥𝑁2 ⋯ 𝑥𝑁𝑀

Each column is a feature



Labels

ML outputs are often called labels, particularly for classification

Features

Model
New

Features
Decision

Examples: gesture type, 

IsFraudulent, IsSpam



Labels in matrix form

Like features, labels can 

be collected together in 

a vector, with each row 

corresponding to an 

example. 𝑌 =

𝑦1
𝑦2
⋮
𝑦𝑁



Useful techniques



Types of learning

Supervised: Given a set of questions and correct answers, can we answer 

new questions correctly?

 Observations: features, labels

Unsupervised: Can we find structure in a given dataset?

 Observations: features

Reinforcement learning: Can we learn to perform a task better over time?

 Observations: states over time, reward function



Decision trees

HP > 50?

Retreat

Player 
stunned?

Attack

Attack

Yes

No
Yes

No



Automatic decision tree learning

NPC HP Hair color Player stunned? What to do?

88 Blue No Attack

23 Blue No Retreat

60 Red Yes Attack

40 Green Yes Attack

15 Red No Retreat

⋮ ⋮ ⋮ ⋮

HP > 50?

Retreat

Player 
stunned?

Attack

Attack

Yes

No
Yes

No



Decision trees are white boxes

Tells you what it’s thinking

Debug bad outputs

 Chain of decisions

 Relevant training examples

Tweakable

 Snip branches as desired

Black-box neural network



Build decision trees with ID3

Choose the most important feature

 Separate the output labels as cleanly as possible

Divide examples based on that feature

 Children of a decision node

 All agree? Leaf

 Otherwise, recurse

Continuous features

 Try random thresholds

 Or maximize IG over GMM

NPC HP Hair color Stunned? What to do?

88 Blue No Attack

23 Blue No Retreat

60 Red Yes Attack

40 Green Yes Attack

15 Red No Retreat

⋮ ⋮ ⋮ ⋮

NPC HP Hair color Stunned? What to do?

88 Blue No Attack

23 Blue No Retreat

60 Red Yes Attack

40 Green Yes Attack

15 Red No Retreat

⋮ ⋮ ⋮ ⋮

NPC HP Hair color Stunned? What to do?

23 Blue No Retreat

40 Green Yes Attack

15 Red No Retreat

⋮ ⋮ ⋮ ⋮

NPC HP Hair color Stunned? What to do?

88 Blue No Attack

60 Red Yes Attack

⋮ ⋮ ⋮ ⋮

HP > 50?

Yes

No

Attack

NPC HP Hair color Stunned? What to do?

40 Green Yes Attack

44 Red Yes Retreat

⋮ ⋮ ⋮ ⋮

NPC HP Hair color Stunned? What to do?

23 Blue No Retreat

15 Red No Retreat

⋮ ⋮ ⋮ ⋮

Player 
stunned?

Yes

No



Drawbacks of decision trees

Difficult to tune complexity

 Too complicated  fixate on irrelevant features

 Too simple  fail to consider special cases

Can’t relate continuous features

 Retreat if HP < ATT

Still awesome

HP > 50?

Retreat

Player 
stunned?

Attack

Yes

No
Yes

No

Hair 
color?

Attack

Retreat

Red/
Blue

Green

HP > 50?

Retreat

Attack

Yes

No



Nearest Neighbor

No training process

 The model is the training set

Procedure

 Find most similar training example

 “Closest”

 Use its label



k-Nearest Neighbors

Because regular NN sucks

 Overfitting

Find closest k examples

 They vote on what label wins

 Closer examples get a bigger vote?

Higher k 

 Paves over weird training examples

 Doesn’t respect genuine special cases



Problems with kNN

High dimensionality is a real problem

 Low dimensional  Use kD trees

 High dimensional  Brute force

Distance metric

 Scaling is important

 Distance between “orc” and “goblin”?

Good with low-dimensional sets with clean training data



Genetic algorithms

Stuff where

 Bunch of potential solutions

 They do battle with a black box

 The survivors have sex

 Their kids mutate a little

 Keep doing more generations

 Until optimum reached

Use it to make your model!

  



Selecting genes for the next generation

Roulette wheel selection

 Randomly, weighted by each solution’s fitness score

 Relies on well-behaved fitness score

Rank selection

 Randomly, weighted by each solution’s fitness rank

 Avoids “crowding out” in early generations

 Slower convergence

50 25

200000 8



Pitfalls of GAs

Slower and less effective than model-specific optimization methods

Can be difficult to tweak

A backup plan



Things that go wrong: 

The wrong features



The wrong features

Situation: You’ve tried a lot of 

different models, but keep getting 

disappointing results



The wrong features

Solution: Look at your data!

 Do exploratory data analysis (EDA)

Hmm, not normally 
distributed like I 

thought…

Hmm, no clear 
relationship with 

the outcome

Scatter plots to 

see relationships

Histograms to 

understand distributions



The wrong features

Solution: Boil down your data

 Eliminate irrelevancies

Remove features 

like these

Crop



The wrong features

Solution: Look at your data!

 Check whether transformations of your data help

Log 

transform

Desaturate Blur



The wrong features

Solution: Look at your data!

 Make sure features all have comparable scale

(weapon_power, player_level, gold_amt)
Range: [10-50] Range: [1-100] Range: [0-2,000,000]

Distance metrics will be dominated by gold_amt! 

Solution: transform gold_amt to adjust scale



The wrong features

Situation: You're feeding in 50,000 features, 

and your classifier sucks. It worked better 

when it was only 100 features.



The wrong features

What’s going on? 

 Curse of dimensionality!

 Everything is far apart

 As the feature space grows, you need more examples to understand it



The wrong features

Solution: Reduce the dimensionality

 Automatic methods such as Principal Component Analysis (PCA) can help

In a stylistic 

walking motion 

dataset, PCA 

reduces motion 

examples by 94%

Original motion
based on 540 features

PCA-transform motion
based on 29 features



The wrong features

Situation: You have insanely 

good accuracy on the test set 

but the model is terrible in 

practice



The wrong features

Possible problem: Contamination

 Some of your test data snuck into the training set

 Check and fix your code



The wrong features

Possible problem:  Data Leakage

 A feature not available for prediction was used for training the 

model

LOG FILE:

If Score = function(#Kills),

Using #Kills to predict 

score is cheating!



The wrong features

Possible problem:  Sampling bias

 The training data is not similar enough to real world

 Decisions of how, what and when you log data can matter

Ex. Behaviors of players who log in everyday 
are likely different from players who log in 
once a week



Things that go wrong: 

The wrong model



The wrong model

Situation: You’ve tried a lot of 

different features, but have 

disappointing results



The wrong model

Solution: Try a different model

 Actually, try lots of models…

 WEKA to the rescue!!

Data mining software in JAVA

http://www.cs.waikato.ac.nz/ml/weka/



The wrong model

Solution: Try an ensemble of models

 boosting, stacking, bagging

 Weak models working together can outperform a single, more 

sophisticated learner

 Large ensemble models were the best performers in the Netflix prize



Things that go wrong: 

Overfitting



Overfitting

Situation: Your classifier has amazing 

accuracy with the training set 

but performs poorly on data it’s 

never seen before



Overfitting

What’s happening?

Model too simple:

data patterns not 

captured

Model too complex:

schizo fit with no ability 

to generalize 

HP > 
50?

Retreat

stunned
?

Attack
Yes

No

Yes

No

Hair 
color?

Attack

Retreat

Red/
Blue

Green
HP > 
50?

Retreat

Attack
Yes

No



Overfitting

Especially overfitty algorithms

► k-NN w/ low k 

► ANNs w/ lots of neurons

► decision trees with arbitrary depth

► ensemble models



Overfitting

Solution: Cross-validation

 Estimate how well your model performs on new data

 How? Hold-out subsets of your training data to use for testing

 Try different model parameters to determine balance between 

simplicity and power



Overfitting

Solution: Cross-validation

 Step 1

Input Data

Training
Data

Test
Data

Split examples 

randomly into 

training and 

test sets



Overfitting

Solution: Cross-validation

 Step 2

Input Data

Training
Data

Test
Data Train 

Model

Model



Overfitting

Solution: Cross-validation

 Step 3

Input Data

Training
Data

Test
Data

Evaluate

Model’s 

performance

Model

e.g. How much of the test 

set does it correctly 

classify?



Overfitting

Solution: Cross-validation

 Step 4: Repeat

Input Data

Training
Data

Test
Data

Model

Split examples 

randomly into 

new training 

and test sets 

and 

reevaluate



Overfitting

Solution: Cross-validation

 Step 4: Repeat

Input Data

Training
Data

Test
Data

Model

Average 

over multiple 

test sets is 

estimate of 

performance



tl;dr



ML is powerful and useful

ML can be real-time, transparent, and reliable

ML can be the best use of your time

Effective ML requires stepping outside your comfort zone

Many straight-forward algorithms besides ANNs and GAs

Effective ML requires understanding of features and models to work well



Going deeper

Stanford’s free online Machine Learning course

tiny.cc/MLcourse

A few useful things to know about machine learning, Pedro Domingos, 2012

Doing Data Science: Straight talk from the frontlines, Cathy O’Neil, Rachel 

Schutt



Extras



Primary goal is generalizability

The trained model is then tried on new examples it’s never seen before

Purchase history

Model
New

Purchases
IsFraudulent

Usage

Example: Detect 

fraudulent purchases



Primary goal is generalizability

The trained model is then tried on new examples it’s never seen before

Video

Model
New

Video
Gesture

Usage

Example: Recognize 
gestures



The wrong model

Solution: Look at your data!

 EDA is your friend

 plot features against each other to gain intuition about what’s happening

 Are your model assumptions appropriate?



Overfitting

Solution: Biasing, regularization

 Limit the complexity of your model

 Limit depth for Decision Trees

 Specify a minimal value for k

 Limit the degree polynomial for regression

“Occam’s Razor” 

 Make your model as simple as possible, but no simpler



How to train your algorithm

Observations 
(Raw data)

Gather 

your data

We want our learner to 

understand this!



How to train your algorithm

Observations 
(Raw data)

Define 
Features

Format

Clean

Transform

Label

Etc.

Preprocess your data



How to train your algorithm

Observations 
(Raw data)

Define 
Features

Training
Data

Test
Data

Split into 

training 

and test 

sets

Helps us estimate how good 

the model is on new data



How to train your algorithm

Observations 
(Raw data)

Define 
Features

Training
Data

Test
Data

Model

Learn the 

model

Optimize: What model 

parameters are most likely, 

given the training data?



How to train your algorithm

Observations 
(Raw data)

Define 
Features

Evaluate 

model’s 

accuracy

Training
Data

Test
Data

Model

How much of the test set 

does it correctly classify?



How to train your algorithm

Observations 
(Raw data)

Define 
Features

Training
Data

Test
Data

Model

Improve the 

model
better features,

different models


