
1

I’ve been making games professionally for about 9 years.

My background in the industry is as a programmer. I started as an intern at Gearbox
while attending SMU Guildhall. When I graduated, I moved out to the Bay Area and
eventually landed at 2K Marin, where I was an AI programmer on BioShock 2 and (for
a time) lead AI programmer on The Bureau.

About two years ago (in 2013), I left to co-found Minor Key Games with my twin
brother Kyle, and I made a game called Eldritch.

2

While making Eldritch, I had trouble describing it to friends and family. It wasn’t an
especially unique or original game, but a hybrid of genres that could be difficult to
envision.

I tended to describe it in terms of my inspirations in roguelikes and immersive sims,
but what I was really trying to say was…

3

If you mix first person combat, stealth, and magic

4

With procedural levels and permanent player death

5

And dress it up in Lovecraftian fiction

6

And make it on a shoestring budget

7

You get something that looks like Eldritch.

8

Minor Key Games is a two-person company, but we make individual projects. So I
made Eldritch mostly by myself, in a span of slightly less than 8 months.

I don’t track my hours, but a back of the envelope calculation says it took about 1500
hours to make Eldritch.

For comparison, a conservative big-budget game—say, 100 people working for 2
years without crunching—would be 400,000 hours. So Eldritch took a fraction of a
percent of the work of a big-budget game, by this measure. I don’t say this to brag
(because Eldritch definitely shows its hasty construction in the simple art and rough
edges), but to explain the constraints I was working within.

Despite its speedy development, Eldritch was fairly well received. It made a tenfold
return on investment (and is still selling). That’s not because it sold millions, but
because development was so lean that it was fairly easy to recoup its cost.

9

10

Roguelikes and other genres depend on generated levels to provide an aspect of
perennial discovery.

Project constraints often encourage generation. In the case of Eldritch, the “cost vs.
time vs. scope” triangle flattens into a line between time and scope, because I
couldn’t spend more to finish the game faster. (That almost never works anyway, but
that’s a separate talk.)

My background as a programmer meant I would be much more efficient developing a
generation algorithm than building levels by hand.

Level generation (and the replayable nature of roguelikes) encourages content reuse.

Levels can be generated at runtime or offline. For example, an open world game
could generate its terrain and then populate points of interest on it by hand.
Generated levels can also supplement handcrafted content. A 10-hour campaign
could be followed by a generated endless mode to extend a game’s lifespan.

Procedural level generation IS design. It’s not strictly the domain of engineering. In
order to write a good generation program, we need to understand what makes a
good level so we can evaluate the output and tweak the system to give the desired
results.

11

12

13

14

15

16

17

18

I’m visualizing the maze here in 2D because it shows better on the slides, but the
maze in Eldritch is a 4x4x3 volume with paths up and down as well as North South
East West.

19

20

21

This presentation does not show any source code, but for those interested, I have
released the code for Eldritch under a permissive license.

This process owes a lot to the Spelunky level generator and similar maze+module
algorithms. Spelunky’s generator was written by Derek Yu and was thoroughly
documented with an interactive implementation by Darius Kazemi at the second link.

22

23

Describing a level as a maze usually has bad connotations. It implies a confusing
structure, with unclear direction to the goal, and a homogeneous environment that
makes every corridor look the same as every other corridor.

For Eldritch, a confusing structure is desired. It contributes to the Lovecraftian fantasy
of getting lost in an inconceivably old and complex city.

For roguelikes, unclear direction is part of the central mechanics. There is no explicit
wayfinding; instead, the player is expected to explore and eventually uncover the exit
on their own.

But the homogeneity of mazes was something to be avoided. I wanted the mazelike
structure, but I wanted it decorated with memorable visual landmarks to help the
player distinguish between parts of the map.

24

25

26

27

28

29

30

31

32

33

34

35

36

37

“Prescribed rooms” are rooms whose configuration are determined by the special
features that will occupy them. For example, a store in Eldritch always has one
entrance, so it must fit into a dead end cell in the maze.

For more complicated configurations, there is no guarantee that we can find a
matching cell in the maze; and even if we do, there is no guarantee about where in
the maze it will be.

So instead of searching the maze for these configurations, we seed the maze with
prescribed rooms, and then forbid Prim’s algorithm from modifying those cells
further.

38

39

40

41

42

43

Room modules are built from voxels in a simple in-engine tool. Each module is 12 x
12 x 8 voxels (at a 1m resolution).

To guarantee that any two adjacent modules are traversable, modules are required to
have an opening in at least a safe region (shown here in yellow).

44

When I put openings outside the safe region, interesting results emerged.

45

This space typically appears as a balcony overlooking the adjacent room.

46

But sometimes, it collides with adjacent features. Here, it looks like it was part of a
neighboring feature that is crumbling away.

47

The low resolution of the voxel grid means that features tend to join in desirable
ways. Here, the upper level of the adjacent module appears to continue seamlessly
into that space.

48

Sometimes, the adjacent module has this region walled off. In this case, the player
may open the door and find themselves facing a blank wall.

So I put a guaranteed item spawner on the ground here. Now when the player finds
this structure, it appears to have been intentionally designed as a loot closet.

49

Modules may be rotated about the vertical axis to fit into the maze. So a module with
exits to the North South and East could be spun into any of the positions on the top
row.

Modules can also be mirrored about the horizontal axes. This produces redundant
configurations (note that each configuration on the bottom row also exists on the
top), so it isn’t strictly necessary. But mirrored modules are visibly different from
unmirrored ones, so doing this stretches our modules a bit further.

Mirroring also adds a small constraint; I couldn’t, for example, spell a word out on
voxels because the word would read backward when the module was mirrored.

50

Using these transforms reduces the set of 64 configurations to 24. (This is left as an
exercise for the reader.)

To avoid homogeneity, I wanted multiple variations on each configuration; for
example, multiple T-junction modules so that every T-junction doesn’t look alike.

I wrote a tool that ran through 10000 iterations of the generator and dumped a
spreadsheet of the frequency of each configuration. This provided a comparative
metric of modules. For example, L-junctions might appear 3x as often as T-junctions.

There was no absolute metric for how many to build. I chose that if a configuration
appeared N times in a map (on average), then I would build N modules to fit that
configuration. For configurations which appear fewer than once per map (on
average), such as the very rare room with exits to the North South East West Up and
Down, I still needed one module.

Between the core modules and “feature” modules (shops, vaults, shrines, etc.), each
world had about 60 modules, and the base game shipped with around 250 modules.

51

Each world had a few visual themes in its modules. The first world is loosely based on
The Shadow Over Innsmouth, and is meant to represent an ancient sunken city
beneath a New England town. I illustrated this with red brick warehouse modules,
purple cavern modules, and white stone ruin modules.

But throwing these all into the mix together produced visually incoherent levels. In
the image on the left, we have warehouses and caverns and ruins all visible from a
single vantage point. It’s a mess.

I didn’t want to build a complete module set for each of these themes (warehouse,
caverns, ruins), because that would approximately triple the module count.

Instead, I explicitly declared the theme of each module, and made the generator
elect a primary theme for each level. It then prefers to use modules from that theme
when they are available; but it can fall back to using out-of-theme modules when
needed.

This produces visually coherent images like the one on the right, while still requiring
only partial module sets for each theme. And when the occasional warehouse or
cavern shows up in a ruins map, it provides a landmarking contrast instead of being
so much visual noise.

52

53

Feature modules are the modules which go into prescribed rooms in the maze. (In
fact, in the game’s data, they are defined in the same place.)

This way, the generator won’t put any random dead-end module into a cell that was
marked for a shop; and likewise, the feature modules are kept out of the mix so a
shop can’t be put into any random dead-end cell.

In addition to systemic rooms like shops, I built a handful of “hero rooms” for each
world: uniquely challenging rooms like the heavily guarded throne room in the left
image. These had a somewhat rare chance of appearing, and were intended to create
a memorable experience when discovered.

I also composed large features out of multiple modules to create unique locations.
The ziggurat in the right image appears at the end of the first world. It fills 8 modules
(in a 2x2x2 arrangement) and is therefore larger than any other singular feature in the
level could possibly be.

54

55

In addition to the common goals for entities in a level (to challenge the player and
provide incentive to explore), Eldritch had goals related to its procedural nature.
Entities needed to appear in logical places, and I needed a way to control group
populations so that I could ramp up the number of enemies over the course of the
game.

56

Developing placement algorithms for every kind of entity would have been
unnecessarily difficult. Instead, it made sense to place entities by hand in each
module.

But I wanted a random element, so that the player couldn’t easily predict that Room
X always has Enemy Y and Loot Z.

So instead of placing entities directly, I placed entity *spawners* in the modules.
During level generation, some rules determine what things are actually spawned at
those locations.

57

The most basic spawner is one which spawns a certain entity 100% of the time. For
example, the player spawner: we always need a player.

58

I could give spawners a random chance to spawn their entity. For example, traps
usually had a 1:2 or 1:3 chance to spawn. This way, I could cover a room with trap
spawners but get random sparser arrangements when the level was generated.

59

I could also change what entity was spawned, using a weighted list. In this example,
the coins which a player finds in a bank vault have a 75% chance of spawning at all,
and a 3:2 chance to be a big pile of coins instead of a single coin.

I also used weighted randomness for enemies. I would place generic enemy AI
spawners, and then write a weighted table of enemies to get a balanced distribution
of grunts and tougher enemies.

60

To control populations of certain groups of entities, I introduced a concept called
“resolve groups”. The generator builds a set of all the spawners belonging to a group,
then culls them and resolves it into a subset of spawners to actually use.

Resolve groups were used to control enemy population. Every enemy AI spawner was
tagged as part of the “AI” group and gathered into a large set. Spawners too close to
the player spawn were removed from the set to avoid the case where the player
starts a level face-to-face with an enemy. Then a number of the remaining spawners
were chosen at random to spawn their entities.

61

At first, I distributed entities somewhat evenly across all modules. During playtesting,
I realized that I could use entities more effectively to sculpt the pacing of a level.

Players are great at identifying patterns, and will quickly recognize a dead end
module. If the player has sufficient health and ammo, they will ignore a dead end and
proceed through the level. By pushing loot into dead ends instead of scattering it
randomly throughout the maze, I encouraged players to explore that space which
would otherwise have been wasted.

I started putting traps into hallways (or more generally, any room with 2 exits). These
modules exist only to be traversed; traps make that traversal more interesting. (I also
used certain kinds of traps to guard loot in dead ends.)

Enemies in Eldritch wander randomly, so I was less strict about their placement. But
the ideal place for them was in junctions (modules with 3 or more exits), open spaces
where the player might find more interesting ways to fight or circumvent the enemy
entirely.

If I’d been a more experienced designer who already knew how to use level features
to shape the player’s experience, I probably would have been thinking about this sort
of thing sooner. And I think this is where procedural levels have a ton of potential to
grow and improve.

“Procedural level generation IS design.”

62

63

These are some slides I cut from the presentation due to time and format.

64

AI pathfinding is done on the voxel grid. This vastly simplified the problem, as there
wasn’t any offline path network to generate and no need to stitch path networks of
modules together.

It also supported pathfinding for flying enemies, as it is a fully volumetric structure
(compared to conventional ground-based networks).

Collidable entities are rasterized into the grid, with a refcount so they can be cleared
when all destructible entities in the space have been destroyed.

65

This slide is pretty self explanatory. Basically, I did no occlusion culling for rendering,
and no culling of any kind for the sim. It’s lazy, and Eldritch tended to perform poorly
on older machines because of this.

66

The generator costs virtually nothing to run. The only parts of generating a level that
take any significant time are building the voxel hull and constructing entities (both of
which happen whether generating a new level or loading into an old one).

67

Uniquely enumerating the module transforms was necessary in order to iterate
through them and test each possible way a module could fit into the maze.

Each of the eight configurations can be generated from the ordered application of
three atomic transforms, chosen to prevent redundant results. For Eldritch, I chose
mirror X, mirror Y, and rotate by 90 degrees (counter-clockwise), but there are other
transforms which also work for this problem.

Then the binary form of the enumeration for a transformed module actually
describes the steps to achieve that transformation. For example, “101b” means to do
the first and third steps (mirror X and rotate 90) and skip the second step (mirror Y).

68

