Game Math Case Studies

Eric Lengyel, PhD

Terathon Software

Content of this Talk

- Real-world problems from game dev
- Small problems, that is, and easy to state
- Actual solutions used in shipping games
- Using math that's not too advanced
- Strategies for finding elegant solutions

Occlusion boxes

- Plain boxes put in world as occluders
- Extrude away from camera to form occluded region of space where objects don't need to be rendered
- How to do this most efficiently?

Occlusion boxes

- Could classify box faces as front/back and find silhouette edges
- Similar to stencil shadow technique
- A better solution accounts for small solution space

Occlusion boxes

- There are exactly 26 possible silhouettes
- Three possible states for camera position on three different axes
- position < box min
- position > box max
- box min \leq position \leq box max
- Inside box excluded

condition	code
$x>y m a x$	0×01
$x<x m i n$	$0 x 02$
$y>y m a x$	$0 x 04$
$y<y m i n$	$0 x 08$
$z>\operatorname{zmax}$	$0 x 10$
$z<\operatorname{zin}$	$0 x 20$

Finite classifications

Marching Cubes, fixed polarity (256 cases, 18 classes)

Transvoxel Algorithm
(512 cases, 73 classes)

Occlusion boxes

- Calculate camera position state and use table to get silhouette
- Always a closed convex polygon with exactly 4 or 6 vertices and edges

Occlusion boxes

```
Upper 3 bits \(=\) vertex count, lower 5 bits \(=\) polygon index const unsigned_int8 occlusionPolygonIndex[43] =
\(0 x 00,0 x 80,0 x 81, ~ 0 x 00, ~ 0 x 82, ~ 0 x C 9, ~ 0 x C 8, ~ 0 x 00, ~ 0 x 83, ~ 0 x C 7, ~ 0 x C 6, ~ 0 x 00, ~ 0 x 00, ~ 0 x 00, ~ 0 x 00, ~ 0 x 00\) \(0 \times 84,0 x C F, 0 x C E, 0 x 00,0 x D 1,0 x D 9,0 x D 8,0 x 00,0 x D 0,0 x D 7,0 x D 6,0 x 00,0 x 00,0 x 00,0 x 00,0 x 00\),
``` \(0 x 85,0 x C B, 0 x C A, 0 x 00,0 x C D, 0 x D 5,0 x D 4,0 x 00,0 x C C, 0 x D 3,0 x D 2\)

\};

\section*{Occlusion boxes}
- Any silhouette edge that is off screen can be eliminated to make occlusion region larger
- Gives occluder infinite extent in that direction
- Allows more objects to be occluded because they must be completely inside extruded silhouette to be hidden

\section*{Occlusion boxes}
- Silhouette edge is culled if both vertices on negative side of some frustum plane
- And extruded plane normal and frustum plane normal have positive dot product

Camera

\section*{Occlusion boxes}
- Strategy:

\section*{Look for ways to classify solutions}

\section*{Oblique near plane trick}
- Sometimes need a clipping plane for a flat surface in scene
- For example, water or mirror
- Prevent submerged objects from appearing in reflection

Ordinary frustum

Oblique near plane

\section*{Oblique near plane trick}
- Hardware clipping plane?
- May not even be supported
- Requires shader modification
- Could be slower

\section*{Oblique near plane trick}
- Extra clipping plane almost always redundant with near plane
- Don't need to clip to both

\section*{Oblique near plane trick}
- Possible to modify projection matrix
- Move near plane to arbitrary location
- No extra clipping plane, no redundancy

\section*{Oblique near plane trick}
- In normalized device coordinates (NDC), near plane has coordinates (0,0,1,1)

\section*{Oblique near plane trick}
- Planes (row antivectors) are transformed from NDC to camera space by right multiplication by the projection matrix
- So the plane (\(0,0,1,1\)) becomes \(\mathbf{M}_{3}+\mathbf{M}_{4}\), where \(\mathbf{M}_{i}\) is the \(i\)-th row of the projection matrix

\section*{Oblique near plane trick}
- \(\mathbf{M}_{4}\) must remain (\(0,0,-1,0\)) so that perspective correction still works right
- Let \(\mathbf{C}=\left(C_{x}, C_{y}, C_{z}, C_{w}\right)\) be the camera-space plane that we want to clip against
- Assume \(C_{w}<0\), camera on negative side
- We must have \(\mathbf{C}=\mathbf{M}_{3}+(0,0,-1,0)\)

\section*{Oblique near plane trick}
- \(\mathbf{M}_{3}=\mathbf{C}-\mathbf{M}_{4}=\left(C_{x}, C_{y}, C_{z}+1, C_{w}\right)\)
\[
\mathbf{M}=\left[\begin{array}{cccc}
e & 0 & 0 & 0 \\
0 & e / a & 0 & 0 \\
C_{x} & C_{y} & C_{z}+1 & C_{w} \\
0 & 0 & -1 & 0
\end{array}\right]
\]
- This matrix maps points on the plane \(\mathbf{C}\) to the plane \(z=-1\) in NDC

\section*{Oblique near plane trick}
- But what happens to the far plane?
- \(\mathbf{F}=\mathbf{M}_{4}-\mathbf{M}_{3}=\mathbf{2} \mathbf{M}_{4}-\mathbf{C}\)
- Near plane and (negative) far plane differ only in the \(z\) coordinate
- Thus, they must coincide where they intersect the \(z=0\) plane

\section*{Oblique near plane trick}

\section*{Oblique near plane trick}
- Far plane is a complete mess
- Depths in NDC no longer represent distance from camera plane, but correspond to some skewed direction between near and far planes
- We can minimize the effect, and in practice it's not so bad

\section*{Oblique near plane trick}
- We still have a free parameter: the clipping plane \(\mathbf{C}\) can be scaled
- Scaling \(\mathbf{C}\) has the effect of changing the orientation of the far plane \(\mathbf{F}\)
- We want to make the new view frustum as small as possible while still including the conventional view frustum

\section*{Oblique near plane trick}
- Let \(\mathbf{F}=2 \mathbf{M}_{4}-a \mathbf{C}\)
- Choose the point \(\mathbf{Q}\) which lies furthest opposite the near plane in NDC:
\[
\mathbf{Q}=\mathbf{M}^{-1} \cdot\left(\operatorname{sgn}\left(C_{x}\right), \operatorname{sgn}\left(C_{y}\right), 1,1\right)
\]
- Solve for \(a\) such that \(\mathbf{Q}\) lies in plane \(\mathbf{F}: \quad a=\frac{\mathbf{M}_{4} \wedge \mathbf{Q}}{\mathbf{C} \wedge \mathbf{Q}}\)

\section*{Oblique near plane trick}
- Near plane doesn't move, but far plane becomes optimal

\section*{Oblique near plane trick}
- Works for any perspective projection matrix
- Even with infinite far depth
- More analysis available in "Oblique Depth Projection and View Frustum Clipping", Journal of Game Development, Vol. 1, No. 2.

\section*{Oblique near plane trick}
- Strategy:

\section*{Get the big picture}

\section*{Fog bank occlusion}
- Consider fog bank bounded by plane
- Linear density gradient with increasing depth
- Perpendicular to plane
- Zero density at plane

\section*{Fog bank occlusion}

\section*{Fog bank occlusion}

\section*{Fog bank occlusion}
- For a given camera position, we want to cull objects that are completely fogged
- Surface beyond which objects are completely fogged is interesting...

\section*{Fog bank occlusion}

\section*{Fog bank occlusion}
- Culling against that curve is impractical
- Instead, calculate its maximum extent parallel to the fog plane
- Then cull against plane perpendicular to fog plane and camera view direction at that distance

\section*{Fog bank occlusion}

\section*{Fog bank occlusion}
- \(\mathbf{F}=\) fog plane, normal outward
- \(\mathbf{C}=\) camera position
- \(\mathbf{P}=\) point being shaded
- \(\mathbf{V}=\mathbf{C}-\mathbf{P}\)
- \(a=\) linear density coefficient

\section*{Fog bank occlusion}
- Density as function of depth:
\[
\rho(\mathbf{P})=-a(\mathbf{F} \wedge \mathbf{P})
\]
- Log light fraction \(g(\mathbf{P})\) for given \(\mathbf{C}\) and \(\mathbf{P} \mathbf{~}^{\dagger}\)
\[
g(\mathbf{P})=-a\|\mathbf{V}\| \frac{\mathbf{F} \wedge \mathbf{P}+\mathbf{F} \wedge \mathbf{C}}{2}
\]
'See "Unified Distance Formulas for Halfspace Foq", Journal of Graphics Tools, Vol. 12, No. 2 (2007).

\section*{Fog bank occlusion}
- Set \(g(\mathbf{P})\) to log of small enough fraction to be considered fully fogged
- For example: \(g(\mathbf{P})=\log (1 / 256)\)
- This is constant

\section*{Fog bank occlusion}
- For given \(\mathbf{C}\), we need to find \(\mathbf{P}\) with the maximum horizontal distance \(d\) from \(\mathbf{C}\) that also satisfies
\[
g(\mathbf{P})=-a\|\mathbf{V}\| \frac{\mathbf{F} \wedge \mathbf{P}+\mathbf{F} \wedge \mathbf{C}}{2}
\]

\section*{Fog bank occlusion}
- So express \(d\) as a function of \(\mathbf{P}\) and find the zeros of the derivative, right?
- Turns out to be a huge mess
- Not clear that good solution exists

\section*{Fog bank occlusion}
- Insight: instead of using independent variable \(\mathbf{P}\), express \(\mathbf{F} \wedge \mathbf{P}\) as a fraction of \(\mathbf{F} \wedge \mathbf{C}\)
\[
\begin{gathered}
\mathbf{F} \wedge \mathbf{P}=t(\mathbf{F} \wedge \mathbf{C}) \\
g(\mathbf{P})=-a\|\mathbf{V}\| \frac{(t+1)(\mathbf{F} \wedge \mathbf{C})}{2}
\end{gathered}
\]

\section*{Fog bank occlusion}

\section*{Fog bank occlusion}
- Can now write \(\boldsymbol{g}(\mathbf{P})\) as follows
\[
g(\mathbf{P})=-\frac{a}{2}(t+1)(\mathbf{F} \wedge \mathbf{C}) \sqrt{d^{2}+(t-1)^{2}(\mathbf{F} \wedge \mathbf{C})^{2}}
\]
- And solve for \(d^{2}\) :
\[
d^{2}=\frac{m^{2}}{(t+1)^{2}(\mathbf{F} \wedge \mathbf{C})^{2}}-(t-1)^{2}(\mathbf{F} \wedge \mathbf{C})^{2} \quad m=\frac{2 g(\mathbf{P})}{a}
\]

\section*{Fog bank occlusion}
- Take derivative, set to zero, simplify:
\[
t^{4}+2 t^{3}-2 t+k-1=0 \quad k=\frac{m^{2}}{(\mathbf{F} \wedge \mathbf{C})^{4}}
\]
- Now need to solve quartic polynomial

\section*{Fog bank occlusion}
- Know what your functions look like!

- Always \(k\) at \(t=1\), local \(\min\) at \(t=1 / 2\)

\section*{Fog bank occlusion}
- If function is negative at \(t=1 / 2\), then solution exists
- Happens exactly when \(k<27 / 16\)
- Tempting to calculate with closed-form solution to quartic
- But almost always better to use Newton's method, especially in this case

\section*{Fog bank occlusion}
- Newton's method:
\[
t_{i+1}=t_{i}-\frac{f(t)}{f^{\prime}(t)}
\]

\section*{Fog bank occlusion}
- In our case,
\[
f^{\prime}(t)=4 t^{3}+6 t^{2}-2
\]
- Start with \(t_{0}=1\) :
\[
\begin{aligned}
f(1) & =k \\
f^{\prime}(1) & =8
\end{aligned}
\]

\section*{Fog bank occlusion}
- Calculate first iteration explicitly:
\[
t_{1}=1-\frac{k}{8}
\]
- Newton's method converges very quickly with 1-2 more iterations

\section*{Fog bank occlusion}
- Plug \(t\) back into function for \(d^{2}\) to get culling distance
\[
d^{2}=\frac{m^{2}}{(t+1)^{2}(\mathbf{F} \wedge \mathbf{C})^{2}}-(t-1)^{2}(\mathbf{F} \wedge \mathbf{C})^{2}
\]
- If \(d^{2}>0\) when \(t=0\), possible larger culling distance

\section*{Fog bank occlusion}
- Solution exists at \(t=0\) when \(\mathrm{k}>1\)
- Solution exists deeper when \(\mathrm{k}<27 / 16\)
- Take the larger distance if both exist

\section*{Fog bank occlusion}
\[
k>\frac{27}{16}
\]
\[
k \in\left[1, \frac{27}{16}\right]
\]
\[
k<1
\]

\section*{Fog bank occlusion}
- Strategy:

Eliminate variables
Know what functions look like
Embrace Newton's method

\section*{Contact}
- lengyel@terathon.com
- http://www.terathon.com/lengyel/
- @EricLengyel

\section*{Supplemental slides}
- Bézier animation curves
- Floor and ceiling functions
- Cross product trick
- Bit manipulation tricks

\section*{Bézier animation curves}
- Another note about Newton's method
- Cubic 2D Bézier curves often used to animate some component of an object's transform
- Position \(x, y, z\) or rotation angle, for example

\section*{Bézier animation curves}
- 2D coordinates on curve are time \(t\) and some scalar value \(v\)
- \(t\) is not the parameter along the curve
- Big source of confusion in data exchange

\section*{Bézier animation curves}
- Control points specified in \((t, v)\) space
- Time coordinates increase monotonically

\section*{Bézier animation curves}
- To evaluate the value of a curve \(\mathbf{P}(s)\) at a given time \(t\), it's necessary to find the parameter \(s\) along the curve for which \(P_{t}(s)=t\)
- Requires solving a cubic polynomial
- Newton's method perfect for this case

\section*{Bézier animation curves}
- For details, see Track structure in OpenGEX Specification

Open Game Engine Exchange Specification

Version 1.1.2
- opengex.org

\section*{Floor and ceiling}
- Not all CPUs have floating-point floor/ceil/trunc/round instructions
- Need to implement with ordinary math
- Needs to be fast, no FP/int conversions

\section*{Floor function}
- 32-bit float has 23 bits in mantissa
- Thus, any value greater than or equal to \(2^{23}\) is necessarily an integer
- No bits left for any fractional part

\section*{Floor function}
- Trick is to add and subtract \(2^{23}\)
- The addition causes all fraction bits to be shifted out the right end
- The subtraction shifts zeros back into the space previously occupied by the fraction

\section*{Floor function}
- When we add \(2^{23}\), the original number is rounded to the nearest integer \(+2^{23}\)
- If result is greater than original number, then simply subtract one to get floor

\section*{Floor function}
- What about negative numbers?
- Use the same trick, but subtract \(2^{23}\) first, and then add it back
- Can combine for all possible inputs

\section*{Floor function}
```

__m128 floor(__m128 x)
{
__m128 one = {0x3F800000};
__m128 two23 = {0x4B000000};
__m128 f = _mm_sub_ps(_mm_add_ps(f, two23), two23);
f = mm_add_ps(_mm_sulo_ps(x, two23), two23);
f = mm_sub_ps(f, _mm_and_ps(one, _mm_cmplt_ps(x, f)));
return (f);
}

```

\section*{Floor function}
- But wait, this fails for some very large inputs (bigger than \(2^{23}\))
- All of these inputs are already integers!
- They must be if they're bigger than \(2^{23}\)

\section*{Floor function}
- So just return the input if it's \(>2^{23}\)
```

_m128 sgn = {0x80000000};
__m128 msk = mm_cmplt_ps(two23, _mm_andnot_ps(sgn, x));
f = _mm_or_ps(_mm_andnot_ps(msk, f), _mm_and_ps(msk, x));

```

\section*{Ceiling function}
- Instead of subtracting one if result is greater than input, add one if result is less than input
\[
\mathrm{f}=\text { _mm_add_ps(f, _mm_and_ps(one, _mm_cmplt_ps(f, x))); }
\]

\section*{Floor and ceiling}
- Strategy:

\section*{Reduce problem domain}

\section*{Cross product trick}
- Cross product \(\mathrm{V} \times \mathrm{W}\) given by:
V.yzx * W.zxy - W.zxy * V.yzx
- Two mults, one sub, four shuffles

\section*{Cross product trick}
- Can do this instead:
\[
(V * W \cdot y z x-V \cdot y z x * W) \cdot y z x
\]
- Two mults, one sub, three shuffles
- And same shuffle each time

\section*{Bit manipulation tricks}
- Range checks
- Non-branching calculations
- Logic formulas

\section*{Integer range checks}
- Integer range checks can always be done with a single comparison:
\[
\text { (unsigned) }(x-\min)<=(u n s i g n e d) \quad(\max -\min)
\]

\section*{Non-branching calculations}
- Using logic tricks to avoid branches in integer calculations
- Many involve using sign bit in clever way
- Also useful to know \(-\mathrm{x}==\sim \mathrm{x}+1\)

\section*{Non-branching calculations}
- Helps scheduling, increases ILP
- Reduces pollution in branch history table
- But can obfuscate code
- Use where performance is very important
- Don't bother elsewhere

\section*{Clever uses of sign bit}
- if (a < 0) ++x;
- Replace with:
- x -= a >> 31; // 32-bit ints

\section*{Right-shifting negative integers}
- Shifting \(n\)-bit int right by \(n-1\) bits:
- All zeros for positive ints (or zero)
- All ones for negative ints
- C++ standard says a >> 31 is "implementationdefined" if a is negative

\section*{Right-shifting negative integers}
- Any sensible compiler generates instruction that replicates sign bit
- To avoid issue in this case, could also use:
- x += (uint32) a >> 31

\section*{Predicates for 32-bit signed ints}
- (x == 0) lzcnt(x) >> 5
- (x != 0) (lzcnt(x) >> 5) ^ 1
- \((x<0) \quad(\) uint 32\() x \gg 31\)
- (\(x>0\)) (uint32) -x >> 31
- (\(x==y\)) lzcnt \((x-y) \gg 5\)
- (x ! \(=\mathrm{y}) \quad(u i n t 32)((\mathrm{x}-\mathrm{y}) \mathrm{l}(\mathrm{y}-\mathrm{x}))\) >> 31
- Izcnt() is leading zero count

\section*{Absolute value}
- \(y=x \gg 31\)
- \(\operatorname{abs}(x)=\left(x^{\wedge} y\right)-y\)
- Because \(-x=\sim x+1\)
\(=\mathrm{x} \wedge 0 \mathrm{xFFFFFFFF}-0 \mathrm{xFFFFFFFF}\)

\section*{Conditional negation}
- Same trick can be used to negate for any bool condition:
- if (condition) \(x=-x\);
- \(x=(x\)-condition) + condition

\section*{Logic Formulas}
\begin{tabular}{|c|c|c|}
\hline Formula & Operation / Effect & Notes \\
\hline \(x \&(x-1)\) & Clear lowest 1 bit. & If result is 0 , then \(x\) is \(2^{n}\). \\
\hline \(\mathrm{x} \mid(\mathrm{x}+1)\) & Set lowest 0 bit. & \\
\hline \(x \mid(x-1)\) & Set all bits to right of lowest 1 bit. & \\
\hline \(x \&(x+1)\) & Clear all bits to right of lowest 0 bit. & If result is 0 , then x is \(2^{n}-1\). \\
\hline x \& -x & Extract lowest 1 bit. & \\
\hline \(\sim \mathrm{x}\) \& (\(\mathrm{x}+1)\) & Extract lowest 0 bit (as a 1 bit). & \\
\hline \(\sim \sim^{\text {x }} \mid(\mathrm{x}-1)\) & Create mask for bits other than lowest 1 bit. & \\
\hline \(\mathrm{x} \mid \sim(\mathrm{x}+1)\) & Create mask for bits other than lowest 0 bit. & \\
\hline x | -x & Create mask for bits left of lowest 1 bit, inclusive. & \\
\hline \(\mathrm{x}^{\wedge}-\mathrm{x}\) & Create mask for bits left of lowest 1 bit, exclusive. & \\
\hline \(\sim \mathrm{x} \mid(\mathrm{x}+1)\) & Create mask for bits left of lowest 0 bit, inclusive. & \\
\hline \(\sim \mathrm{x} \wedge(\mathrm{x}+1)\) & Create mask for bits left of lowest 0 bit, exclusive. & Also \(x \equiv(x+1)\). \\
\hline \(x^{\wedge}(\mathrm{x}-1)\) & Create mask for bits right of lowest 1 bit, inclusive. & 0 becomes -1 . \\
\hline \(\frac{\sim x \&(x-1)}{}\) & Create mask for bits right of lowest 1 bit, exclusive. & 0 becomes -1 . \\
\hline \(\mathrm{x}^{\wedge}(\mathrm{x}+1)\) & Create mask for bits right of lowest 0 bit, inclusive. & remains -1 . \\
\hline \(x \&(\sim x-1)\) & Create mask for bits right of lowest 0 bit, exclusive. & remains -1. \\
\hline
\end{tabular}

This table from "Bit Hacks for Games", Game Engine Gems 2, A K Peters, 2011.

\section*{Contact}
- lengyel@terathon.com
- http://www.terathon.com/lengyel/
- @EricLengyel```

