
Mobile devices as development
platform in Broken Age

Oliver Franzke
Lead Programmer, Double Fine Productions

p1xelcoder

What makes a dev platform?

● Fast iteration time

● Content

● Native code

● Debuggability

● Game-play script

● Native code

● Graphics

x4

Developing BA on mobile devices

● Some of the stuff we did on device

● Game-play programmer wrote touch controls

● VFX artist checked and optimized effects

● Fix shader bugs

Double Fine development pipeline

● Target platform:

● Code: compiled on target platform

● Data: shared, authored on Windows

● Same hardware

● Performance characteristics similar

● No per-platform content

Content workflow

Windows workstation
• Author data
• Process data

Windows build server
• Process data

Commit

Iterate

Double Fine development pipeline

● Target platform:

● Code: compiled on OSX

● Data: not shared, authored on Windows

● Hardware is very different

● Performance varies greatly

● Platform / GPU specific data necessary

Content workflow

Windows workstation
• Author data

Windows build server
• Process data

OSX workstation
• Build and push package

PVR

ETC1

DXT

PVR

ATC

Test

Commit

Sync

Iterate

Mobile as development platform

● Broken Age Act 1 package size: ~1.2GB

● Reboot time was ridiculous!

● ~10 minutes*

● 8 – 21 minutes

● Infeasible for development!

* Recent Xcode update reduced reboot time to 2 – 3 minutes

Too slow

● What is going on?

● Relink and update staging data: 10+ seconds

● Data sync and install: ~10 minutes

● Sync (comparison and copy) is bottleneck

Incomprehensibly slow

● What is going on?

● Package build time: 4+ minutes

● Data transfer and install: 4 - 17 minutes

● USB speed is bottleneck

Slow content update

● Same symptom but different cause

● Different solutions required

● Minimize APK size

● Work around Xcode data sync

Fast content update

● Minimal APK: No data, just code

● Reduced package build time

● Fast APK transfer and installation

● Deal with data separately

● Only copy added or changed files

Fast content update

● Load assets from ‘sdcard’

● Supported by (almost) all Android devices

● Remap file location
bool RemapFilename(const char* filename, char* remapped) {

#if _DEV

sprintf(remapped, "/sdcard/dfp/dfa/%s", filename);

return FileExists(remapped);

#else

return false;

#endif

}

Fast content update

● Data sync

● 1st approach: Consistent file database

● Sync changes using ADB (e.g. adb push …)

● Keep track of files on device

● Update database during sync

● Slow and inconvenient

● Multiple devices: Per-device database?!

Fast content update

● Data sync

● 2nd approach: Scan device files

● Naïve implementation is slllooooowwww….

● Re-implement ADB protocol based on OS source

https://android.googlesource.com/platform/system/core.git/+/master/adb/

Fast content update

● Data sync

● 2nd approach: Scan device files (cont.)
● Example: List directory
socket.send(pack(“LIST”,15,“/sdcard/dfp/dfa”))

while True:

id, mode, size, time, namelen = unpack(socket.recv(16))

name = '' if namelen == 0 else _recvall(socket,namelen)

if id == “DONE”: break

if stat.S_ISDIR(mode):

dirs.append(…)

elif stat.S_ISREG(mode):

files.append(…)

return (dirs, files)

Fast content update

● Data sync

● 2nd approach: Scan device files (cont.)

● Compare files and compute diff

● Sync files using ADB protocol

● Very fast

● No database

Fast content update

● Results

● Data sync: 15 - 25 seconds

● APK build, copy and install: 30 - 40 seconds

● 10 – 20+ speedup!

Fast content update

● Minimal staging folder

● Delete unchanged files

● Copy only added or changed files

● Use sync timestamp

● Reduced work for Xcode

● No run-time changes necessary

Fast content update

● Results

● Relink and update staging data: 15+ seconds

● Data sync and install: 30 seconds

● 13 speedup (latest Xcode 2 – 4 speedup)

Mobile as development platform

● Ideal workflow

Windows workstation
• Author data
• Process data

Windows build server
• Process data

OSX workstation
• Build and push package

PVR

ETC1

DXT

PVR

ATC

Iterate

Test

File streaming

● No re-sync necessary*

● Hot-reload changed files

● No OSX workstation needed

● Artists can work on target device

* Code changes require re-sync

File streaming

Client
Game session on device

Manager
Worker thread 1

Worker thread 2

fopen(), fread() …

Server
Python-based tool on workstation

Server thread 1

Server thread 2
send(), recv()

Script file A

DXT file B

DXT file C

PVR file D

File streaming

● Latency optimization

● Use local file cache

fread(out, 64, 1, fp)

Client
Game session on device

Server
Python-based tool on workstation

File cache

?

File streaming

● Latency optimization (cont.)

● Read at least one cache line

fread(out, 64, 1, fp)

Client
Game session on device

Server
Python-based tool on workstation

256KB

File cache send(), recv()

64

File streaming

● Latency optimization (cont.)

● Exploit data locality

fread(out, 4, 2, fp)

Client
Game session on device

Server
Python-based tool on workstation

File cache

8 ?

File streaming

● Latency optimization (cont.)

● fstat() & fopen() read first cache line

Client
Game session on device

Server
Python-based tool on workstation

256KB

File cache send(), recv()

fopen(name, ‘rb’)

File streaming

● Latency optimization (cont.)

● Cache expires after 5 ms to avoid stale data

● Multiple concurrent requests

● User filter to define streamed files

● Local IO will always be faster

File streaming

● Fully integrated into our game editor 2HB

Conclusion

● Mobile as development platform is…

● …not trivial

● …worth your time

● …necessary for a big project

Thank you!

Questions?

p1xelcoder

