
Preview: Interactive XMF

A Standardized Interchange File Format
for Advanced Interactive Audio Content

Chris Grigg
MIDI Manufacturers Association, Los Angeles, CA, USA
Beatnik Inc., San Mateo, CA, USA
Control-G, Oakland, CA, USA
gdc04@chrisgrigg.org

Attribution Note: Interactive XMF is a continuation of previous work done at Project Bar-B-Q [4, 5, 6],
all of which was highly collaborative, involving too many participants to list here, all of them invaluable;
kindly consult the references. George A. Sanger, The Fat Man, provided most of Section 4 of this paper.

Abstract

The Interactive XMF (iXMF) working group in the Interactive Audio SIG of the MIDI
Manufacturers Association has produced a draft specification for an open public standard file
format supporting the interchange of advanced interactive audio soundtracks. It uses a cue-
oriented model, is not tied to any particular authoring or playback platform, is programming
language-neutral, and intended to be used without license agreements or royalty payments. It is
technically extensible in several dimensions. This paper describes the iXMF file format and the
model for the underlying soundtrack engine.

Contents
1. Background and Motivation ...1
2. Architecture ..3
3. Functionality Summary ..8
4. Content Development ..19
5. Notes ..20
6. Standardization Status...21
7. References ...21

1. Background and Motivation
Perhaps uniquely in the interactive media world, the field of interactive audio (IA) has never experienced
the benefits of a public standard file format to represent what they do. This has resulted in a substantial
duplication of effort, as each game developer or OS vendor has had to develop their own proprietary tools,
which can be seen as a highly inefficient use of the industry resources invested in the IA field. Equally
problematic is that as a side-effect of the parallel development, all of these IA systems are mutually
incompatible, with little or no interoperability, or import/export capability, due to large or small differences
in file formats, underlying models, and content editing methods. Further, since the number of users for each

of these systems is small, the incentive to invest in tool development is small, so tools in general tend to be
primitive and difficult to use.

These problems present barriers both to the quality of any given soundtrack, and to professional
development for interactive audio artists, since the technical/creative learning curve must be scaled anew
every time a new target platform needs to be dealt with, and every time a given audio artist works with a
new game developer.

By way of comparison, imagine how the progress rate of the 3D graphics world, including the quality of
model design and animation, would have been retarded had public open standards such as OpenGL never
materialized.

Ironically, despite the many apparent differences, the underlying fundamental capabilities and operating
models of most of these proprietary IA systems tend to be highly similar. In IA circles, there is now a
sense that there exists a mature and stable set of required basic features for any advanced IA system.

The key element that has been missing is a non-proprietary standard for IA content. A standard format
creates a single market for infrastructure (playback technologies and content creation tools), encouraging
greater investment and better quality. A standard format also provides a unified conceptual model for IA
practitioners, defragmenting the field in general and encouraging the sharing of information with regard to
technique, style, and similar professional development-related communication.

In an attempt to forge this missing link, the Interactive XMF (eXtensible Music Format) working group
(iXMF-WG) of the Interactive Audio SIG (IASIG, an activity of the MIDI Manufacturers Association
[MMA]) has produced a draft specification for just such a public standard – a file format for the
interchange of professional advanced interactive audio soundtracks.

The proposed iXMF format is a binary format not bound to any particular playback platform or
programming language, free of any license and royalty encumbrances, and is extensible in several
dimensions both for future standardization and for custom purposes. It uses the XMF Meta File Format [1],
an extensible container technology previously standardized by the MMA.

An iXMF file contains both playable soundtrack media (audio and MIDI), plus data expressing a set of
rules governing exactly how that media will be played in reaction to events. In other words, the dynamic
aspect of the soundtrack is data-driven, by contrast to many previous IA systems that require coding in C++
or similar high-level programming languages to achieve real-time soundtrack adaptation. This is an
important shift from a product development management perspective, as it decouples the audio creative
department from dependencies on the engineering department, which in a typical game development setting
tends to be highly overburdened and thus unable to devote sufficient time to fully and successfully
cooperate on achieving the audio artist’s desired creative effects.

Data structures in the iXMF file give the IA artist extensive facilities for assembling blocks of pre-authored
sound media into a continuous soundtrack, including detailed control over the timing and crossfade
characteristics of every assembly transition. Through the combination of a simple event mechanism and a
simple scripting language, iXMF makes it possible for an IA artist to control, at a fine level of detail, what
the soundtrack’s response to any given real-time event will be, including altering the order in which the
blocks play, controlling the muting of tracks within the blocks, and dynamically controlling any available
continuous DSP parameters, from volume to 3D spatial position. These real-time events may be triggered
either from the game (or other application) hosting the soundtrack engine, or else from markers placed in
the sound media. A callback mechanism allows the soundtrack to signal the host when particular points are
reached, or certain conditions occur.

The draft specification provides a detailed model of the underlying playback engine, with full explanation
of several extensibility mechanisms allowing for future growth of the format. A set of terminology
describing the data and code entities in the model is defined.

2. Architecture
Underlying the design of the iXMF data file, and the model for the software that reads iXMF files, are
some general principles gleaned from extensive practical experience developing game soundtracks. This
experience dictated the iXMF system’s architectural design.

There is much more to a game soundtrack than just the collection of sound files that get played. The thing
that creates the desired effect in the mind of the gamer is not just the sounds themselves, however excellent
a job the audio artist may have done in creating them, but rather the way the sounds are used in reaction to
gameplay events, and the way the individual sounds combine to create a compelling soundtrack. The
downsides of the traditional practice of giving the game programmer a completely free hand to set the
compositional rules for these real-time audio collages are now widely acknowledged, and it has become
more or less standard practice in advanced IA systems to provide the audio artist with some mechanism for
controlling what happens in the soundtrack, and when, and how the soundtrack responds to real-time
changes.

Therefore, an iXMF file contains not just the playable sound files, but also data that captures the semantics
for when each file will be played, and sometimes how it will be manipulated as it plays.

2.1 XMF Structured Storage
This compound characteristic leads to a requirement that the data file be able to contain multiple data
resources.

IXMF File

Audio Files

DLS
Files

MIDI Files

Playback Rules

The iXMF-WG chose XMF technology for the container because of its flexible folder-tree orientation and
its ability to accommodate future standardized or custom extensions, because it is free to use, and because it
was also created and is maintained by the MMA. The XMF container technology is specified in [1].

In the current spec draft, media files are limited to audio files, Standard MIDI Files, and DLS-family
instrument files. The set of available media formats can be extended by future standards, or with
proprietary or open-source formats, though this would require authoring tool support.

2.2 Soundtrack Manager
The iXMF architecture assumes the existence of a Soundtrack Manager, a software layer that reads audio
content from iXMF files and manages its interactive playback via any required number of Players.

Host Application

Host Audio System

Players

Cues

MIDI DLS

IXMF File

Players Players

Audio

Soundtrack Manager
Load Media

Into Players

Native Players for all the iXMF media types are assumed to exist for any given target platform. Depending
on the platform, Players may take the form of (on computers) media playback API objects, or else of (on
game consoles) a fixed set of available audio channels. The Soundtrack Manager also sets up and handles
all Player callbacks (or interrupts) for markers embedded in the audio media, as well as any other position-
based callbacks.

Note: As a side project to encourage the proliferation of iXMF, the iXMF Working Group is
considering creating an open-source, platform-independent C++ Soundtrack Manager
implementation. This implementation would define a common API for an abstract ‘Player adapter
layer’ object to glue the Soundtrack Manager to the pre-existing platform-native Player facilities,
with the hope that bringing iXMF up on a new platform could be quickly done by simply writing
an implementation of the adapter layer. Any such implementation would not be encumbered by
any license, including the GPL or any of its variants.

2.3 Cues
The structure of iXMF files and of the underlying Soundtrack Manager model is based on the premise that
the primary semantic content unit of a soundtrack is a Cue. The draft specification defines Cue thus:

“…the game (or other host application) requests interactive audio services using named,
high-level events [called Cues], and the system’s response to each event is determined
primarily by the audio artist. The soundtrack’s response to a Cue may be simple, such as
playing or halting a single audio file, or it may be complex, such as controlling [the
playback of] a system of several related files and dynamically manipulating various
playback parameters over time.”

A soundtrack is therefore constructed of some number of named Cues, as determined by negotiation
between the game programmer(s) who must call the Cues and the audio artist(s) who must create them. For
each required Cue there is a Cue definition data structure in an iXMF file, with some number of rules and
some number of pointers to Chunks (region or whole file) of playable sound data. When the host requests a
given Cue by name, the Soundtrack Manager searches its loaded iXMF files for a Cue with that name, and
executes the appropriate rule, in most cases causing some of the linked sound files to play.

Host Application

(Internal Details)

Soundtrack Manager

Named Request for Services

startCue(“mainTitlesMusic”);

There are no restrictions on the ASCII text strings used for Cue names, so developers are free to invent any
desired naming convention. When the game requests a Cue, the Soundtrack Manager returns an ID that can
be used for any needed subsequent communication with that Cue.

Example Cue Requests:
Dialog-Danny-Line0233

Music-Level22-Intro

Sfx-CarExplosion(3)

The corresponding iXMF File would contain definitions for the same three Cue names, Dialog-Danny-
Line0233, Music-Level22-Intro, and Sfx-CarExplosion.

Note that the last example above shows a parameter. At the API level, Cue requests can optionally include
one or more numeric parameters, which the behavior rules in a Cue (explained in the next section) can
interrogate, for example to select a variation, set a volume level, or otherwise adapt to game state. Use of
these parameters of course requires specific cooperation and understanding between game programmer and
audio artist.

Cue definitions can be seen as iXMF’s internal, sound-artist-created handlers for events that originate
outside of the Soundtrack Manager domain; later, you will see the Callback Handler mechanism, which
allows the outside world to provide handlers for events that originate within the Soundtrack Manager
domain.

2.4 Behavior Rules: Events and Scripts
The Cue rules described earlier take the form of some number of Scripts stored within each Cue definition
structure.

IXMF File

Media
Files

Cues

Scripts

scriptStatement
scriptStatement
scriptStatement
scriptStatement
scriptStatement

Scripts are named, and a Script is invoked when an event with the same name occurs while that Cue is
running. Scripts can be seen as handlers for events that originate within the Soundtrack Manager domain,
specifically within that same Cue.

A Script is a simple program in binary opcode format, not source code format, which is crafted by the audio
artist to implement some aspect of the real-time assembly of the desired soundtrack. A Script consists of
one or more simple statements. The set of available Script statements can be extended by future standards,
or with proprietary or open-source extensions, though this would require authoring tool support.

Example Script Statements:
conditionalBranch(expression, labelID)

preloadCueMedia(cueID)

setDspParameter(dspParamID, value)

Certain Script names are predefined, and will be invoked by the Soundtrack Manager under pre-determined
conditions, such as:

CueStart – This Cue is about to be started (set up instance)

CueCanceled – This Cue has been canceled by the host (tear down)

XmfFileLoaded – The iXMF file containing this Cue has just been loaded (set up statics)

ChunkEnded – One of the Chunks in this Cue has just ended (prepare for next Chunk)

XmfUnloaded – The iXMF file containing this Cue is about to be unloaded (tear down statics)

All other Script names are available for use by the audio artist. Each of theseScripts will be invoked by the
Soundtrack Manager whenever a marker with the same name is encountered during Chunk playback within
the same Cue.

Cue “Fred & Wilma”

Script “Yabba”

Script “Coda”

Script “Doo”

Marker “Coda”

For example, if the audio artist places a marker named “Coda” in an audio file, and that audio file is played
in a given Cue that includes a Script named “Coda”, then that Script will be called when playback passes
through that marker. This mechanism gives the audio artist great flexibility in synchronizing soundtrack
elements to one another, and in signaling soundtrack events to the host game.

2.5 Variables
To maintain state, count loops, and facilitate communication with the host and other Cues, each Cue is
given an array of local variables. With Script statements, local variables can be read, set, modified, and
tested in conditional branches. No Cue can see any other Cue’s local variables. The Soundtrack Manager
also maintains a separate array of global variables that can be used in the same ways, but are visible to all
Cues simultaneously; this makes one-way or two-way communication among multiple running Cues
possible.

Host Application

Soundtrack Manager

Player Player Player Player Player

Cue Cue

Global
Variables

Local
Variables

All local and global variables can also be set and read by the host game; this makes one-way or two-way
communication between a running Cue and the game possible, although since the variables are only
indexed and not named, this requires a certain amount of planning and cooperation between the game
programmer and the audio artist.

Example Script Statements Using Variables:
setVariable(localOrGlobal, variableID, value)

val = getVariable(localOrGlobal, variableID)

3. Functionality Summary
The architectural elements of Cues, Scripts, Variables, and playable Chunks have been designed so that
when combined in various ways, a comprehensive set of advanced IA functionality is made available. This
section summarizes that functionality, as broken down into several subject areas.

3.1 Implementation of Cue Interface
Most basically, the Soundtrack Manager receives Cue requests from the host game, and responds by
fetching the corresponding data from the iXMF file, and executing it. In most cases this means playing
appropriate sound media, sometimes influenced by game state. The Cue interface ‘gets the ball rolling,’ in
the sense that once a Cue has been started, its internal actions as defined by the audio artist are able to take
over all internal management of the Cue.

Host Application

(Internal Details)

Soundtrack Manager

Named Request for Services

startCue(“mainTitlesMusic”);

3.2 Assembling Continuous Sounds
Perhaps the most basic function of any IA sound system is the runtime assembly of each apparently
continuous soundtrack element (such as a music bed, or an ongoing background sound effect) from discrete
media Chunks, without producing audible gaps or seams at the transitions. This generally requires the use
of at least two Players and crossfading, as well as a mechanism for loading and pre-queuing the Players
with the appropriate Chunks. This section explains the iXMF Soundtrack Manager’s mechanism for
achieving this assembly, using a technique that simultaneously allows for both dynamic branching and
preserving artist-defined sync relationships among the Chunks.

For smooth transitions between Chunks, two Players are used for each transition. This allows an outgoing
Chunk to be overlapped with an incoming Chunk, and cross-faded, rather than producing a disruptive
sudden cut-out:

However since this is generic functionality, it says nothing about the mechanism for determining which of
the audio artist’s many media Chunks will be played next. For simplest implementation and maximum
flexibility, iXMF uses the concept of a NextChunk variable. The value of NextChunk can be set at any
time, however it is only used and acted on at the last possible moment before the upcoming transition,
when the Soundtrack Manager needs to commit to the transition:

Among other things (see next section), this approach allows the audio artist to give each Chunk in an iXMF
file the ID of the Chunk that is supposed to follow it, setting up a chain of Chunks without having to do any
scripting at all. Here’s how.

If NextChunk is empty, then playback stops at the end of the current Chunk and this Player is released; if
this is the last Chunk for that Cue, then the Cue will also expire and be released.

However, if NextChunk isn’t empty, but instead points at another, valid Chunk, then at an appropriately
minimal interval before the current Chunk’s exit sync point, the Soundtrack Manager prepares a second
player with the indicated NextChunk, and then starts the second player at whatever time is needed to
synchronize the new Chunk’s entry sync point to the current Chunk’s exit sync point. This achieves the
desired smooth transition to the new Chunk:

Note that these entry and exit sync points are not required to coincide with the Chunk start and end; in this
example, the red lines are the sync points and might represent musically interesting times, perhaps a bar
line.

iXMF supports the concept of different SyncTypes, for example ‘match marker names,’ ‘match beats,’
‘match bars,’ ‘match phrases,’ ‘match any marker,’ and so forth. For music, the iXMF-WG is currently
working on a separate sync scheme for algorithmically determined synchronization that would not depend
on placing markers in the playable sound media, but rather would automatically align bars and beats based
on tempo maps in MIDI format, which the audio artist would associate with each audio music file.

Since it is common to need more than one kind of continuous sound element at once, iXMF also supports
the concept of Sync Groups. Every Cue (and, via Scripts, optionally every Chunk in a Cue) can be assigned
to a named Sync Group, and it will then only synchronize to other elements also belonging to the same
Sync Group. Since Sync Groups span Cues, this makes it possible to trigger new Cues or Chunks on the
fly, even if not originally authored as part of the element that’s currently playing, and have them
automatically time-align themselves.

With regard to the selection of which Chunk will be used as NextChunk, iXMF allows continuous sound
elements to be constructed either via static playlists of Chunks, or else through the use of dynamic rules.

3.3 Static Chunk Ordering
With regard to the selection of which Chunk will be used as NextChunk, iXMF allows continuous sound
elements to be constructed either via static, pre-defined sequence of Chunks, or else through the use of
dynamic rules.

There are two ways to set up a static Chunk order:

A B C

• As described above, the audio artist can set a default NextChunk for each Chunk in the iXMF file.
This will cause the Chunks to chain one to the next, using two Players. This is a good technique
for many applications, however it has the limitation that each Chunk only has one default Next
Chunk, which limits re-usage options.

• Alternatively, the audio artist can use Scripts, specifically the setNextChunk statement, instead of
relying on the default NextChunk ID stored with each Chunk.

3.4 Dynamic Chunk Selection and Ordering
Dynamic ordering, or selection of which media Chunks to play, is both much more interesting and much
more open-ended. Dynamic ordering may be desirable in order to reflect changes in game state, and/or in
introducing variations in an attempt to reduce the listener’s sense of repetition in the available audio
material. For example, in a piece with simple A-B-C structure, the audio artist may want to provide three
alternative versions of the B section and select one randomly:

In iXMF, dynamic chunk ordering is accomplished via Scripts, either by means of conventional conditional
branches in Scripts that the audio artist creates, or else by using a 3-step process using Script statements
called Narrow, Order, and Pick:

Narrow, Order, Pick

Annie

Chunks in Cue

Betty

Carrie

Denise

Elise

Fanny

Gertie

Harrie

NextChunk

1. Narrowing
 Operation

3. One Chunk is
Picked?

?

?

?

2. Ordering Operation on
Narrowed Set (In-Place)

The ‘Narrow, Order, Pick’ mechanism is designed to be the simplest possible way to preserve the full range
of selection, exclusion, and ordering criteria that have been found to be useful in game sound practice.

Step 1 is ‘Narrowing.’ This means creating a sub-pool of one or more of the Chunks used by the Cue. This
is achieved either by supplying a literal list, or else according to a criterion such as least recently used or a
metadata query.

Step 1: Narrow
Based on Specified Criteria

Annie

Chunks in Cue

Betty

Carrie

Denise

Elise

Fanny

Gertie

Harrie

Annie

Elise

Gertie

NextChunk

?

X

X

X

X

Harrie

Narrowed Chunk Set

Narrowing Rule: Literal List

Step 2 is ‘Ordering.’ This means to sort the narrowed pool according to some specific criterion, for
example: name, order of most recent use, order of appearance in the iXMF file, or value of a given
metadata field.

Step 2: Order
Based on Specified Criteria

Harrie

Gertie

Elise

NextChunk

?

Annie

Narrowed & Ordered
Chunk Set

Annie

Elise

Gertie

Harrie

Narrowed Chunk Set

Ordering Rule: Sort By Reverse Alphabetic Order

Step 3 is ‘Pick.’ This means to select a single Chunk from the narrowed and ordered pool, according to a
specific criterion; for example: index, random, or next.

Step 3: Pick
Based on Specified Criteria

Harrie

Gertie

Elise

NextChunk

Elise

Annie

Narrowed & Ordered
Chunk Set

Pick Rule: Pick By Index, Index = 3

Once a Script has identified a particular Chunk as the next one to be played, it uses the SetNextChunk
statement. Then, at the appropriate time, the Soundtrack Manager will play that Chunk.

3.5 Mixing and Muting
For practical and expressive reasons, iXMF uses a 4-level hierarchical model for mixing and muting
(Track, Chunk, Cue, and MixGroups).

With Script statements, the audio artist can set or ramp a fader level, or mute or unmute, any currently
playing Chunk:

Chunk

Mute

Chunks also have a separate volume and mute for each Track:

Chunk
Track

Mute

Track

Track

Mute

Mute

Mute

Further, Cues have master volumes that apply to all their Chunks:

Chunk Track

Mute

Cue

Track

Track

Mute

Mute

Mute

Mute

Finally, for easier mixing of semantically related soundtrack elements, Cues (and optionally their Chunks)
can additionally be assigned to artist-named MixGroups, each of which has a master fader level and a mute
switch. In typical game applications there may be MixGroups for Dialog, Music, Gameplay Sfx, and UI
Sfx:

Cue
s

Cue
s

Cue
s

Cue
s

MixGroup

DIALOG

MixGroup

MUSIC

MixGroup

GAME SFX

MixGroup

UI SFX

Mute Mute Mute Mute

All of these virtual gain stages are specified similar to a VCA subgroup, where although the master fader
affects all members of the group, there is no requirement for the audio engine to actually combine the
signals. All that is required is to sum all the relevant faders and apply a single net volume at the individual
track level.

Since Scripts can be triggered by markers placed in the playable media, or by Cues sent from the game
host, and since the game can communicate through Variables, this mixing and muting mechanism is very
flexible from a creative point of view.

3.6 Dynamic DSP Parameters
Script statements allow for continuous dynamic control of any available DSP parameter offered by the
native playback engine. Typically these include, at a minimum, volume and stereo pan, and on some
platforms may include such things as spatial location. The draft specification includes a short list of
proposed four-character IDs for common DSP parameters, however it is hoped that in the future some
global common registry could be established for this purpose, perhaps through cooperation between the IA-
SIG, the MIDI Manufacturers Association, and the Audio Engineering Society.

Knobs

cVol cPan cLFc cLPq

setDspParameter(“cVol”, +5);

Player

+5

Again because of the architecture’s flexibility, these settings can vary over time, for example in response to
game state influence, or else as scripted by the IA artist in order to reduce the listener’s sense of repetition.

3.7 Media Handling
For each playable media file used in the iXMF file, the audio artist has control over where the file is stored
(local disk or network), and whether the file will be played by streaming from storage through a small
buffer, or else by loading the whole file into memory and playing from the loaded copy.

3.8 Callback Scripts
The audio artist can place named markers at any position in the playable sound media files; when playback
passes through a marker, any Script with the same name as the marker will be executed. This allows any
media files to trigger any Script at any time.

Cue “Fred & Wilma”

Script “Yabba”

Script “Coda”

Script “Doo”

Marker “Coda”

Because Scripts are very flexible, this allows the audio artist to tie practically any response to any given
marker. For example, a callback Script could signal to the host game when certain points (time offsets) in
the chunks are reached (typically: sound effect hit points, or musical accents or phrase boundaries).

3.9 Host Game Callbacks
The audio artist can invoke any registered host game callback function from any Script by using the Script
statement InvokeCallbackFunction(“callbackFnName”). However, making good use of this feature
requires prior planning and cooperation between the game programmer and the audio artist.

Script “Dabba”

Marker “Dabba”

InvokeCallbackFunction(“FredWilmaDabba”)

Soundtrack Manager

Cue “Fred & Wilma”

Host Application

“FredWilmaDabba” -->
&hostFwdFunction

The defined callbacks are named, and represented by data stored in the iXMF file.

3.10 Audio Signal Chain Management & Plug-Ins
While the current draft specification does not include a specific design for this area, future versions of
iXMF are expected to address management of the audio signal chain between the Players and the final
system mixer, including optional graphs of user DSP plug-ins and the control of their parameters.

Player

Host Audio System

Optional Audio Plug-In Graph

There is hope that the MMA’s Generalized Music Plug-In Interface (GMPI) project [2] will be successful
and have a role in this area, as it is the first plug-in API project that addresses both audio and music in a
standardized and platform-independent manner.

3.11 Priorities and Scalability
The audio artist can assign a default priority for each Cue, which the host game can optionally override
when requesting the Cue. When the Soundtrack Manager is requesting more resources (memory, number of

players, CPU bandwidth, synth voices [e.g. SP-MIDI], etc.) than the host platform is able to furnish, Cues
with lower priorities will be canceled to allow those with higher priorities to play.

On appropriate platforms, such as mobile devices, Scalable Polyphony MIDI players could be used in an
iXMF system, supporting content that adapts the musical arrangement to available number of synthesizer
voices.

4. Content Development
This section describes how the use of iXMF affects the development of titles, including both the interactive
audio content and the software development effort for the product. In general, the audio artist creates and
edits iXMF files with an authoring tool, according to guidance from the game designers, and then the game
engineers integrate the iXMF files into game builds.

4.1 Audio Artist Experience / Game Development Team Relations
[This section contributed by George A. Sanger, ‘The Fat Man’]

It is typical for an artist who is attempting to create IA to experience great challenges. The greatest
challenges lie in the areas of (1) availability of good tools and (2) efficient artistic interaction with the
development team. It is anticipated that wide adoption of iXMF as a standard will alleviate many of those
challenges.

Standard file formats such as MIDI, .WAV, .MP3, .DLS, etc. for linear (non-interactive) sound have been
around for years. As a result, there are plenty of adequate if not downright wonderful tools in place,
provided by the Musical Instrument industry, that enable an audio artist to make linear music and sounds
effectively. Movies, TV, and in-game cinematic scenes are all relatively easy to score using commercially
available software and hardware. In the game world, however, the artist's job is to map those linear sounds,
and possibly other sounds that might be created “on the fly,” into the interactive context of the game.

Millions of dollars and thousands of man-years of effort have been put into building and mastering audio
tools for such interactive uses that have not lived up to expectations and become obsolete, and when those
tools, platforms, and companies have gone away, most of the lessons learned in the process of creating and
using them have gone, too. In addition, as elaborated upon in Section 1, there are only a lucky few who
have had access to these tools, so it's been logical for the toolmaker to put proportionally little effort put
into them, resulting in less than perfect interfaces. Each of the tools created in the past has forced the user
to create works that can only be edited by that tool, again severely limiting the reasons to even begin to use
each system. As a result, for the independent game audio creator, there is no fully developed tool. The
independent audio artist working on games is pretty much a blacksmith without an anvil.

The iXMF format will allow tools to be developed for general use independently of specific platforms and
companies. The result will be that tools and GUI’s will not need to be scrapped every time a company or
platform or preferred method of editing changes. Efforts put into building tools will not be wasted: That
means it will make more sense for tool creators to invest effort into those tools, and it will make more sense
for a content creator to invest in learning the tools. It also means that the best parts of tools will be seen and
used by enough people that we will likely see layered improvement of GUI’s, features and functionality.
Building better and better tools will finally make sense, and the usefulness of each tool will increase
significantly.

Aside from the non-availability of tools, the other area in which audio artists see significant challenges is in
the interface between his work and that of the development team. All too often, programmers are forced to
make artistic decisions, shouting in frustration that music needs to be a bit more “green,” or more like
Terminator II, or in an effort to hear dialog clearly, a developer will brutally mix music completely out of a
scene. Worse, sometimes artists are forced to program, and the results of that are predictably slow, riddled
with errors, and otherwise awful. Good fences make good neighbors, and iXMF is designed to sit precisely
where the fence is needed between audio artists and game developers. All of the issues that matter to the
audio artist and that should be under his control (and no more), such as volume, fade speed, and the name
of the file that plays in a certain gamestate, are available to be edited by him and auditioned using iXMF-

savvy tools, the design of which can make the process as simple or as detailed as desired on an individual
basis. All of the issues that fall under the expertise of the game developer (and no more), such as the
timing of when the player enters a certain gamestate, or such as a tension-related variable, are available on
the programming side of the fence, to be passed at his will as “Cues” and Variables to the iXMF
Soundtrack Manager. One might say that iXMF mimics the appropriate dialogue between game designer
and audio designer. The Game Development side says, “At this point, the game is doing this (Cue), and we
want some appropriate sound behavior,” and the audio side says, “Very well, at that (Cue) point, I’ll cause
the sound to behave this way. When shall we cue the next behavior?”

As a result, huge increases in efficiency are expected under iXMF, leading to increased resources available
for artistic effort on the part of artists, and programming effort on the part of programmers. Increased
stability in audio engines can be expected, leading to more reliable products and less time in testing.

Efficient game production plus higher customer satisfaction equals bigger profits.

It doesn’t stop there. The standardization of the file format enables software from various sources to
interact in a modular way with other software, which could lead to unpredicted uses of iXMF. iXMF could,
for example, even be used to control the flow of music from Internet radio stations in appropriate response
to workers’ productivity or the weather, or it could serve as a tool to allow video authors to create
interactive movies that respond to the output of a MIDI glove.

The most remarkable benefits will be artistic, though this may only become apparent when masses of
people get their hands on interactive media editing software, and start creating things of which the readers
of this document never dreamed.

4.2 Authoring Tools
An iXMF content authoring tool would be a software application with a GUI of moderate complexity. At a
minimum, the GUI would include the following elements:

• A list of defined Cues

• A list of playable sound files & their defined regions (‘Chunks’)

• A Cue Editor window, for adjustment of all data field in the Cue, including a list of
available Scripts

• A Script Editor window, for inserting, deleting, and editing Script statements in any given Script

• A list of defined Callbacks for the host game to register, and that can be invoked via a Script
statement

Additionally, the inherent extensibility of the XMF container technology makes it possible to add notes,
comments, source control information, and other desired metadata to the whole iXMF file, or to any piece
of it.

Note: iXMF-WG members have prototyped such a GUI, and hope to release this work along with the
final iXMF specification. This GUI prototype may be presented in the GDC session.

5. Notes
A few unobvious characteristics of the iXMF architecture should be pointed out:

• While the most typical application of IA is in game soundtracks, similar requirements are also
present in other applications including themed sonic environments and improvised electronic
music performance, one variant of which would be DJ-style performance. With an appropriate
GUI (and perhaps a MIDI-driven) software application containing just a Soundtrack Manager,
iXMF media could serve as an appropriate ‘session file’ for these types of musical performance
uses.

• While this paper has focused exclusively on music and sound applications of iXMF technology, it
should be noted that nothing in the framework itself prevents the ‘Soundtrack Manager’ and iXMF

file format specification from being extended to handle other media types, including images,
movies, sprite animations, etc. The path to completion would be fairly short: glue code to manage
and control Players for the other media types would need to be written, and media type tokens
would need to be defined.

• Due to the underlying general similarity of many existing IA systems, it may be feasible to treat
iXMF as an importable format, rather than a directly playable format for some of those systems.
This would allow those systems to take advantage of iXMF’s tool advantages, and help address
their users’ desires to port IA content that originates on other platforms.

• The playable sound files in the iXMF file could optionally be represented as links to external files,
or links to files stored in other XMF files, through the use of XMF container technology features.
This makes several things possible, including very small iXMF files, storage of content on remote
servers via the Internet where they can be dynamically updated by the content provider, and
sharing a single copy of any needed sound file among any number of iXMF files.

6. Standardization Status
At the time this paper was submitted for publication, it was not known with certainty when the iXMF-WG
will be completing and releasing a final specification. The draft specification is undergoing internal review
and revision, with a number of design detail issues as yet unresolved. This is not surprising since, even
more than most standards efforts, iXMF is a volunteer-driven project. Until the final specification is
released, the best way to monitor this work and evaluate its detailed technical design is to join the iXMF
working group; see [3].

Updated status information will be presented during this session at GDC.

7. References
[1] “Specification for XMF Meta File Format.” RP-030, MIDI Manufacturers Association, Los Angeles,
CA, USA, http://www.midi.org/xmf

[2] Generalized Music Plug-In (GMPI-WG) working group, MIDI Manufacturers Association, Los
Angeles, CA, USA, http://www.midi.org

[3] Interactive XMF (iXMF) working group (IXWG), MIDI Manufacturers Association Interactive Audio
Special Interest Group (IASIG), Los Angeles, CA, USA, http://www.iasig.org

[4] “Report of ‘Big Picture’ Group.” October 1999, Project Bar-B-Q, Austin, TX, USA.
http://www.projectbarbq.com/bbq99/bbq99r4.htm

[5] “Report of ‘General Interactive Audio’ Group.” October 2000, Project Bar-B-Q, Austin, TX, USA.
http://www.projectbarbq.com/bbq00/bbq00r7.htm

[6] “Report of ‘Towards Interactive XMF’ Group.” October 2001, Project Bar-B-Q, Austin, TX, USA.
http://www.projectbarbq.com/bbq01/bbq01r5.htm

	Paper
	PREVIOUS MENU
	PRINT THIS DOCUMENT
	SEARCH CD

	return:

