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Abstract
Modal analysis provides a powerful tool for efficiently

simulating the behavior of deformable objects. This
paper shows how manipulation, collision, and other
constraints may be implemented easily within a modal
framework. Results are presented for several example
simulations. These results demonstrate that for many ap-
plications the errors introduced by linearization are ac-
ceptable, and that the resulting simulations are fast and
stable even for complex objects and stiff materials.
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1 Introduction

Interactive modeling of deformable objects has a wide
range of applications from surgical training to video
games. Many of these applications require realistic,
real-time simulation for complex objects. Unfortunately,
the most straightforward simulation methods turn out to
be prohibitively expensive for modeling objects of even
modest complexity. When the high cost of simulation
couples with the reality that CPU cycles must be shared
among many tasks, the need for faster, more sophisticated
simulation methods becomes clear.

Recently several ingenious techniques for modeling
deformable objects have been proposed. Examples in-
clude multi-resolution representations that avoid wasting
time on irrelevant details (e.g.[4,6,8]), reformulating the
dynamics to make them more stable (e.g.[15,20]), exten-
sive precomputation to minimize runtime costs (e.g. [9,
10, 19, 22]), robust integration schemes that afford large
time-steps (e.g.[3]), and many other approaches that we
cannot list here due to space constraints. As of yet, none
provides a perfect solution that satisfies the requirements
for all interactive applications.

This paper reexamines a technique known as modal
analysis that was originally introduced to the graph-
ics community over a decade ago, but has since been
largely neglected, with only a couple of notable excep-

Figure 1: This example demonstrates a complex model
being deformed using a modal simulation method. The
object furthest from the viewer shows the undeformed
configuration. The nearer objects are being deformed by
a force indicated by the blue arrows.

tions (e.g. [10, 22, 23]). Like the techniques mentioned
above, modal analysis does not provide a perfect solution
for every interactive application, but it does provide a so-
lution that suits some applications quite well.

The results presented here show that modal analysis
can be used effectively to model situations where the de-
formable object is directly manipulated using constraints
and where it interacts with an environment through con-
tact forces. We demonstrate that although linear modal
analysis does incur errors because of the inherent lin-
earization of the dynamics, these errors are acceptable
in many contexts, particularly when exaggerated cartoon-
like deformations are desired. While precomputing the
modal decomposition for a complex object may take up
to a few hours of precomputation, for applications which
make use of fixed content this computational cost only
occurs during content development and it is well worth
the dramatic increase in runtime performance.

The concepts required to manipulate the modal equa-
tions are to a certain extent conceptually difficult to work
with but their implementation is surprisingly simple. The
results shown in this paper (e.g. figure 1) were gener-
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ated using an implementation that we have ported to sev-
eral platforms: SGI IRIX, Windows, Linux, and Sony
PlayStation2. On each of these platforms we were able
to obtain interactive simulation times even for relatively
complex models.

2 Background

Modal analysis is a well established mathematical tech-
nique that has been used extensively in mechanical,
aerospace, civil, and other engineering disciplines for
several decades. To a large extent the work we present
in this paper follows as direct application of the methods
developed in those fields to the task of interactively simu-
lating deformable solids. There are, however, some issues
that are unique to interactive simulation, such as impos-
ing manipulation constraints and computing fast collision
responses. This paper focuses on those issues. A discus-
sion of modal analysis and its use with the finite element
method can be found in the text by Cook, Malkus, and
Plesha [5], and a more detailed discussion of modal anal-
ysis, its mathematical theory, and its applications may be
found in the text by Maia and Silva [13].

Modal analysis was first introduced to the graphics
community in 1989 by Pentland and Williams as a fast
method for approximating deformation [19]. They used
a hybrid framework, previously described by Terzopou-
los and Fleischer [24], that separated the motion of a
deformable solid into a rigid component and a deforma-
tion component. The deformable component existed in
a non-inertial reference frame that moved with the rigid
component. To avoid the cost of computing the modes
for a particular object Pentland and Williams used linear
and quadratic deformation fields defined over a rectilin-
ear volume instead of the object’s actual modes and then
embedded the object within the region in a fashion simi-
lar to a free-form deformation. Although using approxi-
mated modes is computationally inexpensive, it only gen-
erates reasonable results for compact objects that are well
approximated by a rectilinear solid. Pentland and his
colleagues also integrated their modal deformation tech-
niques into a interactive modeling system [18].

In 1997 Stam developed a modal method for model-
ing trees blowing in the wind [23]. Rather than starting
with a deformable object, he computed the low-frequency
modes from an articulated structure that described the
tree. Once the closed-form solutions for each mode were
computed, the response of the tree to a stochastic wind
field could be computed efficiently.

Most recently, James and Pai implemented a system for
computing real-time modal deformations on commodity
graphics hardware [10]. They focused on modeling de-
formable skin and soft tissues attached to moving charac-

ters or as background elements in a surgical simulation.
Shen and his colleagues have demonstrated an interac-
tive system that could simulate models with over 10,000
vertices on a laptop PC with no special hardware acceler-
ation [22].

Other related work includes sound generation tech-
niques that make use of modal synthesis, and deforma-
tion techniques that use global shape functions that have
some general similarities to a object’s mode shapes. Van
den Doel and his colleagues have used both analytically
computed modes for simple geometric shapes and sam-
pled modes from real objects to compute realistic sounds
for simulated environments [26, 27, 28]. O’Brien and
his colleagues developed similar techniques that used nu-
merically computed modes from a finite element descrip-
tion of an object [17]. Examples of deformation tech-
niques using global shape functions include: free-form
deformations and their dynamics extensions [7, 21], de-
formable superquadrics [14], and the boundary element
method [9]. Modal bases have also proven to be an ef-
ficient way to compactly encode both shapes and defor-
mations [11, 12]. Finally, this paper focuses primarily
on integrating manipulation and contact constraints into
a modal framework, and there is prior work on applying
these types of constraints to flexible body simulations [2].

3 Methods

The mechanical properties of an object can generally be
captured by a function that maps the state of the object to
a distribution of internal forces. For nearly any non-trivial
system this function will be nonlinear and the represen-
tation of state will require many variables. Consequently,
modeling the object’s behavior over time will involve in-
tegrating a large, nonlinear system of differential equa-
tions. These systems are typically far too complex to be
solved analytically, so some type of numerical solution
method must be employed.

Modal analysis is the process of taking the nonlinear
description of a system, finding a good linear approxima-
tion, and then finding a coordinate system that diagonal-
izes the linear approximation. This process transforms a
complicated system of nonlinear equations into a simple
set of decoupled linear equations that may be individually
solved analytically.

The main benefit of this modal approach is that the be-
havior of the system can be computed much more effi-
ciently. Because each of the decoupled equations can be
solved analytically, the stability limitations that plague
numerical integration methods are eliminated. Further,
one may examine each of the decoupled components and
discard those that are irrelevant to the problem at hand.

2



Figure 2: Using a linear formulation to model a bend-
ing bar produces acceptable results for small to moderate
amounts of deformation. For larger deformations signif-
icant amounts of distortion appear. This example shows
the deformation corresponding to the bar’s second trans-
verse mode.

There are also two drawbacks to a modal approach.
First, linearizing the original nonlinear equations means
that the solution will only be a first order approximation
of the true solution. How objectionable the lineariza-
tion error is depends on the application and the extent
to which the objects deform from their initial configura-
tions. As illustrated by figure2, small to moderate defor-
mations exhibit little or no noticeable error when casually
observed. Even when the errors do grow noticeable, they
have a cartoon-like, exaggerated appearance that may ac-
tually be desirable for some applications.

The second drawback arises because decoupling the
linear system requires computing its eigendecomposition.
However we do not believe that this drawback is partic-
ularly significant. The content in most interactive appli-
cations is constant, so that eigendecompositions can be
precomputed during content development and stored with
the objects. Furthermore, the linear systems are sparse,
so that fast, robust, publicly available codes may be used
to efficiently compute the decompositions (e.g.TRLAN
[29]).

The remainder of this section describes how one com-
putes the modal decomposition for a given object and
how that decomposition can be used to efficiently model
the object’s behavior. Some of this material has been pre-
sented elsewhere by others in the graphics community
(e.g. [10, 19]) but we include it here for completeness.
The discussion will focus in particular on including ma-
nipulation and collision constraints in the modal frame-
work. An overview of the entire process is shown in fig-
ure3.

3.1 Modal Decomposition
The modal decomposition of a physical system begins
with a linear set of equations that describe the system’s
behavior. In general, the equations describing the system
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Figure 3: This diagram illustrates both the preprocessing
steps used to construct the deformable modal model for
an object, and the processes that subsequently generate
interactive motion from this description.

may be nonlinear, and one obtains the linear equations by
linearizing about some point, typically the rest configu-
ration of the system. The linearized equations have the
general form:

Kd + Cḋ + Md̈ = f , (1)

whereK, C, andM are respectively known as the sys-
tem’s stiffness, damping, and mass matrices,d andf re-
spectively as the vector of generalized displacements and
forces, and an overdot indicates differentiation with re-
spect to time. The physical meaning of the generalized
force and displacement vectors, and the method for com-
puting the system matrices will depend on the type of
method used for modeling the system. For general fi-
nite element methods, we refer the reader to the excellent
text by Cook, Malkus, and Plesha [5]. We are using an
implementation of the piecewise-linear tetrahedral finite
element method described by O’Brien and Hodgins [16].
Details on computing the system matrices appear in [17].

Modal decomposition refers to the process of diago-
nalizing equation (1). The most general form of modal
decomposition can be used for nearly arbitrary systems,
but the systems arising from the finite element method
we use have a structure that makes them amenable to a
simpler manipulation provided we assume that the damp-
ing matrix,C, is a linear combination of theK andM .
This restriction is known as Rayleigh damping, and al-
though it is a restriction it still produces results superior to
the simple mass damping that is most commonly used in
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graphics applications. With these conditions, diagonaliz-
ing equation (1) becomes equivalent to solving a general-
ized symmetric eigenproblem with symmetric, positive-
definite matrices. Cook, Malkus, and Plesha describe the
process in detail and we only repeat the end result here.

With the restriction of Rayleigh damping equation (1)
may be rewritten as:

K(d + α1ḋ) + M(α2ḋ + d̈) = f , (2)

whereα1 andα2 are the Rayleigh coefficients. Let the
columns ofW be the solution to the generalized sym-
metric eigenproblemKx + λMx = 0 andΛ be the
diagonal matrix of eigenvalues1, then equation (2) may
be transformed to:

Λ(z + α1ż) + (α2ż + z̈) = g , (3)

wherez = W−1d is the vector of modal coordinates
andg = W Tf is the external force vector in the modal
coordinate system.

Each row of equation (3) corresponds to a single scalar
second-order differential equation:

λizi + (α1λi + α2)żi + z̈i = gi . (4)

The analytical solutions to each equation are

zi = c1e
tω+

i + c2e
tω−

i (5)

wherec1 andc2 are arbitrary (complex) constants, andωi
is the complex frequency given by

ω±i =
−(α1λi + α2)±

√
(α1λi + α2)2 − 4λi
2

. (6)

The absolute value of the imaginary part ofωi is the fre-
quency (in radians/second, not Hertz) of the mode, and
the real part is the mode’s decay rate. In the special case
where the term under the radical in equation (6) is zero,
we haveω+

i = ω−i , which gives the critically damped
solution:

zi = c1te
tωi + c2e

tωi . (7)

The columns ofW are the vibrational modes of the
object being modeled. (See figure4.) Each mode has the
property that a displacement or velocity over the object
that is a scalar multiple of the mode will produce an ac-
celeration that is also a scalar multiple of the mode. This
property means that the modes do not interact with each
other, which is why decoupling the system into a set of
independent oscillators was possible. The eigenvalue for
each mode is the ratio of the mode’s elastic stiffness to the
mode’s mass, and it is the square of the mode’s natural
frequency (in radians per second). In general the eigen-
values will be positive, but for each free body in the sys-
tem there will be six zero eigenvalues that correspond to

1 Equivalently letW = L−TV whereM = LLT (Cholesky
decomposition) andV ΛV T = L−1KL−T (symmetric eigendecom-
position).

Figure 4: The two rows show a side and top view of
a bowl along with three of the bowl’s first vibrational
modes. The modes selected for the illustration are the
first three non-rigid modes with distinct eigenvalues that
are excited by a transverse impulse to the bowl’s rim.

the body’s six rigid-body modes. The rigid-body eigen-
values are zero because a rigid-body displacement will
not generate any elastic forces.

The decoupled system of equations isnot an approxi-
mationof the original linear system, it will generate ex-
actly the same results as the original linear system. Of
course the linear system may have been an approxima-
tion to some initial nonlinear one, but any problem that
could be solved using equation (2) could also be solved
with equation (3). Furthermore, simulation that would
have required numerical time integration of equation (1)
can now be solved without integration using the analyti-
cal solutions in equations (5) or (7).

3.2 Discarding Modes
Although decoupling equation (1) and then solving each
of the resulting components analytically provides signifi-
cant benefits, we can derive additional benefit by consid-
ering whether or not each of these components is needed.
In particular we can discard modes that will have no sig-
nificant effect on the phenomena we wish to model.

If the eigenvalue,λi, associated with a particular mode
is large, then the force required to cause a discernible
displacement of that mode will also be large. We can
expect that in a given environment there will be both
an upper bound on the magnitude of the forces encoun-
tered and a lower limit on the amplitude of observable
movement. For example, if modeling an indoor envi-
ronment we would not expect to encounter forces in ex-
cess of60, 000 N (the braking force of a large truck), and
we would not be able to observe displacements less than
about0.1 mm. Thus if ||wi||2/λi < min res/max frc
for some mode then that mode’s behavior will be unob-
servable.

The imaginary part ofωi determines the frequency that
a mode will vibrate at. Modes that vibrate at more than
half the display’s frame rate will cause temporal aliasing.

Removing modes that are too stiff and/or too high fre-
quency to be observed will not change the appearance of
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the resulting simulation, but removing them will greatly
reduce the simulation’s cost. For most objects that we
have worked with, nearly all of the modes are unobserv-
able. A typical result is that an object with several thou-
sand vertices will have many fewer than fifty modes that
need to be retained. Furthermore, the number of modes
that must be retained is nearly independent from the res-
olution of the model.

For later convenience let̄W be the matrixW with
the columnscorresponding to the discarded modes re-
moved, and letW̄

−1
be the matrixW−1 with the rows

corresponding to the discarded modes removed. Note
thatW̄

−1 6= (W̄ )−1, W̄ andW̄
−1

are not square, and
W̄

−1
W̄ = I butW̄W̄

−1 6= I.

3.3 Oscillator Coefficients and Time Steps
The analytical solution for each mode, equation (5), de-
scribes how that mode will behave when no external
forces are acting on it. Using these solutions, however, re-
quires some way of modeling responses to external forces
and of setting initial conditions.

Given a set of initial conditions described by the node
positions,d0, and their velocities,̇d0, setting the oscil-
lators to match those conditions requires finding appro-
priate values for the coefficientsc1 and c2. First, the
initial conditions are transformed to modal coordinates:
z0 = W̄

−1
d0 and ż0 = W̄

−1
ḋ0. For each mode,c1

andc2 are given by

c1 =
z0
2

+
(α1λi + α2)z0 + 2ż0

2
√

(α1λi + α2)2 − 4λi
(8)

c2 =
z0
2
− (α1λi + α2)z0 + 2ż0

2
√

(α1λi + α2)2 − 4λi
. (9)

For the critically damped casec1 andc2 are given by

c1 =
(α1λi + α2)z0

2
+ ż0 (10)

c2 = z0 . (11)

Note that if theω±i are real thenc1 andc2 will also be
real. If theω±i are complex then theω±i and thec1 and
c2 will be complex conjugate pairs. In either case equa-
tion (6) will evaluate to a real value.

To compute the response of a mode to an impulse de-
livered at t = 0, first transform the impulse to modal
coordinates with∆tg = ∆tW̄ T

f and then computec1
andc2 as shown above withz0 set to zero anḋz0 replaced
by ∆tg. Because the modes behave linearly, the response
of the system to forces applied at an arbitrary time may
be computed by time-shifting this impulse response and
adding it to the existing values.

Becausece(t+∆t)ω = (cetω)e∆tω, the state of each
oscillator can be stored simply as a pair of complex num-
bers that reflect the current values ofc1e

tω+
andc2etω

−
.

Each time the system is advanced forward in time, these
values get multiplied bye∆tω

±
. If ∆t is constant then

the step multiplier for each mode may be cached to avoid
the cost of evaluating an exponential. Impulses applied
to the system simply require adding the appropriate val-
ues to each oscillator’s state. Finally, modes whereω+

andω− are complex conjugate pairs (i.e. underdamped
modes) can be reduced to only a single oscillator.

3.4 Constraints
Although we can compute the behavior of the decom-
posed system extremely efficiently, the method is not
particularly useful unless it accommodates manipulation
constraints and collision response. When working with
the original system constraints on the node positions are
nearly trivial to implement. Collision response requires
more sophistication but still is conceptually straightfor-
ward. Unfortunately, applying these same constraints in
the modal basis requires moving between the node po-
sitions and modal coordinates which can be unintuitive.
Matters are further complicated because if we have dis-
carded any modes then the transformations will be non-
invertible.

3.4.1 Interactive Manipulation
If we wish to include continual constraints on part of the
system, the optimal way to do so is to remove those de-
grees of freedom prior to performing the modal decom-
position. Examples demonstrating this approach can be
seen in James and Pai’s modal method for modeling tis-
sue deformation [10], and in our deformable sheet ex-
ample. (See accompanying animations.) Using this ap-
proach for dynamic constraints, however, would require
recomputing the eigendecomposition each time a con-
straint was added or removed from the system. James
and Pai accomplished something similar for a boundary
element method using Sherman-Morrison-Woodbury up-
dates but we do not know of any corresponding incremen-
tal update scheme for an eigensystem [9].

Instead we apply manipulation constraints to the de-
composed system. Letψ be the set of degrees of freedom
in the original system that we wish to constrain, and let
φ be the places where we are willing to apply forces in
order to enforce the constraints. For a manipulation task
where a point on the object is being dragged we would
typically haveφ = ψ but we will not require it. Letdψ
or fφ denote the displacement or force vectors where all
except the elements corresponding toφ or ψ have been
removed. Similarly, letW̄ ψ be W̄ where all the rows

not inψ have been removed and let̄W
T
φ beW̄

T
where

all the columns but for those inφ have been removed. Fi-
nally, let d̈

∗
ψ be the desired accelerations at the constraint

locations. By combining̈d = W̄ z̈, g = W̄
T
f and a bit
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of manipulation we obtain:

d̈
∗
ψ = W̄ ψ(z̈ + W̄

T
φfφ) . (12)

Solving forfφ yields:

fφ =
(
W̄ ψW̄

T
φ

)−P (
d̈
∗
ψ − W̄ ψz̈

)
, (13)

where·−P denotes a pseudoinverse. Velocity constraints
only differ in thatfφ gets replaced by an impulse,e.g.
∆tfφ and we have:

fφ =
1

∆t

(
W̄ ψW̄

T
φ

)−P (
ḋ
∗
ψ − W̄ ψż

)
. (14)

Position constraints can be enforced in a similar fashion
so long as we adjust for how each mode will evolve over
the interval while the force is applied:

fφ =
2

∆t2
(
W̄ ψSW̄

T
φ

)−P (
d∗ψ − W̄ ψz

)
, (15)

whereS the diagonal matrix with components given by

sii =
e∆tω

+
i − e∆tω

−
i

|
√

(α1λi + α2)2 − 4λi|
(16)

that compensates for the motion of each mode during the
interval.

3.4.2 Dynamics Simulation
Implementing a deformable dynamics simulator for free
bodies using modal analysis can be accomplished by
combining the modal simulation with a standard rigid-
body dynamics simulator. The modal system is embed-
ded in a rigid-body reference frame, and both systems
evolve over time. The two systems interact with each
other though inertial effects. The modal system should
experience centrifugal and coriolis forces as the rigid-
body moves, and the inertial moments of the rigid-body
will change as the modal system deforms. Unless the ob-
ject is rotating rapidly, neither effect will be significant
so we omit them. They could be included at an additional
computational cost. Inertial effects due to translational
and rotational acceleration of the rigid-body frame do not
need to be modeled explicitly so long as the forces gen-
erating those accelerations are also applied to the modal
system.

Because we are modeling deformable objects, a colli-
sion detection method optimized for use with rigid-body
simulations requires some modification because precom-
puted data structures will become invalid as the object
deforms. The method we are using employs a hierar-
chy of axis-aligned bounding boxes, aligned to the world
axes, to efficiently find potential collisions. The tree is
initially constructed based on the undeformed shape of
the object. Each leaf node in the tree corresponds to one
of the primitives that makes up the object, and the bound-
ing box at that node encloses the primitive. The bounding

boxes of interior nodes encompass the union of their chil-
dren. The tree’s topology is chosen to minimize the over-
lap among the interior nodes. Once the object deforms
the tree will become invalid, but recomputing the tree’s
topology every time-step would be prohibitively expen-
sive. Instead we use an update scheme similar to one
described by van den Bergen [25]. After each time-step
the bounding boxes are updated, but the tree’s topology
does not change. If we expected arbitrary deformation,
this could result in a very poorly structured tree, but be-
cause the extent of deformation is limited we have found
this approach to work quite well.

Using these trees the collision system can efficiently
determine contact points and a normal for each contact.
For collisions between an object and a ground plane, the
collision normal is simply the plane’s normal. For colli-
sions between objects, we look at involved tetrahedra to
determine a normal based on their overlap [16]. We have
found that each physical contact site may produce several
pairs of colliding primitives. To reduce the computation
when using constraint-based collisions we cluster nearby
collision points and treat each cluster as a single collision
point.

We have implemented collision response using both
a penalty-based method and using constraints. As
one would expect, the penalty methods require less
work per time-step, achieving real-time performance, but
stiff penalty coefficients can lead to instability. The
constraint-based method requires more work per time-
step, but it is more stable. Because the modal system will
allow arbitrarily large time-steps in the absence of exter-
nal influences we prefer the more stable constraint-based
methods.

To implement penalty methods, when a point on a sur-
face violates one of the penalty constraints, a force pro-
portional to the magnitude of the violation is applied at
that point. Transforming the forces to modal coordinates
and then applying the force to the modal system is done
as described previously. The penalty force should be ap-
plied to both the modal and the rigid-body systems.

Constraint-based collisions require a more complex
implementation, but we find that they produce better re-
sults. First, when a collision occurs, the simulation is
backed up to the point during the time-step when the ob-
jects first came into contact. Then contact forces are cal-
culated as the minimal outward normal force to ensure
that the objects will not continue to penetrate. These are
determined by solving a linear programming problem for
the normal forces at all contact points. Baraff details an
efficient method for solving for the required forces [1].

Constraint methods are often used in traditional rigid-
body simulations only to solve for resting contact, while
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impulses are used to calculate elastic response. Elastic
components of the response can be handled differently in
our modal simulation, because the elastic behavior of the
modal system models them directly. We first enforce a
velocity constraint that solves for an impulse to ensure
that none of the contact velocities are negative, then sec-
ondly it enforces an acceleration constraint that solves for
a force to ensure that none of the contact accelerations
are negative. The derivation of these methods requires
equations relating the change in velocity and acceleration
with respect to an applied impulse and acceleration, re-
spectively.

Let pl be the location of a contact point on an object
expressed in the local coordinate frame of the rigid body.
This location will be a linear function of the modal coor-
dinates so that:

pl = UWz , (17)
whereU is a matrix that averages the appropriate node
locations based on the barycentric location ofp in one of
the surface triangles. The location in world coordinates
is given by

pw = t + Rpl , (18)
wheret andR are the translation and rotation matrices
for the rigid-body frame. Differentiating with respect to
time to obtain the world velocity and acceleration ofp
yields:

ṗw = ṫ + R[ω]pl + Rṗl , (19)
p̈w = ẗ+R[ω][ω]pl+R[α]pl+2R[ω]ṗl+Rp̈l , (20)

where ω and α are the rigid-body’s angular velocity
and acceleration2. The notation[a] denotes the skew-
symmetric matrix such that[a]b = a× b = −[b]a.

Differentiating equation (19) with respect to an applied
impulse allows us to obtain the change in velocity gener-
ated by a constraint force over a time interval:

∆ṗw = ∆t
(

1
m

fw + R[H−1τ l]pl + RUWW̄
T
f l

)
(21)

whereH is the object’s inertia matrix andτ is the torque
generated byf . Differentiating equation (20) with re-
spect to an applied force produces a similar result for the
change in acceleration at the contact point. These equa-
tions are linear inf , and can be used similarly to solve
for position, joint, and collision constraints. Position con-
straints require that a point’s velocity and acceleration are
zero. Joint constraints require relative velocities and ac-
celerations are zero, merely requiring a subtraction of the
proper terms. Collision constraints require the normal
components of relative velocities and accelerations are
nonnegative, and only solve for the nonnegative normal

2In order to adhere to common convention we are reusingω and
α, that were previously used for the modal frequencies and Rayleigh
damping coefficients. The intended meaning should be clear from con-
text and the presence/absence of bold notation.

Example Fig Verts. Nodes Tets. Modes Time

Brain 1 18,847 304 997 40 68.5sec

Dodo 5 336 113 295 40 6.2sec

Bunny 8 2,633 37,114 15,507 32 24min

Sphere video 66 80 282 40 2.9sec

Sheet video 195 195 486 20 14.4sec

Bat video 241 310 1,030 20 68.9sec

Table 1: This table list the number of vertices in the
rendered models, the number of nodes and elements in
the finite element models, the number of modes retained,
and the time required to compute the decomposition for
some of the demonstration objects.

force magnitude. All constraints are solved simultane-
ously as a linear program. Solving cannot always be done
in real-time if there are a large number of contact points,
although system response does remain interactive.

We model friction at the contacts using a simplified
Coulomb friction model. The system computes a force
opposite the tangential velocity at the contact points. The
magnitude of the force equals the magnitude of the nor-
mal force multiplied by a friction coefficient. If the fric-
tion force causes the predicted tangential velocity to be
reversed then it is limited to the force that would cause
no slipping. If interactivity can be sacrificed, a more pre-
cise method would be to add an additional no-slip con-
straint to be re-solved with the other constraints. We find
our heuristic reasonable for producing plausible friction
effects.

4 Results

We have implemented a system that models deformable
objects using a hybrid formulation that combines rigid-
body motion with deformation computed using modal
analysis. Objects may be interactively manipulated by
the user with both penalty forces and displacement con-
straints. The modal objects may collide with each other
and with their environment. Collisions can be treated
with either penalty forces or constraints, and objects may
also be attached together using joint constraints. Table1
lists several of the models we have used to demonstrate
our results and shows the geometric and kinematic com-
plexity of the models along with how much precomputa-
tion time was required to perform the modal decomposi-
tion for each model.

The brain model in figure1 demonstrates pulling and
pushing using force application. Force vectors are pro-
jected into the modal basis, modifying the modal state,
and then are projected out, resulting in realistic deforma-
tion. The images in figure6 and figure7 show pulling and
pushing using manipulation constraints. Typically, up to

7



Figure 5: This image sequence shows frames from an animation of a pair of objects colliding with each other. Each
object is a hybrid simulation that incorporates a rigid and a deformable (modal) component.

Figure 6: These images shows how constraints can be
used to deform objects. The object on the left of each im-
age shows the object prior to deformation, and the right
object shows the results after the red constraint points
have been moved.

Figure 7: These images are screen shots from an applica-
tion running natively on a Sony PlayStation2. The yellow
circle highlights the cursor that the user is using to poke
and pull an elastic figure.

around 10 points on the model can be constrained in real-
time on a moderate speed computer (300 MHz Pentium
II or Sony Playstation2). A limit is reached because the
solutions to equation (13) and equation (15) require a rel-
atively expensive computation of singular value decom-
positions, which cannot be calculated in real-time once
the matrices become too large.

We have created several animations (see supplemental
materials) demonstrating this system, each simulated in-
teractively for moderately complex objects. The results
appear plausible, and resemble animations that might be
simulated using more straightforward but more compu-
tationally expensive methods. The bottlenecks in hybrid
modal/rigid-body simulation are collision detection and
solving the linear program for the constraints. To reduce
the computation used in solving the linear program, the
extent of contact point clustering may be tweaked to sac-
rifice accuracy for speed. Figures5 and8 show objects
involved in collisions with a ground plane and each other.

Figure 8: A sequence of images showing the Stanford
Bunny model bouncing off a ground plane.

As with other methods based on tetrahedral finite el-
ements, we can embed high-resolution or non-manifold
surfaces inside a tetrahedral volume model. The bene-
fits of this technique are that the surface shading and tex-
turing can be specified independently from the dynam-
ics, and poorly constructed “polygon-soup” models may
be used. Both the brain model in figure1, an extremely
complex object, and the “dodo” model in figure5, a non-
manifold object, are modeled in this way. The “dodo”
model also demonstrates non-uniform material proper-
ties: the legs and beak are made of a stiffer material than
the rest of the body.

5 Conclusions

Modal analysis has been shown to be a useful tool for in-
teractively producing realistic simulations of elastic de-
formation. Both the analytic calculation of modal ampli-
tudes using complex oscillators and the removal of high-
frequency modes have a stabilizing effect on simulations,
allowing for large time steps to be taken.

Despite the approximation of linearity in modal anal-
ysis, the simulation results are quite plausible for most
objects. The exceptions are long, thin, or highly de-
formable objects, where nonlinear behavior dominates
the expected behavior. Despite these specific drawbacks,
many objects can be manipulated quite efficiently and re-
alistically using modal models.

The already small costs of modal analysis can be re-
duced further by leveraging graphics hardware, as shown
by James and Pai [10] or our own implementation on the
Sony PlayStation2. Using such hardware, CPU costs can
be reduced to modifying mode amplitudes during evolu-
tion of time steps, projection of forces, and application of
manipulation constraints.

8



We recognize that there are many implementation de-
tails that cannot fit into this paper, so we have re-
leased the source code for our Linux implementation
under the GNU License. It is our hope that making
this code available will encourage others to work with
modal simulation methods. The code may be accessed at
www.cs.berkeley.edu/∼job/Projects/ModeDef.
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Abstract

In this paper, we augment existing techniques for simulating flex-
ible objects to include models for crack initiation and propagation
in three-dimensional volumes. By analyzing the stress tensors com-
puted over a finite element model, the simulation determines where
cracks should initiate and in what directions they should propagate.
We demonstrate our results with animations of breaking bowls,
cracking walls, and objects that fracture when they collide. By
varying the shape of the objects, the material properties, and the
initial conditions of the simulations, we can create strikingly dif-
ferent effects ranging from a wall that shatters when it is hit by a
wrecking ball to a bowl that breaks in two when it is dropped on
edge.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Physically based modeling;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation; I.6.8 [Simulation and Modeling]: Types of
Simulation—Animation

Keywords: Animation techniques, physically based modeling,
simulation, dynamics, fracture, cracking, deformation, finite ele-
ment method.

1 Introduction

With the introduction in 1998 of simulated water in Antz [5, 14]
and clothing in Geri’s Game [4, 15], passive simulation was clearly
demonstrated to be a viable technique for commercial animation.
The appeal of using simulation for objects without an internal
source of energy is not surprising, as passive objects tend to have
many degrees of freedom, making keyframing or motion capture
difficult. Furthermore, while passive objects are often essential to
the plot of an animation and to the appearance or mood of the piece,
they are not characters with their concomitant requirements for con-
trol over the subtle details of the motion. Therefore, simulations in
which the motion is controlled only by initial conditions, physical
equations, and material parameters are often sufficient to produce
appealing animations of passive objects.

College of Computing, Georgia Institute of Technology, Atlanta, GA 30332.
job@acm.org, jkh@cc.gatech.edu.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
SIGGRAPH 99, Los Angeles, CA USA
Copyright ACM 1999 0-201-48560-5/99/08 . . . $5.00

Figure 1: Slab of simulated glass that has been shattered by a heavy
weight.

Our approach to animating breaking objects is based on lin-
ear elastic fracture mechanics. We model three-dimensional vol-
umes using a finite element method that is based on techniques
presented in the computer graphics and mechanical engineering
literature [3, 6, 18]. By analyzing the stresses created as a vol-
umetric object deforms, the simulation determines where cracks
should begin and in what directions they should propagate. The
system accommodates arbitrary propagation directions by dynami-
cally retesselating the mesh. Because cracks are not limited to el-
ement boundaries, the models can form irregularly shaped shards
and edges as they shatter.

We demonstrate the power of this approach with the following
examples: a glass slab that shatters when a weight is dropped onto
it (Figure 1), an adobe wall that crumbles under the impact of a
wrecking ball (Figure 9), a series of bowls that break when they hit
the floor (Figure 11), and objects that break when they collide with
each other (Figure 14). To assess the realism of this approach, we
compare high-speed video images of a physical bowl dropping onto
concrete and a simulated version of the same event (Figure 13).

2 Background

In the computer graphics literature, two previous techniques have
been developed for modeling dynamic, deformation-induced frac-
ture. In 1988, Terzopoulos and Fleischer [18, 19] presented a
general technique for modeling viscoelastic and plastic deforma-
tions. Their method used three fundamental metric tensors to de-
fine energy functions that measured deformation over curves, sur-
faces, and volumes. These energy functions provided the basis for
a continuous deformation model that they simulated using a va-
riety of discretization methods. One of their methods made use
of a finite differencing technique defined by controlled continuity
splines [17]. This formulation allowed them to demonstrate how
certain fracture effects could be modeled by setting the elastic co-
efficients between adjacent nodes to zero whenever the distance
between the nodes exceeded a threshold. They demonstrated this
technique with sheets paper and cloth that could be torn apart.
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In 1991, Norton and his colleagues presented a technique for
animating 3D solid objects that broke when subjected to large
strains [12]. They simulated a teapot that shattered when dropped
onto a table. Their technique used a spring and mass system to
model the behavior of the object. When the distance between
two attached mass points exceeded a threshold, the simulation sev-
ered the spring connection between them. To avoid having flexi-
ble strings of partially connected material hanging from the object,
their simulation broke an entire cube of springs at once.

Two limitations are inherent in both of these methods. First,
when the material fails, the exact location and orientation of the
fracture are not known. Rather the failure is defined as the entire
connection between two nodes, and the orientation of the fracture
plane is left undefined. As a result, these techniques can only re-
alistically model effects that occur on a scale much larger than the
inter-node spacing.

The second limitation is that fracture surfaces are restricted to the
boundaries in the initial mesh structure. As a result, the fracture pat-
tern exhibits directional artifacts, similar to the “jaggies” that occur
when rasterizing a polygonal edge. These artifacts are particularly
noticeable when the discretization follows a regular pattern. If an ir-
regular mesh is used, then the artifacts may be partially masked, but
the fractures will still be forced onto a path that follows the element
boundaries so that the object can break apart only along predefined
facets.

Other relevant work in the computer graphics literature includes
techniques for modeling static crack patterns and fractures induced
by explosions. Hirota and colleagues described how phenomena
such as the static crack patterns created by drying mud can be mod-
eled using a mass and spring system attached to an immobile sub-
strate [8]. Mazarak et al. use a voxel-based approach to model
solid objects that break apart when they encounter a spherical blast
wave [9]. Neff and Fiume use a recursive pattern generator to di-
vide a planar region into polygonal shards that fly apart when acted
on by a spherical blast wave [10].

Fracture has been studied more extensively in the mechanics lit-
erature, and many techniques have been developed for simulating
and analyzing the behavior of materials as they fail. A number of
theories may be used to describe when and how a fracture will de-
velop or propagate, and these theories have been employed with
various numerical methods including finite element and finite dif-
ference methods, boundary integral equations, and molecular parti-
cle simulations. A comprehensive review of this work can be found
in the book by Anderson [1] and the survey article by Nishioka [11].

Although simulation is used to model fracture both in computer
graphics and in engineering, the requirements of the two fields are
very different. Engineering applications require that the simulation
predict real-world behaviors in an accurate and reliable fashion. In
computer animation, what matters is how the fracture looks, how
difficult it was to make it look that way, and how long it took. Al-
though the technique presented in this paper was developed using
traditional engineering tools, it is an animation technique and relies
on a number of simplifications that would be unacceptable in an
engineering context.

3 Deformations

Fractures arise in materials due to internal stresses created as the
material deforms. Our goal is to model these fractures. In order
to do so, however, we must first be able to model the deformations
that cause them. To provide a suitable framework for modeling
fractures, the deformation method must provide information about
the magnitude and orientation of the internal stresses, and whether
they are tensile or compressive. We would also like to avoid defor-
mation methods in which directional artifacts appear in the stress
patterns and propagate to the resulting fracture patterns.
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Figure 2: The material coordinates define a 3D parameterization of
the object. The function � ( � ) maps points from their location in the
material coordinate frame to their location in the world coordinates.
A fracture corresponds to a discontinuity in � ( � ).

We derive our deformation technique by defining a set of differ-
ential equations that describe the aggregate behavior of the material
in a continuous fashion, and then using a finite element method to
discretize these equations for computer simulation. This approach
is fairly standard, and many different deformation models can be
derived in this fashion. The one presented here was designed to be
simple, fast, and suitable for fracture modeling.

3.1 Continuous Model

Our continuous model is based on continuum mechanics, and an ex-
cellent introduction to this area can be found in the text by Fung [7].
The primary assumption in the continuum approach is that the
scale of the effects being modeled is significantly greater than the
scale of the material’s composition. Therefore, the behavior of the
molecules, grains, or particles that compose the material can be
modeled as a continuous media. Although this assumption is often
valid for modeling deformations, macroscopic fractures can be sig-
nificantly influenced by effects that occur at small scales where this
assumption may not be valid. Because we are interested in graph-
ical appearance rather than rigorous physical correctness, we will
put this issue aside and assume that a continuum model is adequate.

We begin the description of the continuous model by defining
material coordinates that parameterize the volume of space occu-
pied by the object being modeled. Let � = [u, v, w]T be a vector
in <3 that denotes a location in the material coordinate frame as
shown in Figure 2. The deformation of the material is defined by
the function � ( � ) = [x, y, z]T that maps locations in the material
coordinate frame to locations in world coordinates. In areas where
material exists, � ( � ) is continuous, except across a finite number
of surfaces within the volume that correspond to fractures in the
material. In areas where there is no material, � ( � ) is undefined.

We make use of Green’s strain tensor, � , to measure the local
deformation of the material [6]. It can be represented as a 3 × 3
symmetric matrix defined by

εij =

(

∂ �

∂ui

·
∂ �

∂uj

)

− δij (1)

where δij is the Kronecker delta:

δij =

{

1 : i = j
0 : i 6= j .

(2)

This strain metric only measures deformation; it is invariant with re-
spect to rigid body transformations applied to � and vanishes when
the material is not deformed. It has been used extensively in the
engineering literature. Because it is a tensor, its invariants do not
depend on the orientation of the material coordinate or world sys-
tems. The Euclidean metric tensor used by Terzopoulos and Fleis-
cher [18] differs only by the δij term.

In addition to the strain tensor, we make use of the strain rate
tensor, � , which measures the rate at which the strain is changing.
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It can be derived by taking the time derivative of (1) and is defined
by

νij =

(

∂ �

∂ui

·
∂ ˙

�

∂uj

)

+

(

∂ ˙
�

∂ui

·
∂ �

∂uj

)

(3)

where an over dot indicates a derivative with respect to time such
that ˙

� is the material velocity expressed in world coordinates.
The strain and strain rate tensors provide the raw information

that is required to compute internal elastic and damping forces, but
they do not take into account the properties of the material. The
stress tensor, � , combines the basic information from the strain and
strain rate with the material properties and determines forces inter-
nal to the material. Like the strain and strain rate tensors, the stress
tensor can be represented as a 3 × 3 symmetric matrix. It has two
components: the elastic stress due to strain, � (ε), and the viscous
stress due to strain rate, � (ν). The total internal stress, is the sum
of these two components with

� = � (ε) + � (ν) . (4)

The elastic stress and viscous stress are respectively functions of
the strain and strain rate. In their most general linear forms, they
are defined as

σ
(ε)
ij =

3
∑

k=1

3
∑

l=1

Cijkl εkl (5)

σ
(ν)
ij =

3
∑

k=1

3
∑

l=1

Dijkl νkl (6)

where
�

is a set of the 81 elastic coefficients that relate the ele-
ments of � to the elements � (ε), and � is a set of the 81 damping
coefficients.1

Because both � and � (ε) are symmetric, many of the coefficients
in
�

are either redundant or constrained, and
�

can be reduced to
36 independent values that relate the six independent values of � to
the six independent values of � (ε). If we impose the additional con-
straint that the material is isotropic, then

�
collapses further to only

two independent values, µ and λ, which are the Lamé constants of
the material. Equation (5) then reduces to

σ
(ε)
ij =

3
∑

k=1

λεkkδij + 2µεij . (7)

The material’s rigidity is determined by the value of µ, and the
resistance to changes in volume (dilation) is controlled by λ.

Similarly, � can be reduced to two independent values, φ and ψ
and (6) then reduces to

σ
(ν)
ij =

3
∑

k=1

φνkkδij + 2ψνij . (8)

The parameters µ and λ will control how quickly the material dis-
sipates internal kinetic energy. Since � (ν) is derived from the rate
at which ε is changing, � (ν) will not damp motions that are locally
rigid, and has the desirable property of dissipating only internal vi-
brations.

Once we have the strain, strain rate, and stress tensors, we can
compute the elastic potential density, η, and the damping potential
density, κ, at any point in the material using

η =
1

2

3
∑

i=1

3
∑

j=1

σ
(ε)
ij εij , (9)

1Actually � and � are themselves rank four tensors, and (5) and (6) are
normally expressed in this form so that � and � will follow the standard
rules for coordinate transforms.

���
���
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t
dV
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Figure 3: Given a point in the material, the traction, � , that acts
on the surface element, dS, of a differential volume, dV, centered
around the point with outward unit normal, ˆ� , is given by � = � ˆ� .

κ =
1

2

3
∑

i=1

3
∑

j=1

σ
(ν)
ij νij . (10)

These quantities can be integrated over the volume of the material to
obtain the total elastic and damping potentials. The elastic potential
is the internal elastic energy of the material. The damping potential
is related to the kinetic energy of the material after subtracting any
rigid body motion and normalizing for the material’s density.

The stress can also be used to compute the forces acting internal
to the material at any location. Let ˆ� be an outward unit normal
direction of a differential volume centered about a point in the ma-
terial. (See Figure 3.) The traction (force per unit area), � , acting
on a face perpendicular to the normal is then given by

� = � ˆ� . (11)

The examples in this paper were generated using this isotropic
formulation. However, these techniques do not make use of the
strain or strain rate tensors directly; rather they rely only on the
stress. Switching to the anisotropic formulation, or even to a non-
linear stress to strain relation, would not require any significant
changes.

3.2 Finite Element Discretization

Before we can model a material’s behavior using this continuous
model, it must be discretized in a way that is suitable for computer
simulation. Two commonly used techniques are the finite difference
and finite element methods.

A finite difference method divides the domain of the material
into a regular lattice and then uses numerical differencing to ap-
proximate the spatial derivatives required to compute the strain and
strain rate tensors. This approach is well suited for problems with
a regular structure but becomes complicated when the structure is
irregular.

A finite element method partitions the domain of the material
into distinct sub-domains, or elements as shown in Figure 4. Within
each element, the material is described locally by a function with
some finite number of parameters. The function is decomposed into
a set of orthogonal shape, or basis, functions that are each associ-
ated with one of the nodes on the boundary of the element. Adja-
cent elements will have nodes in common, so that the mesh defines
a piecewise function over the entire material domain.

Our discretization employs tetrahedral finite elements with linear
polynomial shape functions. By using a finite element method, the
mesh can be locally aligned with the fracture surfaces, thus avoid-
ing the previously mentioned artifacts. Just as triangles can be used
to approximate any surface, tetrahedra can be used to approximate
arbitrary volumes. Additionally, when tetrahedra are split along a
fracture plane, the resulting pieces can be decomposed exactly into
more tetrahedra.

We chose to use linear elements because higher-order elements
are not cost effective for modeling fracture boundaries. Although
higher-order polynomials provide individual elements with many
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(a) ( b)

Figure 4: Tetrahedral mesh for a simple object. In (a), only the ex-
ternal faces of the tetrahedra are drawn; in (b) the internal structure
is shown.

(a) ( b)
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Figure 5: A tetrahedral element is defined by its four nodes. Each
node has (a) a location in the material coordinate system and (b) a
position and velocity in the world coordinate system.

degrees of freedom for deformation, they have few degrees of free-
dom for modeling fracture because the shape of a fracture is defined
as a boundary in material coordinates. In contrast, with linear tetra-
hedra, each degree of freedom in the world space corresponds to a
degree of freedom in the material coordinates. Furthermore, when-
ever an element is created, its basis functions must be computed.
For high-degree polynomials, this computation is relatively expen-
sive. For systems where the mesh is constant, the cost is amortized
over the course of the simulation. However, as fractures develop
and parts of the object are remeshed, the computation of basis ma-
trices can become significant.

Each tetrahedral element is defined by four nodes. A node has
a position in the material coordinates, � , a position in the world
coordinates, � , and a velocity in world coordinates, � . We will refer
to the nodes of a given element by indexing with square brackets.
For example, � [2] is the position in material coordinates of the
element’s second node. (See Figure 5.)

Barycentric coordinates provide a natural way to define the linear
shape functions within an element. Let � = [b1, b2, b3, b4]

T be
barycentric coordinates defined in terms of the element’s material
coordinates so that

[

�

1

]

=
[ � [1]

1

� [2]

1

� [3]

1

� [4]

1

]

� . (12)

These barycentric coordinates may also be used to interpolate the
node’s world position and velocity with

[ �

1

]

=
[ � [1]

1

� [2]

1

� [3]

1

� [4]

1

]

� (13)
[

˙
�

1

]

=
[ � [1]

1

� [2]
1

� [3]
1

� [4]

1

]

� . (14)

To determine the barycentric coordinates of a point within the
element specified by its material coordinates, we invert (12) and
obtain

� = �
[

�

1

]

(15)

where � is defined by

� =
[ � [1]

1

� [2]

1

� [3]

1

� [4]

1

]−1

. (16)

Combining (15) with (13) and (14) yields functions that interpolate
the world position and velocity within the element in terms of the
material coordinates:

� ( � ) = ���
[

�

1

]

(17)

˙
� ( � ) = ���

[

�

1

]

(18)

where � and � are defined as

� =
[

� [1] � [2] � [3] � [4]

]

(19)

� =
[

� [1] � [2] � [3] � [4]
]

. (20)

Note that the rows of � are the coefficients of the shape functions,
and � needs to be computed only when an element is created or the
material coordinates of its nodes change. For non-degenerate ele-
ments, the matrix in (16) is guaranteed to be non-singular, however
elements that are nearly co-planar will cause � to be ill-conditioned
and adversely affect the numerical stability of the system.

Computing the values of � and � within the element requires the
first partials of � with respect to � :

∂ �

∂ui

= �	��
 i (21)

∂ ˙
�

∂ui

= ����
 i (22)

where

 i = [δi1 δi2 δi3 0]T . (23)

Because the element’s shape functions are linear, these partials are
constant within the element.

The element will exert elastic and damping forces on its nodes.
The elastic force on the ith node,  (ε)

[i]
, is defined as the negative

partial of the elastic potential density, η, with respect to � [i] inte-

grated over the volume of the element. Given � (ε), � , and the po-
sitions in world space of the four nodes we can compute the elastic
force by

 (ε)

[i]
= −

vol

2

4
∑

j=1

� [j]

3
∑

k=1

3
∑

l=1

βjlβikσ
(ε)
kl (24)

where

vol =
1

6
[( � [2] − � [1])× ( � [3] − � [1])] · ( � [4] − � [1]) . (25)

Similarly, the damping force on the ith node,  (ν)

[i]
, is defined as

the partial of the damping potential density, κ, with respect to � [i]

integrated over the volume of the element. This quantity can be
computed with

 (ν)

[i]
= −

vol

2

4
∑

j=1

� [j]

3
∑

k=1

3
∑

l=1

βjlβikσ
(ν)
kl . (26)

Summing these two forces, the total internal force that an element
exerts on a node is

 el
[i] = −

vol

2

4
∑

j=1

� [j]

3
∑

k=1

3
∑

l=1

βjlβikσkl , (27)
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and the total internal force acting on the node is obtained by sum-
ming the forces exerted by all elements that are attached to the node.

As the element is compressed to less than about 30% of its ma-
terial volume, the gradient of η and κ start to vanish causing the
resisting forces to fall off. We have not found this to be a problem
as even the more squishy of the materials that we have modeled
conserve their volume to within a few percent.

Using a lumped mass formulation, the mass contributed by an
element to each one of its nodes is determined by integrating the
material density, ρ, over the element shape function associated with
that node. In the case of tetrahedral elements with linear shape
functions, this mass contribution is simply ρ vol/4.

The derivations above are sufficient for a simulation that uses an
explicit integration scheme. Additional work, including computing
the Jacobian of the internal forces, is necessary for implicit integra-
tion scheme. (See for example [2] and [3].)

3.3 Collisions

In addition to the forces internal to the material, the system com-
putes collision forces. The collision forces are computed using a
penalty method that is applied when two elements intersect or if an
element violates another constraint such as the ground. Although
penalty methods are often criticized for creating stiff equations, we
have found that for the materials we are modeling the internal forces
are at least as stiff as the penalty forces. Penalty forces have the
advantage of being very fast to compute. We have experimented
with two different penalty criteria: node penetration and overlap
volume. The examples presented in this paper were computed with
the node penetration criteria; additional examples on the conference
proceedings CD-ROM were computed with the overlap volume cri-
teria.

The node penetration criteria sets the penalty force to be pro-
portional to the distance that a node has penetrated into another
element. The penalty force acts in the direction normal to the pene-
trated surface. The reaction force is distributed over the penetrated
element’s nodes so that the net force and moment are the negation of
the penalty force and moment acting at the penetrating node. This
test will not catch all collisions, and undetected intersecting tetra-
hedra may become locked together. It is however, fast to compute,
easy to implement, and adequate for situations that do not involve
complex collision interactions.

The overlap volume criteria is more robust than the node pene-
tration method, but it is also slower to compute and more complex
to implement. The intersection of two tetrahedral elements is com-
puted by clipping the faces of each tetrahedron against the other.
The resulting polyhedron is then used to compute the volume and
center of mass of the intersecting region. The area weighted nor-
mals of the faces of the polyhedron that are contributed by one of
the tetrahedra are summed to compute the direction that the penalty
force acts in. A similar computation can be performed for the other
tetrahedra, or equivalently the direction can be negated. Provided
that neither tetrahedra is completely contained within the other, this
criteria is more robust than the node penetration criteria. Addition-
ally, the forces computed with this method do not depend on the
object tessellation.

Computing the intersections within the mesh can be very expen-
sive, and we use a bounding hierarchy scheme with cached traver-
sals to help reduce this cost.

4 Fracture Modeling

Our fracture model is based on the theory of linear elastic fracture
mechanics [1]. The primary distinction between this and other the-

I IIIII

Figure 6: Three loading modes that can be experienced by a crack.
Mode I: Opening, Mode II: In-Plane Shear, and Mode III: Out-of-
Plane Shear. Adapted from Anderson [1].

ories of fracture is that the region of plasticity near the crack tip2 is
neglected. Because we are not modeling the energy dissipated by
this plastic region, modeled materials will be brittle. This statement
does not mean that they are weak; rather the term “brittle” refers to
the fact that once the material has begun to fail, the fractures will
have a strong tendency to propagate across the material as they are
driven by the internally stored elastic energy.

There are three loading modes by which forces can be applied to
a crack causing it to open further. (See Figure 6.) In most circum-
stances, some combination of these modes will be active, producing
a mixed mode load at the crack tip. For all three cases, as well as
mixed mode situations, the behavior of the crack can be resolved
by analyzing the forces acting at the crack tip: tensile forces that
are opposed by other tensile forces will cause the crack to continue
in a direction that is perpendicular to the direction of largest tensile
load, and conversely, compressive loads will tend to arrest a crack
to which they are perpendicular.

The finite element model describes the surface of a fracture with
elements that are adjacent in material coordinates but that do not
share nodes across the internal surface. The curve that represents
the crack tip is then implicitly defined in a piecewise linear fashion
by the nodes that border the fracture surface, and further extension
of the crack may be determined by analyzing the internal forces
acting on these nodes.

We will also use the element nodes to determine where a crack
should be initiated. While this strategy could potentially introduce
unpleasant artifacts, we note that because the surface of an object is
defined by a polygonal boundary (the outer faces of the tetrahedra)
there will always be a node located at any concavities. Because con-
cavities are precisely the locations where cracks commonly begin,
we believe that this decision is acceptable.

Our fracture algorithm is as follows: after every time step, the
system resolves the internal forces acting on all nodes into their ten-
sile and compressive components, discarding any unbalanced por-
tions. At each node, the resulting forces are then used to form a ten-
sor that describes how the internal forces are acting to separate that
node. If the action is sufficiently large, the node is split into two dis-
tinct nodes and a fracture plane is computed. All elements attached
to the node are divided along the plane with the resulting tetrahe-
dra assigned to one or the other incarnations of the split node, thus
creating a discontinuity in the material. Any cached values, such as
the node mass or the element shape functions, are recomputed for
the affected elements and nodes. With this technique, the location
of a fracture or crack tip need not be explicitly recorded unless this
information is useful for some other purpose, such as rendering.

2The term “crack tip” implies that the fracture will have a single point
at its tip. In general, the front of the crack will not be a single point; rather
it will be a curve that defines the boundary of the surface discontinuity in
material coordinates. (See Figure 4.) Nevertheless, we will refer to this
front as the crack tip.
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4.1 Force Decomposition

The forces acting on a node are decomposed by first separating
the element stress tensors into tensile and compressive components.
For a given element in the mesh, let vi( � ), with i ∈ {1, 2, 3}, be the
ith eigenvalue of � , and let n̂

i( � ) be the corresponding unit length
eigenvector. Positive eigenvalues correspond to tensile stresses and
negative ones to compressive stresses. Since � is real and symmet-
ric, it will have three real, not necessarily unique, eigenvalues. In
the case where an eigenvalue has multiplicity greater than one, the
eigenvectors are selected arbitrarily to orthogonally span the appro-
priate subspace [13].

Given a vector � in <3, we can construct a 3× 3 symmetric ma-
trix, m( � ) that has | � | as an eigenvalue with � as the corresponding
eigenvector, and with the other two eigenvalues equal to zero. This
matrix is defined by

m( � ) =

{

��� T/| � | : � 6= 0

0 : � = 0 .
(28)

The tensile component, � +, and compressive component, � −,
of the stress within the element can now be computed by

� + =

3
∑

i=1

max(0, vi( � )) m(n̂i( � )) (29)

� − =

3
∑

i=1

min(0, vi( � )) m(n̂i( � )) . (30)

Using this decomposition, the force that an element exerts on a
node can be separated into a tensile component,  +

[i]
, and a com-

pressive component,  −
[i]

. This separation is done by reevaluating

the internal forces exerted on the nodes using (27) with � + or � −

substituted for � . Thus the tensile component is

 +
[i] = −

vol

2

4
∑

j=1

� [j]

3
∑

k=1

3
∑

l=1

βjlβikσ
+
kl . (31)

The compressive component can be computed similarly, but be-
cause � = � + + � −, it can be computed more efficiently using
 [i] =  +

[i]
+  −

[i]
.

Each node will now have a set of tensile and a set of compressive
forces that are exerted by the elements attached to it. For a given
node, we denote these sets as {  +} and {  −} respectively. The
unbalanced tensile load,  + is simply the sum over {  +}, and the
unbalanced compressive load,  −, is the sum over {  −}.

4.2 The Separation Tensor

We describe the forces acting at the nodes using a stress variant that
we call the separation tensor, � . The separation tensor is formed
from the balanced tensile and compressive forces acting at each
node and is computed by

� =
1

2



−m(  +)+
∑

�
∈{
�
+}

m(  ) + m(  −)−
∑

�
∈{
�
−}

m(  )



 . (32)

It does not respond to unbalanced actions that would produce a rigid
translation, and is invariant with respect to transformations of both
the material and world coordinate systems.

The separation tensor is used directly to determine whether a
fracture should occur at a node. Let v+ be the largest positive eigen-
value of � . If v

+ is greater than the material toughness, τ , then the

(a) (c)( b)

Figure 7: Diagram showing how an element is split by the fracture
plane. (a) The initial tetrahedral element. (b) The splitting node
and fracture plane are shown in blue. (c) The element is split along
the fracture plane into two polyhedra that are then decomposed into
tetrahedra. Note that the two nodes created from the splitting node
are co-located, the geometric displacement shown in (c) only illus-
trates the location of the fracture discontinuity.

(a) ( b) (c)

Figure 8: Elements that are adjacent to an element that has been
split by a fracture plane must also be split to maintain mesh consis-
tency. (a) Neighboring tetrahedra prior to split. (b) Face neighbor
after split. (c) Edge neighbor after split.

material will fail at the node. The orientation in world coordinates
of the fracture plane is perpendicular to n̂

+, the eigenvector of �
that corresponds to v

+. In the case where multiple eigenvalues are
greater than τ , multiple fracture planes may be generated by first
generating the plane for the largest value, remeshing (see below),
and then recomputing the new value for � and proceeding as above.

4.3 Local Remeshing

Once the simulation has determined the location and orientation of
a new fracture plane, the mesh must be modified to reflect the new
discontinuity. It is important that the orientation of the fracture be
preserved, as approximating it with the existing element boundaries
would create undesirable artifacts. To avoid this potential difficulty,
the algorithm remeshes the local area surrounding the new fracture
by splitting elements that intersect the fracture plane and modifying
neighboring elements to ensure that the mesh stays self-consistent.

First, the node where the fracture originates is replicated so that
there are now two nodes, n+ and n− with the same material posi-
tion, world position, and velocity. The masses will be recalculated
later. The discontinuity passes “between” the two co-located nodes.
The positive side of the fracture plane is associated with n+ and the
negative side with n−.

Next, all elements that were attached to the original node are ex-
amined, comparing the world location of their nodes to the fracture
plane. If an element is not intersected by the fracture plane, then
it is reassigned to either n+ or n− depending on which side of the
plane it lies.

If the element is intersected by the fracture plane, it is split along
the plane. (See Figure 7.) A new node is created along each edge
that intersects the plane. Because all elements must be tetrahedra, in
general each intersected element will be split into three tetrahedra.
One of the tetrahedra will be assigned to one side of the plane and
the other two to the other side. Because the two tetrahedra that
are on the same side of the plane both share either n+ or n−, the
discontinuity does not pass between them.

In addition to the elements that were attached to the original
node, it may be necessary to split other elements so that the mesh
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Figure 9: Two adobe walls that are struck by wrecking balls. Both walls are attached to the ground. The ball in the second row has 50×
the mass of the first. Images are spaced apart 133.3 ms in the first row and 66.6 ms in the second. The rightmost images show the final
configurations.

a b

dc

Figure 10: Mesh for adobe wall. (a) The facing surface of the initial
mesh used to generate the wall shown in Figure 9. (b) The mesh af-
ter being struck by the wrecking ball, reassembled. (c) Same as (b),
with the cracks emphasized. (d) Internal fractures shown as wire-
frame.

stays consistent. In particular, an element must be split if the face or
edge between it and another element that was attached to the orig-
inal node has been split. (See Figure 8.) To prevent the remeshing
from cascading across the entire mesh, these splits are done so that
the new tetrahedra use only the original nodes and the nodes cre-
ated by the intersection splits. Because no new nodes are created,
the effect of the local remeshing is limited to the elements that are
attached to the node where the fracture originated and their imme-
diate neighbors. Because the tetrahedra formed by the secondary
splits do not attach to either n+ or n−, the discontinuity does not
pass between them.

Finally, after the local remeshing has been completed, any
cached values that have become invalid must be recomputed. In
our implementation, these values include the element basis matrix,
� , and the node masses.

Two additional subtleties must also be considered. The first
subtlety occurs when an intersection split involves an edge that
is formed only by tetrahedra attached to the node where the crack
originated. When this happens, the fracture has reached a boundary
in the material, and the discontinuity should pass through the edge.
Remeshing occurs as above, except that two nodes are created on
the edge and one is assigned to each side of the discontinuity.

Second, the fracture plane may pass arbitrarily close to an exist-
ing node producing arbitrarily ill-conditioned tetrahedra. To avoid
this, we employ two thresholds, one the distance between the frac-

ture plane and an existing node, and the other on the angle between
the fracture plane and a line from the node where the split origi-
nated to the existing node. If either of these thresholds are not met,
then the intersection split is snapped to the existing node. In our
results, we have used thresholds of 5 mm and 0.1 radians.

5 Results and Discussion

To demonstrate some of the effects that can be generated with this
fracture technique, we have animated a number of scenes that in-
volve objects breaking. Figure 1 shows a plate of glass that has had
a heavy weight dropped on it. The area in the immediate vicinity
of the impact has been crushed into many small fragments. Further
away from the weight, a pattern of radial cracks has developed.

Figure 9 shows two walls being struck by wrecking balls. In
the first sequence, the wall develops a network of cracks as it ab-
sorbs most of the ball’s energy during the initial impact. In the sec-
ond sequence, the ball’s mass is 50× greater, and the wall shatters
when it is struck. The mesh used to generate the wall sequences is
shown in Figure 10. The initial mesh contains only 338 nodes and
1109 elements. By the end of the sequence, the mesh has grown
to 6892 nodes and 8275 elements. These additional nodes and el-
ements are created where fractures occur; a uniform mesh would
require many times this number of nodes and elements to achieve a
similar result.

Figure 11 shows the final frames from four animations of bowls
that were dropped onto a hard surface. Other than the toughness,
τ , of the material, the four simulations are identical. The first bowl
develops only a few cracks; the weakest breaks into many pieces.

Because this system works with solid tetrahedral volumes rather
than with the polygonal boundary representations created by most
modeling packages, boundary models must be converted before
they can be used. A number of systems are available for creating
tetrahedral meshes from polygonal boundaries. The models that
we used in these examples were generated either from a CSG de-
scription or a polygonal boundary representation using NETGEN,
a publicly available mesh generation package [16].

Although our approach avoids the “jaggy” artifacts in the frac-
ture patterns caused by the underlying mesh, there remain ways in
which the results of a simulation are influenced by the mesh struc-
ture. The most obvious is that the deformation of the material is
limited by the degrees of freedom in the mesh, which in turn limits
how the material can fracture. This limitation will occur with any
discrete system. The technique also limits where a fracture may ini-
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Figure 11: Bowls with successively lower toughness values, τ . Each of the bowls were dropped from the same height. Other than τ , the
bowls have same material properties.

θopen

θturn θturn

θopen

(a) ( b)

Figure 12: Back-cracking during fracture advance. The dashed line
is the axis of the existing crack. Cracks advance by splitting ele-
ments along a fracture plane, shown as a solid line, computed from
the separation tensor. (a) If the crack does not turn sharply, then
only elements in front of the tip will be split. (b) If the crack turns
at too sharp an angle, then the backwards direction may not fall
inside of the existing failure and a spurious bifurcation will occur.

tiate by examining only the existing nodes. This assumption means
that very coarse mesh sizes might behave in an unintuitive fash-
ion. However, nodes correspond to the locations where a fracture
is most likely to begin; therefore, with a reasonable grid size, this
limitation is not a serious handicap.

A more serious limitation is related to the speed at which a crack
propagates. Currently, the distance that a fracture may travel during
a time step is determined by the size of the existing mesh elements.
The crack may either split an element or not; it cannot travel only
a fraction of the distance across an element. If a crack were being
opened slowly by an applied load on a model with a coarse resolu-
tion mesh, this limitation would lead to a “button popping” effect
where the crack would travel across one element, pause until the
stress built up again, and then move across the next element. A
second type of artifact may occur if the crack’s speed should be
significantly greater than the element width divided by the simula-
tion time step. In this case, a high stress area will race ahead of
the crack tip, causing spontaneous failures to occur in the material.
Although we have not observed these phenomena in our examples,
developing an algorithm that allows a fracture to propagate arbitrary
distances is an area for future work.

Another limitation stems from the fact that while the fracture
plane’s orientation is well defined, the crack tip’s forward direction
is not. As shown in Figure 12, if the cracks turns at an angle greater
than half the angle at the crack tip, then a secondary fracture will
develop in the opposite direction to the crack’s advance. While this
effect is likely present in some of our examples, it does not appear
to have a significant impact on the quality of the results. If the arti-
facts were to be a problem, they could be suppressed by explicitly
tracking the fracture propagation directions within the mesh.

The simulation parameters used to generate the examples in this
paper are listed in Table 1 along with the computation time required
to generate one second of animation. While the material density
values, ρ, are appropriate for glass, stone, or ceramic, we used val-
ues for the Lamé constants, λ and µ, that are significantly less than
those of real materials. Larger values would make the simulated
materials appear stiffer, but would also require smaller time steps.

The values that we have selected represent a compromise between
realistic behavior and reasonable computation time.

Our current implementation can switch between either a forward
Euler integration scheme or a second order Taylor integrator. Both
of these techniques are explicit integration schemes, and subject to
stability limits that require very small time steps for stiff materi-
als. Although semi-implicit integration methods have error bounds
similar to those of explicit methods, the semi-implicit integrators
tend to drive errors towards zero rather than infinity so that they are
stable at much larger time steps. Other researchers have shown that
by taking advantage of this property, a semi-implicit integrator can
be used to realize speed ups of two or three orders of magnitude
when modeling object deformation [2]. Unfortunately, it may be
difficult to realize these same improvements when fracture prop-
agation is part of the simulation. As discussed above, the crack
speed is limited in inverse proportion to the time step size, and the
large time steps that might be afforded by a semi-implicit integrator
could cause spontaneous material failure to proceed crack advance.
We are currently investigating how our methods may be modified
to be compatible with large time step integration schemes.

Many materials and objects in the real world are not homoge-
neous, and it would be interesting to develop graphical models for
animating them as they fail. For example, a brick wall is made
up of mortar and bricks arranged in a regular fashion, and if simu-
lated in a situation like our wall example, a distinct pattern would
be created. Similarly, the connection between a handmade cup and
its handle is often weak because of the way in which the handle is
attached.

One way to assess the realism of an animation technique is by
comparing it with the real world. Figure 13 shows high-speed video
footage of a physical bowl as it falls onto its edge compared to our
imitation of the real-world scene. Although the two sets of fracture
patterns are clearly different, the simulated bowl has some qualita-
tive similarities to the real one. Both initially fail along the leading
edge where they strike the ground, and subsequently develop verti-
cal cracks before breaking into several large pieces.
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Minutes of Computation
Material Parameters Time per Simulation Second

Example Figure λ (N/m2) µ (N/m2) φ (Ns/m2) ψ (Ns/m2) ρ (kg/m3 ) τ (N/m2) Minimum Maximum Average

Glass 1 1.04 × 10
8

1.04 × 10
8

0 6760 2588 10140 75 667 273

Wall #1 9.a 6.03 × 10
8

1.21 × 10
8

3015 6030 2309 6030 75 562 399

Wall #2 9.b 0 1.81 × 10
8

0 18090 2309 6030 75 2317 1098

Bowl #1 11.a 2.65 × 10
6

3.97 × 10
6

264 397 1013 52.9 90 120 109

Bowl #2 11.b 2.65 × 10
6

3.97 × 10
6

264 397 1013 39.6 82 135 115

Bowl #3 11.c 2.65 × 10
6

3.97 × 10
6

264 397 1013 33.1 90 150 127

Bowl #4 11.d 2.65 × 10
6

3.97 × 10
6

264 397 1013 13.2 82 187 156

Comp. Bowl 13 0 5.29 × 10
7

0 198 1013 106 247 390 347

The End 14 0 9.21 × 10
6

0 9.2 705 73.6 622 6667 4665

Table 1: Material parameters and simulation times for examples. The times listed reflect the total number of minutes required to compute one
second of simulated data, including graphics and file I/O. Times were measured on an SGI O2 with a 195 MHz MIPS R10K processor.

Figure 13: Comparison of a real-world event and simulation. The top row shows high-speed video images of a physical ceramic bowl dropped
from approximately one meter onto a hard surface. The bottom row is the output from a simulation where we attempted to match the initial
conditions of the physical bowl. Video images are 8 ms apart. Simulation images are 13 ms apart.
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Abstract
In this paper, we describe a method for realistically animating duc-
tile fracture in common solid materials such as plastics and metals.
The effects that characterize ductile fracture occur due to interac-
tion between plastic yielding and the fracture process. By modeling
this interaction, our ductile fracture method can generate realistic
motion for a much wider range of materials than could be real-
ized with a purely brittle model. This method directly extends our
prior work on brittle fracture [O’Brien and Hodgins, SIGGRAPH
99]. We show that adapting that method to ductile as well as brit-
tle materials requires only a simple to implement modification that
is computationally inexpensive. This paper describes this modifi-
cation and presents results demonstrating some of the effects that
may be realized with it.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Physically based modeling;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation; I.6.8 [Simulation and Modeling]: Types of
Simulation—Animation

Keywords: Animation techniques, physically based modeling,
simulation, dynamics, fracture, cracking, deformation, finite ele-
ment method, ductile fracture, plasticity.

1 Introduction
As techniques for generating photorealistic computer rendered im-
ages have improved, the use of physically based animation to gen-
erate special effects in film, television, and games has become in-
creasingly common. Physically based animation techniques have
proven to be particularly useful for violent or destructive effects
that would be impractical or expensive to achieve using other meth-
ods. For example, when creating effects for the film Pearl Har-
bor, Industrial Light and Magic made extensive use of simulation
methods for modeling the destruction of ships, planes, and other
structures [Duncan, 2001].

Animating objects as they break, crack, tear, or in general frac-
ture appears to be an obvious place where physically based mod-
eling should be useful, particularly if the object is expensive, ir-
replaceable, or if breaking it would be hazardous. However even
the most general of current techniques for animating fracture are
limited to modeling only brittle materials.

The term brittle does not mean that a material is fragile. It means
that the material experiences only elastic deformation before frac-
ture. Few real materials are truly brittle. In contrast, ductile ma-
terials behave elastically up to a point and then experience some
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Figure 1: Four hollow balls that have been dropped onto a hard
surface. The ball in (a) flattens out and visibly demonstrates plastic
yielding. The other three do not show an appreciable amount of
plastic deformation, but the manner in which they split and tear, as
opposed to shattering, arises from of the interaction between plastic
yielding and the fracture process.

amount of plastic deformation before fracture. When brittle materi-
als fracture, they shatter. However, ductile materials demonstrate a
much wider range of fracture behaviors. (See figures 1 and 3.) This
wider range of behaviors arises due to the interaction of plastic en-
ergy absorption with the fracture process.

This paper describes a method suitable for modeling ductile frac-
ture in common solid materials such as plastics or metals. This
method directly extends our prior technique presented in [O’Brien
and Hodgins, 1999] for modeling brittle fracture. Adapting that
technique to ductile as well as brittle materials requires only a sim-
ple to implement and computationally inexpensive modification.
This extension dramatically expands the range of materials that may
be modeled. For the sake of brevity, this paper describes only this
modification and presents results demonstrating some of the effects
that may be realized with it.

2 Related Work
The primary contribution of this paper is extending [O’Brien and
Hodgins, 1999] to include ductile fracture by adding a plastic-
ity model to the underlying finite-element method. The plastic-
ity model we describe is not novel. It consists of the von Mises
yield criterion, simple kinematic work hardening, and a finite yield
limit [Fung, 1965]. This plasticity model is similar to the one used
in [Terzopoulos and Fleischer, 1988a] and [Terzopoulos and Fleis-
cher, 1988b]. The primary differences between their model and the
one presented here are that this model realistically preserves vol-
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ume and it includes a second elastic regime once a limit on the
amount of plastic flow has been exceeded.

Although ductile fracture has not been widely addressed in the
graphics literature, several other graphics researchers have investi-
gated brittle fracture. In [Terzopoulos and Fleischer, 1988a] and
[Terzopoulos and Fleischer, 1988b] a finite differencing scheme
was used to model tearing sheets of cloth-like material. Work
by [Norton et al., 1991] used a mass/spring system to model a
breaking teapot. Fracture in the context of explosions was explored
by [Mazarak et al., 1999], [Neff and Fiume, 1999], and [Yngve
et al., 2000]. Most recently [Smith et al., 2001] used constraint-
based methods for modeling brittle fracture.

Outside the graphics literature, both brittle and ductile fracture
have been investigated extensively. A comprehensive review of this
work can be found in [Anderson, 1995].

3 Ductile vs. Brittle Fracture
The common usage of the terms elastic and brittle differs substan-
tially from their technical meanings. For example, elastic is often
used incorrectly as a synonym for flexible, and the term brittle as a
synonym for fragile [Merriam-Webster, 1998]. The technically cor-
rect definition of an elastic material refers to a material that returns
to its original configuration when deforming forces have been re-
moved. The ratio between the magnitude of a force and the amount
of deformation it induces, that is how easily the material deforms, is
the compliance of the material and it is irrelevant to whether or not
the material is elastic. Although no real material is perfectly elas-
tic, both natural rubber and common glass are examples of nearly
elastic materials. Rubber’s elastic behavior is obvious while glass
appears to be rigid. A brittle material is simply one that behaves
elastically up until the point where it fractures.

In contrast to an elastic material, a plastic material will not re-
turn to its original configuration once deforming forces have been
removed. When a material, such as lead, bends and then holds its
new shape, it demonstrates plastic behavior. As previously stated,
real materials do not behave perfectly elastically. Real materials
can be deformed only to a limited extent before they will no longer
return to their original configuration. This limit is known as the ma-
terial’s elastic limit or yield point. When the elastic limit has been
exceeded, the material enters a plastic regime and begins to experi-
ence plastic flow. Eventually, at the failure threshold, it fractures.

The terms brittle and ductile relate to the relative values of the
elastic limit and failure threshold. If the failure threshold nearly
coincides with the elastic limit, then the material will experience
only negligible plastic deformation before fracture. The term brit-
tle refers to such a material. In contrast, for a ductile material the
failure threshold is significantly larger than the elastic limit so that
as the material deforms it experiences an elastic regime, followed a
plastic regime, and then finally fracture.

The significance of the distinction between ductile and brittle
materials arises because elastic deformation stores energy whereas
plastic deformation dissipates it. When a brittle material is de-
formed to its failure threshold, the majority of the energy used to
deform it has been stored as elastic potential. When fracture oc-
curs, the energy is released and it tends to drive the fracture further
into the material. Thus, even though a large or small force may
be required to start a crack in a brittle material (depending on its
toughness), once the crack is started only a small amount of energy
is required to push it further. In contrast, a ductile material requires
significantly more work to propagate a crack because energy is be-
ing absorbed by plastic deformation. As a result, brittle materials
tend to shatter, whereas ductile ones tend to tear.

In general the underlying causes of plasticity are fairly compli-
cated and they give rise to a number of phenomena. For example,
the energy absorbed by plastic deformation does not simply vanish
and it may result in effects such as fatigue weakening. However for
the purposes of animating failure events that occur over relatively
short periods of time, the most significant effect of plasticity is how
it directly effects fracture propagation, and the methods discussed
here focus on modeling those effects efficiently. Additional infor-
mation about mathematical models of deformation and plasticity
can be found in [Fung, 1965; Fung, 1969] and [Han and Reddy,

1999]. Additional information concerning both brittle and ductile
fracture may be found in [Anderson, 1995].

4 Modeling Ductility
The dynamic fracture propagation technique described in [O’Brien
and Hodgins, 1999] models the fracture process using a simple
tetrahedral finite-element method, rules for fracture initiation and
propagation, and procedures for automatic remeshing as a crack
advances. The quality of the results produced with that method
is sufficient for graphical applications, and the only limitation that
makes it unsuitable for modeling fracture in ductile materials is that
the continuum model does not account for plastic deformation.

Extending that model to account for plasticity may be accom-
plished by simply redefining the strain metric used to compute ele-
ment stresses. This change has only a local impact on the fracture
algorithm, and so we will not repeat the details of the method which
appear in [O’Brien and Hodgins, 1999]. Instead we describe only
the modifications that should be made to the algorithm:

• The elastic strain, � e defined in section 4.1 of this paper, takes
the place of the total strain, � , when computing the elastic
stress.

• A routine for updating the plastic strain, described in sec-
tion 4.2 of this paper, must be called during every integration
step.

Even though this extension requires only incremental modifications
to the previous method, it significantly extends the range of materi-
als that may be realistically modeled. Furthermore, as our examples
will demonstrate, small amounts of plastic yielding can dramati-
cally effect the overall appearance of fracture patterns in a material,
even though the plastic deformation itself cannot be observed di-
rectly. We feel that the significant relationship between plasticity
and the appearance of fracture in most materials makes modeling
plasticity a required component of any general system for animat-
ing fracture.

4.1 Decomposing Strain
The first step towards modeling plastic deformation requires sepa-
rating the strain into two components:

� = � p + � e (1)

where � is the total strain, � p is the strain due to plastic defor-
mation, and � e is the strain due to elastic deformation. The total
strain is a purely geometric measure, it indicates how much the
local shape of an object has changed from some initial reference
configuration and it may be computed from the material’s current
configuration. (See [O’Brien and Hodgins, 1999] for computation
of Green’s strain.) The plastic strain reflects how the material’s rest
shape has been permanently distorted and it is part of the material’s
state. Initially, the plastic strain is zero1 and it will evolve accord-
ing to an update rule as the simulation progresses. Because the total
and plastic strains are known at any given time, equation (1) may
be used to compute the elastic strain.

4.2 Plastic Update
The algorithm for modeling the evolution of the plastic strain con-
sists of a yield condition that must be met before plastic deforma-
tion occurs and a rule for computing plastic flow once the yield
criterion has been met. We employ von Mises’s yield criterion for
the condition under which plastic flow will begin [Fung, 1965]. Our
method for updating the plastic strain assumes that the rate of plas-
tic flow in the material is close enough to its rate of deformation so
that plastic flow can be updated instantaneously. This assumption
precludes modeling phenomena such as creep and relaxation, but

1 A non-zero initial value for the plastic strain could be used to model
an object that has already experienced plastic deformation.
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Figure 2: These diagrams illustrate the behavior of the plasticity
model. (a) Elastic deformation. (b) and (c) Plastic deformation.
(d) Limit of plastic yield. (See explanation in the text.)

under most circumstances these phenomena do not significantly ef-
fect fracture behavior. We also ignore the weakening of a material
due to repeated plastic deformation known as fatigue. While fa-
tigue often plays a significant role in the failure of mechanisms and
structures, a previously fatigued object may be modeled by locally
adjusting its toughness and plastic limits.

The von Mises yield criterion is based on the deviation of the
elastic strain given by

� ′ = � e −
Tr ( � e)

3

�
(2)

where Tr (·) is the trace of a matrix and
�

is the identity matrix.
By averaging out the sum of the diagonal terms, the elastic strain
deviation reflects only the portion of the elastic strain that is due to
shape distortion and it excludes dilation. Excluding dilation makes
the plastic deformation insensitive to hydrostatic pressure and will
prevent the material from changing its volume which would gener-
ate unnatural behavior.

The yield criterion compares the magnitude of the elastic strain
deviation (Frobenius norm) to a material constant, γ1:

γ1 < || � ′|| . (3)

Together equations (2) and (3) define the von Mises yield crite-
rion [Fung, 1965]. If this condition is met then plastic deformation
will occur. We compute the base change in plastic deformation ac-
cording to:

∆ � p =
|| � ′|| − γ1

|| � ′||
� ′

. (4)

A limit on the total amount of plastic deformation that can be with-
stood by the material, γ2, is enforced by updating the plastic strain
at every time-step according to:

� p := ( � p + ∆ � p) min

(

1,
γ2

|| � p + ∆ � p||

)

. (5)

The behavior of this plasticity model is illustrated by figure 2.
The image plane represents a two-dimensional projection of the
five-dimensional space of strain deviations.2 The plastic strain be-
haves as if it were being dragged by the total strain using a rope of
length γ1. The difference between the plastic strain’s and the total

2 For three-dimensional objects, strain is a 3 × 3 symmetric tensor with
nine components. Because of symmetry, only six of these components are
independent. Equation (2) removes one degree of freedom, leaving five.

γ1=0.00   γ2=0.00

γ1=0.0044   γ2=0.486

γ1=0.0022   γ2=0.486

γ1=0.00044   γ2=0.486 γ1=0.001   γ2=0.486

γ1=0.001   γ2=0.162

γ1=0.001   γ2=0.018

γ1=0.001   γ2=0.006

Figure 3: Images showing the results of simulating a set of eight
thin walls with different material parameters as they are each struck
by a heavy projectile. A purely brittle material is shown in the top-
left. The others images demonstrate how varying the plasticity of
the material can produce a range of effects.

strain’s locations represents the current elastic strain. A barrier at
radius γ2 restricts the motion of the plastic strain, but not the total
strain. An elastic force (stress) attracts the total strain to the plas-
tic strain, but not the plastic strain to the total strain. As shown in
figure 2.c, the plastic deformation will depend on the history of the
total strain’s movement.

5 Results and Discussion
Figure 3 shows a set of thin walls that have been struck by a heavy
weight. The walls are clamped at the bottom, and they experi-
ence collision forces due to contacts with the ground plane, the
weight, and self-collisions. The top-left image in figure 3 with
(γ1 = γ2 = 0) shows the behavior of a purely brittle material. The
other images in figure 3 show some examples that demonstrate the
effects of different plastic parameter values. In the left column γ1

has been varied while γ2 was held fixed. The right column demon-
strates the result of varying γ2 while γ1 was held fixed. Some of the
images, such as the bottom-right with (γ1 = 0.001, γ2 = 0.486),
demonstrate obvious amounts of plastic yielding. However, plastic-
ity also plays a significant role in the images where plastic yielding
is not obviously visible. For example, (γ1 = 0.001, γ2 = 0.162)
shows only a small part of the wall being torn away largely intact,
and (γ1 = 0.001, γ2 = 0.006) shows the wall breaking into several
large pieces. Both of these behaviors demonstrate how the fracture
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Figure 4: A solid cylinder that experiences ductile fracture when it
is pulled apart.

Figure 5: A thin sheet that has been torn apart.

process can be affected by otherwise unnoticeable amounts of plas-
tic deformation. The proceedings DVD contains animations that
further illustrate the behaviors depicted in figure 3 as well as the
behaviors shown in the other figures.

Figure 4 shows a solid cylinder tearing as it is pulled and twisted
apart. Figures 5 and 7 show the ductile fracture that results when
other objects are ripped apart.

One way to assess the realism of an animation technique is by
comparing it with the real world. Figure 6 shows a real clay slab
that has been struck by a spherical projectile and a simulated slab
of plastic material that has also be struck by a spherical projectile.
Although the two images have obvious differences, the holes left
by the projectiles demonstrate qualitative similarities.

While modifying the computation of the element stresses to use
the elastic strain instead of the total strain requires only minor
changes to an existing code, the change may also have an effect
on the integration scheme. Our implementation uses an explicit in-
tegrator that takes adaptive time steps. The step size is determined
by monitoring the total energy to ensure that the system is not go-
ing unstable. We compared the size of steps taken when simulating
a purely elastic material to those taken when simulating a material
that was identical except that the plasticity code had been enabled.
During periods when collisions were occurring, both simulations
took similar-sized integration steps. At other times, however, the
average step size for the plastic material was approximately twice
that of the purely elastic one. This result is not surprising because
plastic deformation absorbs energy implying that it should tend to
help stabilize the system, but it is only a single test on a single set
of parameters and further tests would need to be done before any
more general statement could be made.

The deformation model we implemented allows a regime of elas-
tic deformation, followed by a plastic regime, and then possibly
followed by a second elastic regime. While this model suffices for
many materials, other materials, such as woven fabrics, may go
through multiple cycles of elastic and plastic behavior. We have
also worked only with a linear relationship between elastic strain
and stress. While a linear model adequately describes many materi-
als, other materials such as biological tissues demonstrate distinctly
non-linear elastic behavior. Developing adequate graphical models
for these types of materials remains an area for future work.
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Abstract

This paper describes a real-time technique for generating realistic
and compelling sounds that correspond to the motions of rigid ob-
jects. By numerically precomputing the shape and frequencies of an
object’s deformation modes, audio can be synthesized interactively
directly from the force data generated by a standard rigid-body sim-
ulation. Using sparse-matrix eigen-decomposition methods, the de-
formation modes can be computed efficiently even for large meshes.
This approach allows us to accurately model the sounds generated
by arbitrarily shaped objects based only on a geometric description
of the objects and a handful of material parameters. We validate our
method by comparing results from a simulated set of wind chimes
to audio measurements taken from a real set.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Physically based modeling;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation; I.6.8 [Simulation and Modeling]: Types of
Simulation—Animation; H.5.5 [Information Interfaces and Presen-
tation]: Sound and Music Computing—Signal analysis, synthesis,
and processing

Keywords: Sound modeling, physically based modeling, sim-
ulation, surface vibrations, dynamics, animation techniques, finite
element method, modal synthesis, modal analysis.

1 Introduction

One of the central goals for the field of computer graphics is the
compelling portrayal of realistic synthetic environments. However,
generating convincing animations of scenes such as that shown in
figure 1 requires depicting not only the visual aspects of the scene,
but its audio components as well. While constructing a soundtrack
by hand often provides a feasible option for animations that are gen-
erated off line, interactive applications increasingly rely on physi-
cally based simulation techniques to generate animated motions in
real-time and these applications require methods for generating the
corresponding audio in real-time as well.

One class of simulation method that has found widespread use
in real-time applications is rigid-body simulations. Because rigid
bodies are made up of incompliant materials, they experience only

job@cs.berkeley.edu, csh@cs.berkeley.edu, tine@cs.berkeley.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGGRAPH Symposium on Computer Animation 2002
© Copyright ACM 2002

Figure 1: A synthetic environment containing a set of simulated
wind chimes. Both the motion of the chimes and the corresponding
audio can be computed at interactive speeds.

small-amplitude deformations during interactions with their envi-
ronment. Explicitly discarding these small deformations allows
rigid-body simulators to model a system’s remaining degrees of
freedom efficiently. However, although visually insignificant, it is
the vibration of these small-amplitude deformations that generates
the sounds heard from these objects.

This paper describes a real-time technique for generating real-
istic and compelling sounds that correspond to the motions gener-
ated by rigid-body simulation methods. Precomputing the shape
and frequencies of an object’s deformation modes allows that ob-
ject’s vibrational response to contact forces to be efficiently com-
puted at runtime. The vibrational response is then used directly
to compute the corresponding audio. Our technique computes an
object’s deformation modes numerically by performing an eigen-
decomposition of the system matrices from a finite element model
of the object. This approach allows us to accurately model the
sounds generated by arbitrarily shaped objects based on a geomet-
ric description of the object and a handful of material parameters.
The diagram in figure 2 provides an overview of this process.

2 Background

The technique presented in this paper is closely related to previous
methods developed by van den Doel, Kry, and Pai. The concept of
using the vibrational modes of an object for generating sound was
originally introduced to the graphics community in [van den Doel
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Figure 2: This diagram illustrates both the preprocessing steps that
are used to construct the audio/visual model for an object, and the
processes that subsequently generate sound and motion from this
description at interactive speeds.

and Pai, 1996] and [van den Doel and Pai, 1998]. They showed
that the analytically computed vibrational modes of simply shaped
objects, such as square plates or cylindrical rods, could be used to
generate sound maps over the object surfaces. They constructed a
system that computed realistic contact sounds when an interactive
user indicated a point on the surfaces of the modeled objects. Be-
cause the maps were generated from the mode shapes, the system
correctly captured the variations that arise when objects are struck
at different locations. More recently, [van den Doel et al., 2001] de-
scribed a method that uses recorded data to construct sound maps
over the surface of an object. In addition to allowing a user to inter-
actively generate sounds by tapping the object surfaces, they used
contact forces from a real-time rigid-body simulation to excite the
sampled modes.

Our work builds on the ideas of these two previous methods by
extending the range of objects that can be modeled to include ones
that are neither simple shapes nor available to be measured. The
analytically computed modes used in [van den Doel and Pai, 1996]
and [van den Doel and Pai, 1998] are the continuous equivalent
of the numerically computed discretized modes described in Sec-
tion 3.1 of this paper. Numerical computation allows determining
the modes for essentially arbitrary shapes as opposed to a few sim-
ple shapes, and it makes fewer assumptions about the underling
differential equations. Our method for driving the sound generation
from a rigid-body simulation is essentially identical to the method
used in [van den Doel et al., 2001], but we have found that useful
results can be generated using “off-the-shelf” rigid-body simulators
and that a special contact method is not necessarily required unless
one wishes to produce rubbing or scraping sounds.

Another related method for generating sound has been described
in [O’Brien et al., 2001]. Their approach uses a nonlinear finite
element method to explicitly model the response of an object to
external forces. Audio is generated by analyzing the computed sur-
face behavior and then applying a set of filters to the computed
motion for extracting frequency components that fall within the au-
dible range. Unlike the method detailed in this paper and the previ-

ously described methods of van den Doel and his colleagues, the use
of a nonlinear finite element method allows them to model sounds
that arise from nonlinear behaviors such as buckling. The main
limitation of their method is that it requires large amounts of com-
putation. In contrast, our method can accurately model only sounds
produced by linear phenomena, but it can compute these sounds in
real-time.

In addition to the above physically motivated work on sound gen-
eration, other prior work in the graphics community has focused
on sound propagation and heuristic approaches to sound genera-
tion. Producing synchronized soundtracks for animations was ad-
dressed in [Takala and Hahn, 1992] and [Hahn et al., 1995]. For
modeling tearing cloth, [Terzopoulos and Fleischer, 1988] gener-
ated soundtracks by playing a pre-recorded sound whenever a con-
nection in a spring mesh failed. Work described in [Savioja et al.,
1997] focused on creating virtual musical performances in virtual
spaces using physically derived models of musical instruments and
acoustic ray-tracing for spatialization of the sound sources. Other
researchers have developed methods for correctly modeling reflec-
tions and transmissions within the sonic environment [Funkhouser
et al., 1998; Funkhouser et al., 1999; Min and Funkhouser, 2000;
Tsingos et al., 2001].

The method described in this paper is also related to previous
work in the graphics community on modeling deformable objects.
The idea of decoupling an object’s rigid-body behavior from it’s
elastic deformation was proposed in [Terzopoulos and Fleischer,
1988] as an efficient method for modeling deformable objects. This
idea was extended in [Pentland and Williams, 1989] by using modal
analysis for modeling deformable objects, although instead of ac-
tually using the object’s vibrational modes they approximated them
with arbitrary linear and quadratic deformation fields.

Outside the field of computer graphics, an extensive amount of
research on sound modeling has been conducted in the digital sound
and music communities. There the focus has been primarily on ac-
curately modeling the sounds generated by musical instruments, in-
cluding the fine subtleties that distinguish high-quality instruments.
A comprehensive review of the work that has been done in those
areas can be found in [Cook, 2002].

3 Methods

The mechanical dynamics of a solid physical object can be decom-
posed into two components: idealized rigid-body motions and elas-
tic deformations. An object is referred to as being rigid, or incom-
pliant, if its response to typical interactions includes only negligi-
ble deformations. For example, when a person taps the side of a
drinking glass it flexes slightly but the amplitude of this deforma-
tion is small enough to be unobservable by sight. However, this
small deformation may be observable by hearing. In particular, if
the elastic properties of the glass are such that the small deforma-
tion induced by the tap results in vibrations at frequencies between
approximately 20 and 20, 000 Hz, then the small pressure fluctua-
tions caused by the oscillating deformation will be heard as sound.
For further information on the physical process of sound generation
we refer the reader to [Kinsler et al., 2000].

3.1 Modal Analysis

Our method for modeling the sounds generated by rigid objects
makes use of a well studied technique known as modal analysis.
This section presents a brief overview of modal analysis and pro-
vides the framework for describing our methods. We refer the
reader to [Cook et al., 1989] for additional information on modal
analysis.

A physical system that has been discretized using a finite ele-
ment, finite differencing, or other similar method can be expressed
in the following general form:

�
( � ) + � ( � , ˙� ) + � ( ¨� ) = � (1)
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where � is the vector of node displacements, an overdot indicates
a derivative with respect to time,

�
and � are nonlinear functions

that respectively determine the internal forces due to node displace-
ments and node velocities, � maps node accelerations to node
momenta, and � represents any other (e.g. external) forces. Typi-
cally, the forces determined by

�
are internal elastic forces and �

determines damping forces.
In general, equation (1) is nonlinear, however if we assume that

the displacements are small then we may linearize about the sys-
tem’s rest configuration giving:

� � + � ˙� + � ¨� = � (2)

where
�

, � , and � are respectively known as the system’s stiff-
ness, damping, and mass matrices. For the physical systems corre-
sponding to solid objects, all three matrices are real and symmet-
ric. Both

�
and � are positive semi-definite, and � is positive

definite. Linearizing in this fashion is consistent with our goal of
modeling the small-amplitude, high-frequency vibrations in solid
objects that produce sound. Unfortunately, the linearized system
cannot model the rotational components of rigid-body motion. We
will put this issue aside for now, but later we will return to it and
show how the rigid-body modes can be decoupled from all other
modes.

Once we have the linearized system, the next step in the modal
analysis is to perform a series of manipulations that will diagonal-
ize equation (2). To facilitate this process, we will first assume
that � = α1

�
+ α2 � for some α1 and α2. Expressing the

damping matrix as a linear combination of the stiffness and mass
matrices is known as Raleigh damping. Although this assumption
simplifies diagonalization while still producing good results, it is
not strictly necessary. A more general assumption, known as pro-
portional damping, that expresses the damping matrix as a linear
combination of powers of the stiffness and mass matrices would
also be diagonalized by the process described below but the equa-
tions would be more cumbersome. Additionally, even if for some
reason � must be arbitrary, then other, slightly more complicated,
methods are available for decoupling equation (2) [Anderson et al.,
1999; Bai et al., 2000].

Replacing � with α1
�

+ α2 � gives:

�
( � + α1

˙� ) + � (α2
˙� + ¨� ) = � . (3)

Since � is symmetric and positive definite, it may be decomposed
using a Cholesky factorization so that � = ��� T. If we introduce
another variable, � = � T � , and then rewrite equation (3) in terms
of � after pre-multiplying by � −1 we then have:

� −1 � � −T( � + α1 ˙� ) + (α2 ˙� + ¨� ) = � −1 � . (4)

The real and symmetric matrix � −1 � � −T can be decomposed
into � −1 � � −T = � Λ � T where � is the orthogonal ma-
trix whose columns are the eigenvectors of � −1 � � −T and Λ is
the diagonal matrix of eigenvalues. Introducing another variable,
� = � T � , and pre-multiplying by � T transforms equation (4)
into:

Λ( � + α1 ˙
� ) + (α2 ˙

� + ¨
� ) = � T � −1 � (5)

which can be rearranged to give:

Λ
� + (α1Λ + α2 � ) ˙

� + ¨
� = 	 (6)

where 	 = � T � −1 � .
At this point the original linear system of equation (3) has been

diagonalized into a set of decoupled oscillators. The i’th row of
equation (6) is the scalar second-order differential equation:

λizi + (α1λi + α2)żi + z̈i = gi (7)

where λi is the i’th entry of the diagonal matrix Λ. Equation (7)
may be solved by numerical integration or it may be solved more
efficiently using the analytic solution:

zi = c1e
tω

+
i + c2e

tω
−

i (8)

where c1 and c2 are arbitrary (complex) constants, and ωi is the
complex frequency given by

ω±

i =
−(α1λi + α2) ±

√

(α1λi + α2)2 − 4λi

2
. (9)

The absolute value of the imaginary part of ωi is the frequency
(in radians/second, not Hertz) of the mode, and the real part is the
mode’s decay rate.

The decoupled system of equation (6) is not an approximation
of the original linear system in equation (3), it is exactly the same
as the original linear system. Of course the linear system was an
approximation of the original nonlinear one, but any problem that
could be solved using equation (3) could also be solved with equa-
tion (6).

The columns of � −T � are the vibrational modes of the object
being modeled. (See figure 3.) Each mode has the property that
a displacement or velocity over the object that is a scalar multi-
ple of the mode will produce an acceleration that is also a scalar
multiple of the mode. This property means that the modes do not
interact with each other, which is why decoupling the system into a
set of independent oscillators was possible. The eigenvalue for each
mode is the ratio of the mode’s elastic stiffness to the mode’s mass,
and it is the square of the mode’s natural frequency (in radians per
second). In general the eigenvalues will be nonzero, but for each
free body in the system there will be six zero eigenvalues that cor-
respond to the body’s six rigid-body modes. The rigid-body eigen-
values are zero because a rigid-body displacement will not generate
any elastic forces.

3.2 Rigid Body Simulation

As discussed previously, the rigid-body modes for an object do not
interact with the object’s deformation modes provided the amount
of elastic deformation experienced by the object is small.1 Addi-
tionally, small-amplitude elastic deformations will not significantly
effect the rigid-body collisions between objects. These observa-
tions allow us to model the rigid-body behavior of the objects in al-
most the same way as if we were not interested in generating audio.
The only change that must be made to the rigid-body simulation is
that information about contact forces must be gathered and exported
to another process that will generate the audio. Of course, hearing
the results of the rigid-body simulation, in addition to seeing them,
may reveal previously unnoticed inadequacies of the simulator, but
we have not found this to be a problem with the simulation engines
we have worked with.

We have implemented our system using two existing rigid-body
simulation engines that were not originally designed for generating
audio. Our choice of engines was motivated by what systems were
readily available and how well they were able to model the scenar-
ios we wished to test. The first is a commercial software package,
Vortex, sold by Critical Mass Labs. The second system we are us-
ing had been previously written by Okan Arikan, a graduate student

1Actually, the requirement was that all displacements be small, includ-
ing displacements corresponding to the rigid-body modes. The translation
modes are inherently linear so they cannot interact with the elastic modes
regardless of their magnitude, but for a rapidly rotating body there will be
some coupling between the rotation modes and the elastic ones. Unless the
object is rotating very rapidly or experiencing large angular accelerations,
the coupling between rotation and elastic modes with frequencies in the au-
dible range will be negligible, so we ignore this interaction.
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not involved in this project. No special changes were made to either
package other then instrumenting them to allow reporting collision
forces.

3.3 Deformation Model

Once the task of modeling the rigid-body modes has been dele-
gated to a rigid-body simulator, the remaining elastic deformation
modes can be used for generating audio. Because we are interested
in modeling sounds from incompliant objects, we can use the modal
decomposition methods described in Section 3.1 to compute their
behavior efficiently. However before we can perform a modal de-
composition, we must first select a deformable modeling method
that can be used to generate the

�
, � , and � matrices.

The method we are using for modeling deformable behavior
is the tetrahedral finite element method described by [O’Brien
and Hodgins, 1999] for modeling fracture propagation, and subse-
quently used in [O’Brien et al., 2001] for modeling nonlinear audio
generation. As discussed by O’Brien, Cook, and Essl, a variety of
methods could be used, including spring/mass systems or finite dif-
ferences methods. We selected this finite element method because
their previous results show that it is accurate enough for generating
compelling audio.

Computing the global stiffness and mass matrices proceeds by
first computing individual 12 × 12 stiffness and mass matrices for
each element and then assembling the results to form the global
matrices. From [O’Brien and Hodgins, 1999] the nonlinear node
forces are given by:

f[i]a = −
vol

2

4
∑

j=1

p[j]a

3
∑

k=1

3
∑

l=1

βjlβikσkl (10)

where f[i]a is the a’th component of the force exerted on the i’th
node of the element, vol is the volume of the element, p are the
node positions, β is the element basis matrix, and σ is the stress
tensor within the element. Details for computing β and σ appear
in [O’Brien and Hodgins, 1999].

The element stiffness matrix, � , is computed by taking the par-
tials of � and evaluating them at zero displacement:

k[ij]ab =
∂f[i]a
∂p[j]b

∣

∣

∣

∣�
=

�
rest

(11)

= −
vol

2
(λβiaβjb + µβibβja + µ

3
∑

k=1

βikβjkδab) (12)

where δ is the Kronecker delta, and λ and µ are the material’s Lamé
constants.2 This is the exactly the same matrix that would have re-
sulted if Cauchy’s infinitesimal strain had been used in place of
Green’s strain, however with Cauchy’s strain the partials would be
constant with respect to node position so that it would not matter
where they were evaluated.

The element mass matrix, � is computed by taking the second
partials of the kinetic energy within the element with respect to the
node velocities, which turns out to be constant with respect to node
position and velocity:

� [ij]ab =
∂2κ

∂ṗ[i]a∂ṗ[j]b
(13)

=
ρvol

20
(1 + δij)δab (14)

2Unfortunately, the symbol λ is conventionally used both to indicate one
of the system eigenvalues and the first Lamé constant. In this paper it should
be clear from context (and the presence or absence of a subscript) what the
symbol is referring to.

where κ is the kinetic energy within the element, an overdot repre-
sents a derivative with respect to time (i.e. ṗ are node velocities),
and ρ is the material’s density.

The global stiffness and mass matrices,
�

and � , are built by
assembling the element matrices. Assuming that we are working
with three-dimensional objects, each of the global matrices will be
3N × 3N where N is the number of nodes in the finite element
mesh. Each entry in each of the 12 × 12 element matrices is accu-
mulated into the corresponding entry of the global matrix.

Since each node in a tetrahedral mesh will share an element with
only a small number of the other nodes, the global matrices will be
very sparse. This sparseness means that an eigen decomposition of�

can be performed efficiently using sparse matrix algorithms. Un-
fortunately, the Cholesky decomposition tends to generate a dense
� matrix even when � is originally sparse, and as a result com-
puting � −1 may be costly and � −1 � � −T will be densified.

Dense matrix algorithms can be used for systems up to approx-
imately 1000 nodes, but beyond that we suggest using an alternate
mass matrix that does not generate a dense Cholesky decomposi-
tion. The alternate mass matrix, known as a lumped mass matrix,
simply shifts the sum of each row onto the diagonal:

� lumped
[ij]ab

=
ρvol

4
δijδab . (15)

Because the element mass matrices are diagonal, the global mass
matrix will be as well, and its Cholesky decomposition will also
be diagonal: � will be a diagonal matrix whose entries are simply
the square root of the entries of the lumped � . For small systems
generated by coarse meshes, the errors introduced by mass lump-
ing may be significant. However, as the mesh gets finer the errors
introduced by lumping quickly become insignificant [Cook et al.,
1989]. Luckily, the large systems corresponding to fine meshes are
precisely the ones that require the sparse solvers facilitated by mass
lumping. Our implementation includes both dense and sparse de-
composition routines and we use whichever is appropriate to the
size of a particular system. For dense decompositions, we use the
routines from LAPACK [Anderson et al., 1999], and for sparse de-
compositions we use the TRLan package [Wu and Simon, 1999].
The method used for each of our examples, along with computation
times and the number of nodes, is listed in table 1.

The use of Raleigh damping was another simplification that we
made to facilitate decoupling equation (2). In [O’Brien and Hod-
gins, 1999] they used a nonlinear stiffness-proportional damping
term based on the strain rate with parameters φ and ψ. Raleigh
damping is equivalent to a linearization of this damping term with
the additional constraint that λ

φ
= µ

ψ
, and the Raleigh parameter α1

should be set to this ratio to generate equivalent results. O’Brien
and Hodgins did not discuss a mass proportional damping term, but
setting α2 to a non-zero value would be equivalent to including a
(−α2ḋimi) damping force on each node.

Even with sparse matrix methods, computing a system decompo-
sition still requires a significant amount of time, so it is worth noting
that certain changes may be made without recomputing the decom-
position. The damping parameters, α1 and α2, have no effect on
the decomposition, so the only work involved when changing them
is re-evaluating equation (9). Changing the material’s density does
not change the mode shapes, it only scales the eigenvalues by the
inverse of the scale factor applied to the density. Similarly, scal-
ing the Lamé constants both by the same scale factor (i.e. so that
the ratio between λ and µ is preserved) only scales the eigenvalues
by the same ratio. Changing the ratio between the Lamé constants,
changing the shape of the object, or modifying the mesh all require
recomputing the decomposition.

3.4 Sound Generation

Once all of the computational machinery described above is avail-
able, the actual process of computing audio matching the motion
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Figure 3: The top shows a multi-exposure image from an anima-
tion of a bowl falling onto a hard surface with the path of the bowl’s
center traced by a yellow curve. Only the bowl is sounding. The
two bottom rows show a side and top view of the bowl along with
three of the bowl’s first vibrational modes. (The modes selected for
the illustration are the first three non-rigid ones with distinct eigen-
values that are excited by a transverse impulse to the bowl’s rim.)

from a rigid-body simulation is both straightforward to implement
and computationally efficient:

1. A rigid-body simulation is set up for the desired scenario.

2. For each object in the simulation, the system matrices are as-
sembled and decomposed into their vibrational modes (i.e. the
columns of � −T � ).

3. For each object in the simulation, only the columns of � −T �
corresponding to |Im(ωi)| in the range 3.18 . . . 3,180 Rad/s
(20...20,000 Hz) are retained, the rest are discarded (or if the
sparse method is used, never computed).

4. As the rigid body simulation runs, collision forces are pro-
jected onto the retained modes. The response of each mode is
modeled using equation (8).

5. Each mode response is scaled according to how it moves the
objects surface and the scaled responses are then summed to-
gether.

6. Finally, the result is output to the computer’s audio device.

In practice, not all of the modes in the audible range need to
be retained. As discussed in [van den Doel et al., 2001], high-
quality results can easily be obtained using only the first 800 or
fewer modes.

A mode’s response to a projected impulse is given by equa-
tion (8) with

c1 =
2∆tgi

ω+
i − ω−

i

(16)

c2 =
2∆tgi

ω−

i − ω+
i

(17)

where ∆t is the interval over which the projected force is applied,
and t is time relative to when the impulse was applied. Substitut-
ing these values of c1 and c2 into equation (8), recalling that only

modes with |Im(ωi)| in the range 3.18 . . . 3,180 Rad/s are used,
and then simplifying yields

zi =
2∆tgi
|Im(ωi)|

etRe(ωi) sin(t|Im(ωi)|) . (18)

Evaluating equation (18) for every audio sample is inefficient.
By noting that eω(t+s) = eωteωs, the value of the oscillator at one
audio sample can be computed from the previous value using only a
single complex multiply. Additionally, as a mode is excited at sub-
sequent times by different contact forces, the additional excitations
can be modeled by simply adding the new value to the oscillator’s
current value. Because the cost of modeling additional impulses is
essentially zero, the forces from the rigid-body simulation may be
convolved with a Gaussian kernel to model the effect of soft colli-
sions, or with a noise function to model small-scale roughness that
is below the resolution of the rigid-body simulator [van den Doel
et al., 2001]. Our results were generated using the former.

A method for modeling the coupling between vibrations in an
object and vibrations in the surrounding air is described in [O’Brien
et al., 2001]. Unfortunately, their method is too slow for real-time
use. We compute an approximate coupling coefficient for each
mode by summing the amount of normal displacement generated by
that mode over the surface of the object multiplied by the mode’s
frequency. The coupling coefficient for each mode multiplies the
result computed by that mode’s oscillator and the sum of the scaled
oscillators is the final sound generated by the system. A result
of this simplification is all objects are treated as omni-directional
sources.

4 Results and Discussion

We have built a system that implements the methods described
above and used it to generate a number of demonstrative examples.
Table 1 lists the parameters that were used in each of the examples,
and the video tape accompanying this paper contains animations
that exhibit the sounds and motions produced.

To test how well the computed results match real objects, we
generated the wind chimes shown in figure 1. These chimes were
modeled based on measurements from a real set of chimes. Each
tube is a hollow cylinder 1.25 cm in radius with a nominal wall
thickness of 1 mm. The measured lengths of the chimes are listed
in table 2. We computed the modal decomposition for each chime
using reference parameters for aluminum. The resulting base fre-
quencies matched measured ones to within 2% error. However, the
real chimes were slightly out of tune, so we tuned the simulated set
by adjusting the tube lengths so that they were within ±1Hz of the
correct (D scale) tuning.

Figure 3 shows a bowl model that was used for two of the ex-
amples. The modal decomposition of the bowl was computed once
with material parameters for aluminum and again with material pa-
rameters for wood (oak). Two animations were created, both with
the same rigid-body motion but with the two sound tracks gener-
ated from the two different modal decompositions. The resulting
audio (refer to video tape) captures the general characteristics of
both materials as well as details such as the sound produced as the
bowl rolls on its edge. Figure 3 also illustrates the mode-shapes
for three of the bowl’s vibrational modes by showing the results of
applying the mode as a displacement over the bowl’s original shape.

An example generated using a more complex model consists of
bunny figurines falling through a chute. (See figure 4.) Both the
bunny and the shelves in the chute generate sounds when struck.
The shelves are made of plastic, metal, and wood. The bunny is
ceramic. The tetrahedral bunny model was generated by meshing
the region between the surface of the Stanford Bunny model and an
interior offset surface to create a hollow figure with finite thickness
walls, as shown on the right side of figure 4. The right side of
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Example Figure λ (Pa) µ (Pa) α1 α2 ρ (Kg/m3) Base Freq. (Hz) Decay Num. Nodes Method Precompute

Chime(D3) 1 4.98 × 10
10

2.57 × 10
10

1 × 10
−7

0 2700 587.4 0.6 18796 Sparse 2h 24min

Bowl #1 3 4.98 × 10
9

2.57 × 10
9

1 × 10
−7

30 2700 551.3 15.6 387 Dense 4min 12sec

Bowl #2 – 5.00 × 10
8

1.00 × 10
8

8 × 10
−6

50 750 216.7 22.4 387 Dense 4min 12sec

Bunny (Ceramic) 4 3.99 × 10
9

2.05 × 10
9

1 × 10
−6

10 2700 855.9 19.5 37114 Sparse 4h 40min

Plastic Shelf 4 2.49 × 10
10

1.28 × 10
10

1 × 10
−6

50 2700 488.9 29.7 361 Sparse 30sec

Aluminum Shelf 4 4.98 × 10
10

2.56 × 10
10

1 × 10
−7

0 2700 691.5 0.9 361 Sparse 30sec

Wood Shelf 4 5.00 × 10
8

1.00 × 10
8

8 × 10
−6

50 750 154.6 28.8 361 Sparse 30sec

Bunny (Metal) – 4.99 × 10
10

2.56 × 10
10

1 × 10
−7

0 2700 855.9 19.5 37114 Sparse 4h 40min

Blocks 5 5.00 × 10
8

1.00 × 10
8

8 × 10
−6

50 550 1596.2 428.1 1160 Dense 5h 28min

Boxes 5 5.00 × 10
8

1.00 × 10
8

8 × 10
−6

50 550 159.1 49.0 1160 Dense 5h 28min

The End (T) 6 1.49 × 10
9

7.70 × 10
8

2 × 10
−7

30 2700 247.7 15.2 71 Dense 42sec

Table 1: This table lists parameters that were used for each example object, the resulting frequency and decay for the object’s primary mode,
the number of nodes in the tetrahedral mesh, the method used for the modal decomposition, and the amount of time required to compute the
decomposition. Once the model decomposition has been computed, all of the above examples can generate audio in real-time. For “Chimes”
and “The End,” the information listed is for the D3 tube and the letter T.

Ideal Measured Computed Adjusted
Note Freq. Length Freq. Freq. Length Freq.

D3 587.33 .505 585.8 589.17 .5061 587.40

E3 659.26 .475 656.0 665.03 .4770 659.27

G3 783.99 .435 781.8 787.01 .4366 784.06

A4 880.00 .410 877.5 884.70 .4115 879.36

B4 987.77 .388 982.5 984.75 .3878 987.32

D4 1174.66 .353 1167.0 1186.88 .3548 1174.67

Table 2: The notes and ideal frequencies listed indicate the values
specified by the manufacturer of the real wind chimes. The mea-
sured values were taken from the real wind chimes. The computed
frequencies are what our model produced using the parameters from
table 1 and the measured lengths. The adjusted values indicate the
length and resulting frequency of the simulated chimes after tuning.
Lengths are in meters and frequencies in Hertz.

figure 4 also shows the results of projecting a pair of impulses onto
the retained modes of the bunny model.

The blocks and boxes shown in figure 5 illustrate how scale can
effect the resulting audio. Both the boxes and blocks are geometri-
cally similar: hollow cubes with a wall thickness of 5% their width.
However, the boxes are 10× the size of the blocks. While the dif-
ferent scales are subtly revealed by the rigid-body motions (by the
rate of acceleration with respect to the object sizes), the sounds
produced by the two sets of objects are distinctly different, and the
difference provides a clear cue as to the size of the objects.

As we discussed previously, similarities exist between the ap-
proach we have presented here and that presented in [van den Doel
et al., 2001]. The main difference between the two methods is that
we synthesize audio from only geometry and material properties
whereas their system makes use of extensive measurements of a
given object’s response to impacts. Each of these methods presents
distinct advantages: by relying on recorded data their method may
easily match a given object, but our method is applicable when no
real object or no robotic measuring devices are available. One di-
rection that might be worth pursuing would be using their measured
data for a given object to infer material parameters that could then
be applied to the geometry of a different object. This approach
might allow audio models for an entire set of cooking pots, for ex-
ample, to be generated from measurements of a single pot in the
set. It might also allow us to determine the sound made by a novel
bell design, based on data from bells of similar materials, before we
actually make the bell. Based on the good correspondence between
our synthetic chimes and the physical set, we are optimistic about
this direction of future work.

Figure 4: The left side of this figure shows an image from ani-
mation of several bunnies falling through a chute. Both the bunnies
and the shelves are sounding. The images on the right show in order
from top to bottom: the exterior of the bunny model, a cut-away re-
vealing the wall thickness and hollow interior, modal response to an
impulse on the bunny’s nose, and the modal response to an impulse
on the bunny’s back. The impulse responses are greatly exaggerated
for illustration.

Although the resolution of the mesh can affect the resulting au-
dio, we have found that even very coarse meshes may be used for
generating acceptable results. The meshes used for each of the let-
ters shown in figure 6 are very coarse, yet the resulting audio is still
acceptable. We have found that low mesh resolution tends to shift
frequencies higher and may add a “hollow” quality to the sound.
The frequency shifting may be partially compensated for by simply
modifying the material parameters (e.g. raising the density) to com-
pensate, so it will only be a problem if one is attempting to match a
particular object (as we were for the wind chimes).

Although the modal decompositions may require up to a few
hours of computation, this work needs only to be done once for
a given object and audio can then be generated interactively. By
precomputing the modal decomposition and storing it with an ob-
ject, the approach we have presented could easily be applied to
interactive applications such as video games that already employ
rigid-body simulation methods. Additionally, because our method
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Figure 5: The top images show a stack of 5 cm blocks being
knocked over. The images on the bottom show a stack of 50 cm
boxes being knocked over. Only the blocks and boxes are sound-
ing. Other than the 10× scale, both models are identical. The plots
below each sequence show the frequency content of the resulting
audio, indicating a significant difference in the sounds. (The hor-
izontal axis ranges from 0 to 5000 Hz, the vertical axes are auto-
scaled independently.)

requires only a geometric model and a handful of material param-
eters, the extra effort required to generated the audio model of a
given object is minimal.
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