
Game Developers Conference 2004 1

Game mobility
portability

Game mobility
portability

Writing code that is easily portable across
and operating systems

by

Guido Henkel, CEO

ghenkel@g3studios.com

G3 Studios – http://www.g3studios.com

Game Developers Conference 2004 2

IntroductionIntroduction

Mobile developers are faced with a variety of
different platforms, operating systems,
languages and technical specifications when
creating games

Being able to deliver and adapt applications
quickly to all existing platforms is vital in
this market

Portable code is the key to fast and problem-
free application turn-around

Game Developers Conference 2004 3

What is portable
code?

What is portable
code?

• Portable code is “good code” –
well designed, well structured,
well documented and well
implemented

• Portable code makes it easy and
quick to understand its
functionality

• Portable code can easily be
adapted to other environments

Game Developers Conference 2004 4

Portable code does not necessarily
eradicate the need for code
changes. Its purpose is to

minimize them!

Game Developers Conference 2004 5

Think aheadThink ahead

• No mobile game exists in a
vacuum and by nature has to
serve a large number of
environments

• Do not limit your thinking to
your platform of choice

• Keep all potential environments
in mind

• Keep all potential requirements
in mind

Game Developers Conference 2004 6

Think aheadThink ahead

• Chances are, your code is not
for your eyes only

• Comment your code to make future
changes and ports easy and pain-
free

• Comment your code, because it’s
good practice!

Game Developers Conference 2004 7

Take pride in your
code

Take pride in your
code

Unlike graphic artists and musicians, programmers often
do not take pride in their actual code. The result are
shoddy implementations, dirty tricks, illegible code,
unintelligible implementations that hide bugs, and
code that is simply not up to snuff.

It is part of the reason why there are so many buggy
games on store shelves!

The quality of your source code is
just as important as your
executable code!

Game Developers Conference 2004 8

The kinds of
portability
The kinds of
portability

• Across platforms (Brew, Symbian, Windows CE)

– Needs to abstract platform dependencies,
such as File IO, User Interface, Bootstrap,
etc.

• Across languages (C, C++, J2ME)

– Needs to assimilate language features

• Across handsets (t720, vx6000,…)

– Needs to abstract hardware differences,
such as display resolutions, audio
capabilities, firmware bugs, etc.

Game Developers Conference 2004 9

Project organisationProject organisation
Directory structure

Group directory

Platform/language
directory

Handset-specific
directory

The deeper the directory structure
goes, the more specialized the
items within get

Game Developers Conference 2004 10

Directory structureDirectory structure
The “Asset Files” directory

contains the discrete asset
data, such as maps, images,
audio files, data files,
scripts, etc.

Data become more specialized the
deeper we get in the hierarchy

asset files/brew/color_128x128
contains data only relevant to
that particular environment

asset files/brew contains data for
all Brew handsets

asset files contains data that are
relevant to all environments

Game Developers Conference 2004 11

Directory structureDirectory structure
The “Assets” directory

contains the prepared
asset data, such as
maps, images, audio
files, data files,
scripts, etc. in the
form of BAR files, data
library files, or any
format of choice

Data in these directories
are typically tool-
generated and represent
the data in the form
the application can use

It also contains the
untouched, original
save game files, etc.

Game Developers Conference 2004 12

Directory structureDirectory structure
The “Projects” directory

contains Visual Studio
solution files, EVC
projects, make-files, as
well as all compiled
program code, complete
builds and archived
versions of previous
production builds

“AppLoad” and “ArmRel” are
used to separate
intermediate builds from
final builds

…/brew/appload/color_128x128
contains the complete
submission/release package
for that particular
application

Game Developers Conference 2004 13

Directory structureDirectory structure
The “Source” directory

contains all the source
code for the application

source/brew contains all the
platform dependent code
parts for the Brew builds

source/ppc contains the
platform dependent code for
the Pocket PC version, and
so forth…

source/devicedata contains
the necessary device-
specific source code for
particular environments

Game Developers Conference 2004 14

Directory structureDirectory structure

The key to a good project
directory structure

• Keep it extensible

• Keep it clear

• Keep it structured

• Keep out the clutter

Game Developers Conference 2004 15

With this sort of directory
structure we have
created an easy way to
physically separate
device-dependent code
from general game code

In the project we now
simply create wrappers
to load the platform
specific implementations
during compile time

Create wrappers for both
header and source code
files

Examples for typical
platform dependent
implementations are
application startup,
memory manager, display
handling, input
handling, file IO, and
various utility
functions, such as
sprite blitting, debug

Game Developers Conference 2004 16

Designing the
framework

Designing the
framework

To make all this work together
effortlessly we need to create a
framework that accommodates this data
design in a way that is transparent
and unobtrusive

The way to do this is by using “hooks”

Create an event driven application
design using a finite state machine
and use these hooks to drive the core
of the application

Game Developers Conference 2004 17

static boolean
EventHandler(. . . Parameters . . .)
{
switch (eventCode)
{
case EVT_APP_START:
ClearScreen(curApp)
MemInit(curApp); // Initialize memory manager
GameStart(curApp);
GamePostfix(curApp);
break;

case EVT_APP_STOP:
GameEnd(curApp);
MemExit(curApp); // Exit the memory manager
break;

case EVT_APP_EVENT: // Special treatment may be
GameEvent(curApp); // required here depending on
break; // the actual platform

case EVT_APP_SUSPEND:
SuspendGame(curApp);
break;

case EVT_APP_RESUME:
ResumeGame(curApp);
break;

case EVT_KEY_PRESS:
keyPressed(curApp, parameter);
break;

case EVT_KEY_RELEASE:
keyReleased(curApp, parameter);
break;

}
}

Game Developers Conference 2004 18

static boolean
EventHandler(. . . Parameters . . .)
{
switch (eventCode)
{
case EVT_APP_START:
ClearScreen(curApp)
MemInit(curApp); // Initialize memory manager
GameStart(curApp);
GamePostfix(curApp);
break;

case EVT_APP_STOP:
GameEnd(curApp);
MemExit(curApp); // Exit the memory manager
break;

case EVT_APP_EVENT: // Special treatment may be
GameEvent(curApp); // required here depending on
break; // the actual platform

case EVT_APP_SUSPEND:
SuspendGame(curApp);
break;

case EVT_APP_RESUME:
ResumeGame(curApp);
break;

case EVT_KEY_PRESS:
keyPressed(curApp, parameter);
break;

case EVT_KEY_RELEASE:
keyReleased(curApp, parameter);
break;

}
}

These are the hooks
to platform
independent code
that drive the game
engine

Game Developers Conference 2004 19

static boolean
EventHandler(. . . Parameters . . .)
{
switch (eventCode)
{
case EVT_APP_START:
ClearScreen(curApp)
MemInit(curApp); // Initialize memory manager
GameStart(curApp);
GamePostfix(curApp);
break;

case EVT_APP_STOP:
GameEnd(curApp);
MemExit(curApp); // Exit the memory manager
break;

case EVT_APP_EVENT: // Special treatment may be
GameEvent(curApp); // required here depending on
break; // the actual platform

case EVT_APP_SUSPEND:
SuspendGame(curApp);
break;

case EVT_APP_RESUME:
ResumeGame(curApp);
break;

case EVT_KEY_PRESS:
keyPressed(curApp, parameter);
break;

case EVT_KEY_RELEASE:
keyReleased(curApp, parameter);
break;

}
}

These are the hooks
to platform
independent code
that drive the
game engine

With this interface
we abstract the
core platform
dependencies

This core can be
created for
virtually every
environment today

And it can easily
be extended to
add
functionality,
such as stylus
input etc.

Game Developers Conference 2004 20

Think about itThink about it

The key to successfully creating
portable code is to look for and
find a common denominator

This applies to both, platforms
and operating systems, as well
as language features

The more you know about your
targets, the easier you will
find it to set up these common
denominators

Game Developers Conference 2004 21

Creating a common
base

Creating a common
base

J2ME doesn’t have a pre-processor,
so it is advisable to use C/C++
greater flexibility to
assimilate J2ME behavior

Since Brew doesn’t have a global variable
name space we can create a macro to
“simulate” this name space if we have to.
Use this feature judiciously, however!

#define ScreenWidth (Applet->ScreenWidth)

Game Developers Conference 2004 22

Creating a common
base

Creating a common
base

J2ME has hard-wired keyPressed(),
keyReleased(), and paint()
interfaces for certain objects

You will make your life much easier
if you stick to that naming
convention in C/C++ as well, even
if it breaks with your own naming
convention

Game Developers Conference 2004 23

Creating a common
base

Creating a common
base

J2ME does not support operator
overloading or templates

While these are powerful and tempting
features for every C++ programmer
to use, you may want to stay away
from them in preference of higher
portability

Game Developers Conference 2004 24

Creating a common
base

Creating a common
base

J2ME does not have pointers, only
arrays

Given today’s CPU architecture,
pointers are also no longer
necessarily faster – especially on ARM
processors in Thumb mode

for (i=0; i<100; i++)
{

*dest++ = *src++;
}

The problem with this loop is that it will have to be re-
written for the J2ME version and in terms of
performance, that the processor has to increment the
iterator i and the two pointers during every loop

Game Developers Conference 2004 25

Creating a common
base

Creating a common
base

for (i=0; i<100; i++)
{

dest[i] = src[i];
}

This version is portable AND more
powerful on today’s CPU’s because only
the iterator needs to be incremented,
and because existing opcodes allow to
pre-multiply the index as an
addressing mode, making array access
in a single instruction possible even
with variable array element sizes.

Game Developers Conference 2004 26

Creating a common
base

Creating a common
base

Brew does not support exception
handling

Make sure you use it judiciously in
your other versions and try to
instead rely on other means of
error detection

Game Developers Conference 2004 27

Creating a common
base

Creating a common
base

Brew does not support static class
variables or global-scope variables

If you have to create persistent class
variables, place them in the global applet
structure, and maybe use a special naming
convention to indicate their class-
ownership

Alternatively, create a “friend” super-class
that holds only those elements that need
to remain static. Keep in mind however
that in Java, each class has a memory
overhead that can be severe in tight
environments

Game Developers Conference 2004 28

Creating a common
base

Creating a common
base

Stay away from dirty programming
tricks!

Using J2ME’s out-of-bounds exception
handling to detect array sizes is
very bad practice and barely
portable

Game Developers Conference 2004 29

General tips
and

good habits

General tips
and

good habits

Game Developers Conference 2004 30

Good habitsGood habits

Many programmers seem reluctant to make
full use of the tools that modern
compilers put at their fingertips.
There are a few things that
intrinsically make your life as a
programmer easier, and help making
your code more stable and safer

One should think that applying some of
these methods is common sense, but
still they are applied far too
infrequently in my experience. Here
are some suggestions…

Game Developers Conference 2004 31

Good habitsGood habits

Source code is cheap, so use it!

Good programming style occasionally
requires you to write more source
code than otherwise, but the payoff
is usually enormous

There is no room for laziness in
programming!

Game Developers Conference 2004 32

Good habitsGood habits

• Only one command per line

• Properly indent and bracket your code

• Work with a sensible style guide and
stick to it

• Apply some common sense and don’t try
to be a “cool” coder. Ultimately
you’re making your own life
unnecessarily harder

• Never add a call to a particular OS-
specific function to your game engine
code – write a custom version instead,
that simply forwards the call to the
OS if need be

Game Developers Conference 2004 33

Lose the #define
macros

Lose the #define
macros

The single-most abused feature of C and
C++ is the #define pre-processor
command

Use const to create constant values

const has scope and a name space. It is
type-safe and allows the compiler to
optimize your code much better

const can quickly be turned into a
variable without much code change. Great
for experimentation before locking down
final values

Despite Brew’s inability to create global
variables, const can be used to create
global data arrays using the syntax

Game Developers Conference 2004 34

Lose the #define
macros

Lose the #define
macros

There are valid uses for #define.
Make sure you use it only in
such cases, and keep in mind
that even simple macros like the
one below can turn into deadly
traps

#define max(a, b) ((a) > (b) ? (a) : (b))

Game Developers Conference 2004 35

Lose the #define
macros

Lose the #define
macros

#define max(a, b) ((a) > (b) ? (a) : (b))

Now, imagine this…

int a = 5, b = 0;

max(++a, b);

max(++a, b+10);

The results of this little exercise are fatal

Game Developers Conference 2004 36

Lose the #define
macros

Lose the #define
macros

A much better way to solve this
problem is to use an inline
function, such as this

inline int max(int a, int b) { return a > b ? a : b; }

This may not be perfect, but since we can’t use
templates, it’s certainly the next best thing

Game Developers Conference 2004 37

Say “No” to Hungarian
Notation

Say “No” to Hungarian
Notation

• It is unwieldy and error-prone

• It is counterproductive and hard
to maintain

• It reveals implementation
specifics as part of a class
interface

Game Developers Conference 2004 38

Finite State MachinesFinite State Machines

• Use of Finite State Machines can
greatly increase the portability
of a code base

– Inherently iterative

– Easy to understand and extend

– Non-blocking

Game Developers Conference 2004 39

Heed your compiler
warnings

Heed your compiler
warnings

Always set your compiler to highest warning levels –
Level 4 in Visual Studio

Make sure your project compiles with 0 warnings

Do not use #pragma to turn off warnings as it is
compiler-specific and may silently turn off vital
warnings in another environment

If a warning is unavoidable, comment the line of code
in question, explaining why the warning cannot be
circumvented

Warnings are usually a sign of sloppy laziness, which
has no place in professional game development

Warnings often reveal actual bugs that are discovered
as you inspect your code for the cause of the
warning

Game Developers Conference 2004 40

Putting together a
game

Putting together a
game

Game Developers Conference 2004 41

The frameworkThe framework

• Write an application framework
that is reusable, portable and
extensible

• Include implementations for
application startup, memory
manager, display handling, input
handling, file IO, and various
utility functions, such as
sprite blitting, debug logging,
handset detection, etc.

Game Developers Conference 2004 42

The frameworkThe framework

• Memory manager

– Make sure to overload new and delete as
well as new[] and delete[]

void *operator new(size_t size);

void operator delete(void *ptr);

void *operator new[](size_t size);

void operator delete[](void *ptr);

– Add debugging tools if you wish, such as
bounds-checking, leak detection, and other
statistics

– Having good new and delete implementations
I found that malloc() became virtually
redundant

Game Developers Conference 2004 43

The frameworkThe framework

• Display handling

– Create an abstract interface – I am
typically using a GAPI-style interface
because it is small and very tight,
providing only the essentials

– If you work with direct framebuffer access,
be prepared to write your routines for
RGB444, RGB555 and RGB565 color triplets in
16-bit modes. You may not have to implement
them immediately – just keep in mind that
there are devices with these configurations
that you may run into some time down the
line

Game Developers Conference 2004 44

The frameworkThe framework

• File IO

– Despite providing basic file IO such as
open(), close(), read() and write() I found
it much more useful in mobile applications
to provide specific loading routines

• LoadImage()

• LoadData()

• ReadFile(), WriteFile()

– This usually removes repetitive coding and
error-checking, and provides you with
tighter calls in your game engine that are
platform-independent

Game Developers Conference 2004 45

The frameworkThe framework

• File IO
– Never access files directly by name. Use a constant

instead. That way you keep it portable between
platforms where files are loaded by name and those
where they are loaded by ID from a resource file

• J2ME

static final char FileName[] = “datafile.dat”;

• Brew

const int FileName = DAT_DATAFILE;

The implementation of the file IO functions helps to
hide the difference in data types used for
loading, as they provide the respective prototypes
for the game engine and the resulting call remains
the same

LoadDataFile(FileName);

Game Developers Conference 2004 46

The frameworkThe framework

• Sprite blitting

– Blitting functions should be basic and
platform independent
void Blit(applet *curApp, G3word xPos, G3word yPos, G3word width,

G3word height, void *data, G3word xSrc, G3word ySrc, G3RasterOp
mode)

– Provide image clipping

– Especially in mobile development U/V-
mapping of sprites in a large source-bitmap
is advisable to save memory

– Make sure to always, always clip your
sprites against the screen dimensions

Game Developers Conference 2004 47

Example of a high-level blitting implementation
in Brew

void
Blit(applet *curApp, G3word xPos, G3word yPos, G3word width, G3word height, void *data,

G3word xSrc, G3word ySrc, G3RasterOp mode)
{
if (xPos < curApp->ClipRect.left)
{
width += xPos - curApp->ClipRect.left;
xSrc -= xPos - curApp->ClipRect.left;
xPos = curApp->ClipRect.left;

}
else if ((xPos + width) > (curApp->ClipRect.left + curApp->ClipRect.right))
{
width = width - (xPos + width - (curApp->ClipRect.left + curApp->ClipRect.right));

}

if (yPos < curApp->ClipRect.top)
{
height += yPos - curApp->ClipRect.top;
ySrc -= yPos - curApp->ClipRect.top;
yPos = curApp->ClipRect.top;

}
else if ((yPos + height) > (curApp->ClipRect.top + curApp->ClipRect.bottom))
{
height = height - (yPos + height - (curApp->ClipRect.top + curApp->ClipRect.bottom));

}

if (width > 0 && height > 0)
{
IDISPLAY_BitBlt(curApp->a.m_pIDisplay, xPos, yPos, width, height, data, xSrc, ySrc, mode);

}
}

Game Developers Conference 2004 48

The frameworkThe framework

• Debug Logging

– Create a basic set of functions to log,
protocol or dump data into file

– Add functionality to log, protocol or dump
data to the debugger output window

– Debug functions can be performance drains,
so make sure you wrap them so that the
calls can be easily removed in your
release builds

Game Developers Conference 2004 49

The frameworkThe framework

• Stdlib functions

– Even though most functionality is available
across platforms, its performance varies
dramatically
• Brew does not allow support stdlib functions and instead

utilizes substitute functions

• When compared to their library counterparts, memcpy() for
example can be implemented twice as fast in a simple C-
loop in Brew, while it is virtually unbeatable in Windows
CE

– Create an abstraction layer to isolate all
calls to external library functions for
flexibility. That way you can simply
redirect to the stdlib function or write
your own implementation when necessary

Game Developers Conference 2004 50

The frameworkThe framework

• Custom UI

– Create your own UI class so you won’t have
to rely on UI features and implementations
on actual handsets

– Create functionality for text display,
menuing using your own custom fonts

• Eliminates problems stemming from firmware
bugs

• Eliminates problems from non-existing UI
features across platforms, such as menus with
icon, etc.

• Creates a consistent look and handling across
handsets and platforms

• It is expandable and you have full control
over it

Game Developers Conference 2004 51

The frameworkThe framework

• Handset detection

– Create a module that is dedicated to
handset detection based on platform Ids,
OEM Strings, or the like

– Make sure to also read-out the OS version

– Retrieve handset specific information in
this module and make it available to the
application

Game Developers Conference 2004 52

Example of handset detection in Brew
void
DetectHandset(applet *curApp)
{
handsetID deviceID;
AEEDeviceInfo ddi = { 0 };
const platformID *ptr;

deviceID = INVALID_DEVICE; // Retrieve device information
ddi.wStructSize = sizeof(ddi); // from the handset
ISHELL_GetDeviceInfo(curApp->a.m_pIShell, &ddi);
ScreenWidth = ddi.cxScreen;
ScreenHeight = ddi.cyScreen;
Language = ddi.dwLang;

if (0 != ddi.dwPlatformID) // If the handset returns an ID
{ // things are fairly easy.
ptr = PlatformIDTable;
while (NULL != ptr->OEMID)
{
if (ptr->OEMID == ddi.dwPlatformID)
{
deviceID = (handsetID) ptr->DeviceID;
break;

}
ptr++;

}
}

if (INVALID_DEVICE == deviceID) // If it does not return a unique ID
{ // we will have to use other means...
ptr = PlatformIDTable;
while (NULL != ptr->OEMID)
{
if (ptr->Width == ScreenWidth && ptr->Height == ScreenHeight)
{
deviceID = (handsetID) ptr->DeviceID;
break;

}
ptr++;

}
}
curApp->HandsetID = deviceID;

}

Game Developers Conference 2004 53

Example of handset detection in Windows CE, Pocket PC and
Smartphone

void
DetectHandset(applet *curApp)
{
G3ustring string[64] = { 0 }; // Unicode string required!

if (0 != SystemParametersInfo(SPI_GETOEMINFO, sizeof(string), &string[0], 0))
{
ptr = PlatformIDTable;
while (NULL != ptr->DeviceID)
{
if (0 == wcsicmp(ptr->OEMString, string))
{
deviceID = (handsetID) ptr->DeviceID;
break;

}
ptr++;

}
}

}

Game Developers Conference 2004 54

• Use the information from the handset
detection to drive your application
I am typically using a structure with all the relevant variables

for a number of key handsets

typedef struct
{

G3word16 SoundIdleDelay;
G3bool DeviceAllowsSoundPause;
G3word16 ScreenQuadX;
G3word16 ScreenQuadY;
G3word16 ScreenLogoX;
G3word16 ScreenLogoY;

} deviceConfig;

static const deviceConfig DeviceConfigs[] =
{

{ 1, TRUE, 64, 65, 24, 30 }; // Motorola t720
{ 40, TRUE, 60, 57, 22, 24 }; // LGE VX6000
NULL

};

Frequently, certain handsets can safely use the exact same
configurations, so we then identify the key handset from the
obtained handset information

switch (curApp->HandsetID)
{

case AUDIOVOX_CDM8400:
case AUDIOVOX_CDM8410:
case AUDIOVOX_CDM8600:

curApp->KeyDeviceID = USE_AUDIOVOX_CDM8600;
break;

}

Game Developers Conference 2004 55

Now all we have to do is, create a pointer to the correct device
configuration data for the key handset that we determined

curApp->DevCfg = &DeviceConfigs[curApp->KeyDeviceID];

We now have easy access to all sorts of variables that can be hand-
optimized for particular handsets. These can contain delay values,
flags to avoid certain function calls and circumvent firmware bugs,
placement coordinates, filenames to allow for swapping out images or
sounds or anything else you can think of

void
SoundSuspend(applet *curApp)
{

if (NULL != curApp->Sound)
{

if (TRUE == curApp->DevCfg->DeviceAllowsSoundPause)
{

ISOUNDPLAYER_Pause(curApp->Sound);
}
else
{

ISOUNDPLAYER_Stop(curApp->Sound);
}

}
}

This data-driven architecture minimizes code-changes especially for
handset ports and substitutes them with easy to edit data structures in
one place

Game Developers Conference 2004 56

Accommodating screen
resolutions

Accommodating screen
resolutions

Screen resolutions on mobile
phones can be a nightmare and
range from anywhere between
96x54 to 240x320 pixels and
above

Using the device configuration
table described before will make
dealing with these resolutions
much easier, especially when
combined with a little trick

Game Developers Conference 2004 57

SplicingSplicing

Splicing takes different graphic
elements and draws them in a way
that creates a seamless image

Game Developers Conference 2004 58

SplicingSplicing

Through different positioning it
allows us to create backgrounds
in various sizes on the fly

Game Developers Conference 2004 59

FlipIt! – The exampleFlipIt! – The example

All 36 Brew handset versions of “FlipIt!” are using the exact same code base and all changes to
resolutions and screen layouts were achieved through the data-driven architecture and

Game Developers Conference 2004 60

Some final thoughtsSome final thoughts

• Always apply common sense and try to think
ahead

• Always document your code and use variable
and function names that are sensible and
self-explanatory

• Use Assertions liberally. They can not only
detect errors in your program logic, but also
reveal porting issues between handsets and
platforms, such as incorrect endianness,
alignment issues, corrupt data, etc.

• Consciously look for and isolate platform and
device dependencies, even if it means some
extra work

Game Developers Conference 2004 61

Some final thoughtsSome final thoughts

• If your data structures change while you’re
developing a later handset, make sure to make
the correct adjustments in ALL your previous
configurations. Never leave your code open-
ended or prone to bugs

• While you are doing the initial handset
implementations, make as many as possible,
even if they’re not immediately required. It
is much easier to make handset ports while the
code is still fresh in your mind than having
to go back again later

• Once you are done with the application, lock
down your game engine code so it will not be
broken by future handset ports. You can use
revision control systems to do that or simply
make the files read-only

Game Developers Conference 2004 62

Some final thoughtsSome final thoughts

• Properly document the steps necessary to build
the application

• Document the steps that are necessary to
implement a new handset version

• Never #ifdef your way through code. It is the
least portable solution – a hack in essence –
and typically only introduces errors in
versions and builds that were working fine
previously

• In general, try to touch as little code as
possible when doing ports. The less code you
change, the smaller the chance of introducing
new bugs!

Game Developers Conference 2004 63

Book recommendationsBook recommendations

• Writing Solid Code, by Steve Maguire
Microsoft Press, AISN 1556155514

• Code complete, by Steve McConnell
Microsoft Press, ISBN 1556154844

• Code Reading, by Diomidis Spinellis
Addison-Wesley, ISBN 0201799405

• Effective C++, by Scott Meyers
Addison-Wesley, ISBN 0201924889

	Slides
	PREVIOUS MENU
	PRINT THIS DOCUMENT
	SEARCH CD

	return:

