Gane nobi 1ty
portabi 1ty

Witing code that is easily portable across
and operating systens

by
Qui do Henkel , CEO
ghenkel @3st udi os. com

G3 Studios — http://ww. g3st udi 0S. com

Gane Devel opers Conference 2004

| nt r oduct I on

Mobi | e devel opers are faced wwth a variety of
different platforns, operating systens,
| anguages and techni cal specifications when
creati ng ganes

Bei ng able to deliver and adapt applications
quickly to all existing platforns is vital in
t his market

Portable code is the key to fast and problem
free application turn-around

Gane Devel opers Conference 2004

What 1s portabl e
code?

« Portable code 1s “good code” -
wel | designed, well structured,
wel | docunmented and wel |
| npl ement ed

« Portabl e code nmakes It easy and
qui ck to understand its
functionality

e Portable code can easily be
adapted to ot her environnents

Gane Devel opers Conference 2004

Port abl e code does not necessarily
eradi cate the need for code
changes. Its purpose is to

mnimze then

Gane Devel opers Conference 2004 4

Thi nk ahead

* No npobile gane exists In a
vacuum and by nature has to
serve a | arge nunber of
envi ronnent s

e Do not [imt your thinking to
your platform of choice

« Keep all potential environnents
I n m nd

« Keep all potential requirenents

Gane Devel opers nf erence 2004

I N NN

Thi nk ahead

« Chances are, your code IS not
for your eyes only

e Comment your code to nmake future
changes and ports easy and pal n-
free

« Comment your code, because iIt’s
good practi ce!

Gane Devel opers Conference 2004

Take pride I n your
code

Unlike graphic artists and musicians, programmers often
do not take pride in their actual code. The result are
shoddy implementations, dirty tricks, illegible code,
unintelligible implementations that hide bugs, and
code that is simply not up to snuff.

It is part of the reason why there are so many buggy
games on store shelves!

The quality of your source code is
just as important as your
executable code!

Gane Devel opers Conference 2004

The ki nds of
portabi |l ity

e Across platforns (Brew, Symbian, Wndows CE)

— Needs to abstract platform dependenci es,
such as File QO User Interface, Bootstrap,
et c.

« Across | anguages (c, c++, J2ME)

— Needs to assiml ate | anguage features

e Across handsets (t720, vx6000, .)

— Needs to abstract hardware differences,
such as display resol utions, audio
capabilities, firmwvare bugs, etec.

Gane Devel opers Conference 2004

Proj ect organi sati on

3 Fliplt

Directory structure

» Group directory

» Pl at f orm | anguage
directory

» Handset - specific
directory

The deeper the directory structure
goes, the nore specialized the
itenms wthin get

Gane Devel opers Conference 2004

Directory structure

The “Asset Files” directory 1 Fiil
contains the discrete asset =0 assst files
data, such as maps, i nages, B
audio files, data files,
scripts, etc.

Dat a becone nore specialized the
deeper we get in the hierarchy

asset files/brew/color 128x128
contains data only relevant to
that particul ar environnent

asset files/brew contains data for
all Brew handsets

asset files contains data that are
relevant to all environnents

Gane Devel opers Conference 2004 10

Directory structure

The “Assets” directory
contai ns the prepared
asset data, such as
maps, | nages, audio
files, data files,
scripts, etc. in the
formof BAR files, data
library files, or any
format of choi ce

Data in these directories
are typically tool -
gener at ed and represent
the data in the form
t he application can use

It al so contains the

unto ched, or| | nal
Gane gers For] e ence 2004
sa

11

Directory structure

The “Projects” directory
contains Visual Studio
solution files, EVC
proj ects, nake-files, as
well as all conpiled
program code, conpl ete
bui | ds and archi ved
versi ons of previous
production buil ds

“AppLoad” and “ArnRel” are
used to separate
I nternedi ate builds from
final builds

../brew/appload/color 128x128
contains the conplete

subm ssi on/rel ease package
Gare Def¢jopgrisatonharence LAOAs

o o
~r=~r=ll B s h B S

=] projects
' E|-|_| Brew
E| -IJ Appload
: EHJ color 128128

12

Directory structure

The “Source” directory
contains all the source
code for the application

source/brew contains all the

pl at f or m dependent code
parts for the Brew builds

source/ppc contains the

pl at f or m dependent code for
t he Pocket PC version, and
so forth...

source/devicedata cont al ns

t he necessary device-
speci fic source code for
particul ar environnents

Gane Devel opers Conference 2004

=-{_] Fliplt
EH:' SOUICe
] Brew
DeviceData
Direct
PPC

Smartphorne

—_— .
Syrnbian

13

Directory structure

The key to a good proj ect
directory structure

« Keep it extensible
e Keep it clear
 Keep 1t structured

« Keep out the clutter

Gane Devel opers Conference 2004

14

Wth this sort of directory

structure we have
created an easy way to
physically separate
devi ce- dependent code
from general ganme code

In the project we now
sinply create w appers
to load the platform
specific i nplenentations
during conpile tine

Create wappers for both
header and source code
files

Exanpl es for typical
pl at f or m dependent
| npl enentations are
application startup,

nmenory manager, displ ay
handl i ng, 1 nput
handling, file 1O and

various utility

cand WREAI LPAS, cHiENn@S 2004
sprite blitting, debuq

ff

ff UTILITY_CPP

ff

£/ Author: Henkel
F/ Date: a4/17/503
ff

/4 This file contains various wrappers and
// utility functions for the various platforms
£
#ifdef BREW VERSIOH
#include "BREW/Utility.cpp”
#elif PPC_VERSIOH
#include "PPC/UEility.cpp™
#elif SYMBIAHN VERSIOHN
ftinclude “Symbian/Utility.cpp”
#telif SHARTPHOHE VERSIOHN

fiinclude “SmartphonefUtility.cpp"

f#tendif

15

Desi gni ng t he
franewor k

To make all this work together
effortlessly we need to create a
franmewor k that acconmmpbdates this data
design in a way that iIs transparent
and unobtrusive

The way to do this is by using “hooks”

Create an event driven application
design using a finite state nmachi ne
and use these hooks to drive the core
of the application

Gane Devel opers Conference 2004 16

static boolean
EventHandler(. . . Parameters . . .)
{
switch (eventCode)
{
case EVT APP START:
ClearScreen(curApp)
MemInit (curBApp); // Initialize memory manager
GameStart (curApp);
GamePostfix (curApp);
break;

case EVT APP STOP:
GameEnd (curApp)

MemExit (curBApp) ; // Exit the memory manager
break;

case EVT APP EVENT: // Special treatment may be
GameEvent (curApp); // required here depending on
break; // the actual platform

case EVT APP SUSPEND:
SuspendGame (curApp)
break;

case EVT APP RESUME:
ResumeGame (curApp)
break;

case EVT KEY PRESS:
keyPressed (curApp, parameter);
break;

case EVT KEY RELEASE:

keyReleased (curApp, parameter);
break;

Gane Devel opers Conference 2004 17

These are the hooks
to platform
| ndependent code
that drive the gane
engi ne

Gane Devel opers Conference 2004

static boolean

EventHandler (

{

. Parameters . . .)

switch (eventCode)

{

case EVT APP START:
ClearScreen(curlApp)
MemInit (curPApp);
GameStart(curApp)
GamePostfix(curApp)
break;

// Initialize memory manager

case EVT APP STOP:
GameEnd (curZpp);
MemExit (curApp);
break;

// Exit the memory manager

case EVT APP EVENT: // Special treatment may be
GameEvent (curBpp); // required here depending on
break; // the actual platform

case EVT APP SUSPEND:
SuspendGame (curApp) ;
break;

case EVT APP RESUME:
ResumeGame (curApp) ;
break;

case EVT KEY PRESS:
keyPressed(curApp, parameter);
break;

case EVT KEY RELEASE:

keyReleased(curApp, parameter) ;
break;

18

static boolean
EventHandler(. . . Parameters . . .)
{

These are the hooks switch (eventCode)

to platform :
| ndependent code
that drive the
gane engi ne

Wth this interface
we abstract the
core platform
dependenci es

This core can be
created for
virtually every
envi ronnment today

And it can easily
be extended to
add
functionality,
such as styl us

Gane IDERMdpe@l Eonf erence 2004

case EVT APP START:
ClearScreen(curApp)
MemInit (curPApp);
GameStart(curApp)
GamePostfix(curApp)
break;

// Initialize memory manager

case EVT APP STOP:
GameEnd (curZpp);

MemExit (curApp); // Exit the memory manager

break;

case EVT APP EVENT: // Special treatment may be
GameEvent (curBpp); // required here depending on
break; // the actual platform

case EVT APP SUSPEND:
SuspendGame (curApp) ;
break;

case EVT APP RESUME:
ResumeGame (cur@pp) ;
break;

case EVT KEY PRESS:
keyPressed(curApp, parameter);
break;

case EVT KEY RELEASE:

keyReleased(curApp, parameter) ;
break;

19

Thi nk about 1t

The key to successfully creating
portable code Iis to | ook for and
find a common denom nat or

This applies to both, platforns
and operating systens, as well
as | anguage features

The nore you know about your
targets, the easier you wll
find It to set up these connon
denom nat or s

Gane Devel opers Conference 2004 20

Creatl ng a conmbn
base

J2ME doesn’t have a pre-processor,
so It Is advisable to use U C++
greater flexibility to
assim|ate J2ME behavi or

Since Brew doesn’t have a gl obal vari able
nane space we can create a nacro to
“simul ate” this nanme space if we have to.
Use this feature judiciously, however!

ftdefine ScreenWidth (Applet->ScreenWidth)

Gane Devel opers Conference 2004 21

Creatl ng a conmbn
base

J2ME has hard-w red keyPressed(),

keyRel eased(), and paint()
| nterfaces for certain objects

You w |l nmake your |ife nuch easier
| f you stick to that nam ng
convention in ¢ C++ as well, even

I1f It breaks wth your own nam ng
conventi on

Gane Devel opers Conference 2004

22

Creatl ng a conmbn
base

J2ME does not support operator
over| oadi ng or tenpl ates

Wil e these are powerful and tenpting
features for every C++ progranner
to use, you may want to stay away
fromthemin preference of higher
portability

Gane Devel opers Conference 2004 23

Creatl ng a conmbn
base

J2ME does not have pointers, only
arrays

G ven today’'s CPU architecture,
pointers are al so no | onger
necessarily faster — especially on ARM
processors in Thunb node

for (i=0; i<100; i++)
{
*dest++ = *src++;

}

The problemwith this loop is that it will have to be re-
witten for the J2ME version and in terns of
Ganepke\fed opaine €onf pa@nceh@O®t ocessor has to i ncrenent the 24

itaarator 1 and t he +twon nnt ntarcec diiri na evveryy | oon

Creatl ng a conmbn
base

for (1i=0; i<100; i++)
{
dest[1] = src[i];

}

This version is portable AND nore
powerful on today's CPU s because only
the iterator needs to be I ncrenented,
and because existing opcodes allowto
pre-multiply the i ndex as an
addr essi ng node, nmking array access
In a single instruction possible even

care\Wedelbpevaroniazhe 2epr ay el enent si zes. 25

Creatl ng a conmbn
base

Brew does not support exception
handl | ng

Make sure you use it judiciously In
your ot her versions and try to
| nstead rely on other neans of
error detection

Gane Devel opers Conference 2004

26

Creatl ng a conmbn
base

Brew does not support static class
vari abl es or gl obal -scope vari abl es

| f you have to create persistent class
vari abl es, place themin the gl obal appl et
structure, and maybe use a speci al nam ng
convention to indicate their class-
owner shi p

Alternatively, create a “friend” super-class
that holds only those el enents that need
to remain static. Keep in m nd however
that in Java, each class has a nenory

Gare Devgyo%gzrge(?'o%If etr Qnacg 28@4” be severe in ti ght

27
envli ronnent s

Creatl ng a conmbn
base

Stay away fromdirty progranm ng
tricks!

Usi ng J2ME' s out - of - bounds excepti on
handling to detect array sizes IS
very bad practice and barely
port abl e

Gane Devel opers Conference 2004 28

Ceneral ti1ps
and
good habi ts

Gane Devel opers Conference 2004

Good habi ts

Many programers seemreluctant to nake
full use of the tools that nobdern
conpilers put at their fingertips.
There are a few t hings that
Intrinsically make your life as a
programmer easier, and hel p nmaki ng
your code nore stable and safer

One shoul d think that applying sonme of
t hese nethods Is commopn sense, but
still they are applied far too
| nfrequently Iin ny experience. Here

Garreq{av%l o%e(?sn‘g)nf%rl'é% %§Otl I ons... 30

Good habi ts

Source code I1s cheap, so use it!

Good programm ng style occasionally
requires you to wite nore source
code than otherw se, but the payoff
| s usual |y enor nous

There 1s no roomfor | aziness In
pr ogr amm ng!

Gane Devel opers Conference 2004 31

Good habi ts

e« Only one command per |ine
e Properly 1 ndent and bracket your code

« Work with a sensible style guide and
stick to it

e Apply sone commpbn sense and don’t try
to be a “cool” coder. Utinmately
you' re making your own life
unnecessari |y harder

 Never add a call to a particular OS-
specific function to your gane engi ne
code — wite a custom version I nstead,

Garretdaaltopess pxleyende @bonar ds the call to the s

Lose t he #def I ne
NAacr os

The singl e-nost abused feature of C and
Ct+ Is the #define pre-processor

conmand
Use const to create constant val ues

» const has scope and a nane space. It iIs

type-safe and allows the conpiler to
optimze your code nmuch better

» const can quickly be turned into a
variable wthout nuch code change. G eat
for experinentation before | ocking down
final val ues

» Despite Brew s inability to create gl obal
vari abl es, const can be used to create

Gare Devgl qppyal Codiset encar2P@ys usi ng t he synt ax 33

Lose t he #def I ne
NAacr os

There are valid uses for #define.

Make sure you use it only In
such cases, and keep in m nd

t hat even sinple nmacros |1 ke the
one bel ow can turn into deadly

traps
#define max(a, b) ((a) > (b) 2 (a) : (b))

Gane Devel opers Conference 2004 34

Lose t he #def I ne
NAacr os

#define max(a, b) ((a) > (b) ? (a) : (b))

Now, i magine this...

max (++a, b);

max (++a, b+10);

The results of this little exercise are fat al

Gane Devel opers Conference 2004

35

Lose t he #def I ne
NAacr os

A much better way to solve this
problemis to use an inline
function, such as this

inline int max(int a, int b) { return a > b ? a : b; }

This may not be perfect, but since we can’'t use
tenplates, it’'s certainly the next best thing

Gane Devel opers Conference 2004 36

Say “No” to Hungari an
Not at I on

e It I1s unw eldy and error-prone

e |t Is counterproductive and hard
to nmaintain

e |t reveal s I npl enentation
specifics as part of a class
| nterface

Gane Devel opers Conference 2004 37

Finite State NMachi nes

e Use of Finite State Machi nes can
greatly i1 ncrease the portability
of a code base

— I nherently iterative

— Easy to understand and extend
— Non- bl ocki ng

Gane Devel opers Conference 2004 38

Heed your conpil er
war ni ngs

Al ways set your conpiler to highest warning | evels —
Level 4 in Visual Studio

Make sure your project conpiles with O warni ngs

Do not use #pragma to turn off warnings as it iIs
conpi l er-specific and may silently turn off vital
war ni ngs i1 n anot her environnent

|f a warning i s unavoi dable, coment the |ine of code
I n question, explaining why the warni ng cannot be
ci rcunmvent ed

Warni ngs are usually a sign of sloppy |aziness, which
has no pl ace in professional game devel opnent

War ni ngs often reveal actual bugs that are di scovered
as you I nspect your code for the cause of the

GarneV\B'eerI| onp%rs Conf erence 2004 39

Putting together a
gane

Gane Devel opers Conference 2004

40

The franewor k

« Wite an application franmework
that I1s reusable, portable and
ext ensi bl e

| nclude 1 npl enentations for
appl i cation startup, nenory
manager, display handling, 1 nput
handling, file 1O and vari ous
utility functions, such as
sprite blitting, debug | oggi ng,
handset detection, etc.

Gane Devel opers Conference 2004

The franewor k

 Menory nmanager

— Make sure to overl oad new and delete as
well as new[] and delete[]

void *operator new(size t size);
void operator delete(void *ptr);
void *operator new[] (size t size);

void operator delete[] (void *ptr);

— Add debugging tools if you wsh, such as
bounds- checki ng, |eak detection, and ot her
statistics

— Havi ng good new and delete | npl enentations
| found that malloc() becane virtually
r edundant

Gane Devel opers Conference 2004 42

The franewor k

« Display handling

— Create an abstract interface — I am
typically using a GAPI-style interface
because it is small and very tight,
providing only the essentials

— I f you work with direct franebuffer access,
be prepared to wite your routines for
RGB444, RGEB555 and RGEB565 color triplets in
16-bit nobdes. You may not have to i npl enent
themimediately — just keep in m nd that
there are devices wth these configurations
that you may run into sone tine down the
| 1 ne

Gane Devel opers Conference 2004 43

The franewor k

e File 1O
— Despite providing basic file IO such as
open (), close(), read() and write() | found

It much nore useful in nobile applications
to provide specific | oading routines

e LoadImage ()
e LoadData ()
e ReadFile (), WriteFile ()

— This usually renoves repetitive codi ng and
error-checking, and provides you with
tighter calls in your gane engine that are
pl at f or m i ndependent

Gane Devel opers Conference 2004 44

The franewor k

e File IO

— Never access files directly by nane. Use a constant
I nstead. That way you keep it portabl e between
platforms where files are | oaded by nane and those
where they are | oaded by ID froma resource file

« J2MVE

static final char FileName[] = “datafile.dat”;
e Brew

const int FileName = DAT DATAFILE;

The inplenentation of the file 1O functions helps to
hide the difference in data types used for
| oadi ng, as they provide the respective prototypes
for the gane engine and the resulting call remains

t he sane

LoadDataFile(FileName) ;
Gane Devel opers Conference 2004 45

The franewor k

Sprite blitting

Blitting functions should be basic and
pl at f or m i ndependent

void Blit (applet *curApp, G3word xPos, G3word yPos, G3word width,
G3word height, void *data, G3word xSrc, G3word ySrc, G3RasterOp
mode)

Provi de 1 mage cli pping

Especially in nobile devel opnent U V-
mappi ng of sprites in a |large source-bitnmap
| s advi sable to save nenory

Make sure to al ways, always clip your
sprites against the screen di nensions

Gane Devel opers Conference 2004 46

Exanpl e of a high-level blitting inplenentation
I n Brew

void
Blit (applet *curApp, G3word xPos, G3word yPos, G3word width, G3word height, wvoid *data,
G3word xSrc, G3word ySrc, G3RasterOp mode)

{
if (xPos < curApp->ClipRect.left)

{

width += xPos - curApp->ClipRect.left;
xSrc -—-= xPos - curApp->ClipRect.left;
xPos = curApp->ClipRect.left;
}
else if ((xPos + width) > (curApp->ClipRect.left + curApp->ClipRect.right))
{
width = width - (xPos + width - (curApp->ClipRect.left + curApp->ClipRect.right));

}

if (yPos < curApp->ClipRect.top)
{
height += yPos - curApp->ClipRect.top;

ySrc -= yPos - curApp->ClipRect.top;
yPos = curApp->ClipRect.top;
}
else if ((yPos + height) > (curApp->ClipRect.top + curPApp->ClipRect.bottom))
{
height = height - (yPos + height - (curApp->ClipRect.top + curBApp->ClipRect.bottom));

}

if (width > 0 && height > 0)
{

IDISPLAY BitBlt(curApp->a.m pIDisplay, xPos, yPos, width, height, data, xSrc, ySrc, mode);
}

Gane Devel opers Conference 2004 47

The franewor k

« Debug Loggi ng

— Create a basic set of functions to | og,
protocol or dunp data into file

— Add functionality to log, protocol or dunp
data to the debugger output w ndow

— Debug functions can be perfornmance drains,
so make sure you wap themso that the
calls can be easily renoved in your
rel ease buil ds

Gane Devel opers Conference 2004 48

The franewor k

e Stdli b functi ons

— Even though nost functionality is avail able
across platforns, its performance varies
dramatically

e Brew does not allow support stdlib functions and i nstead
utilizes substitute functions

» When conpared to their library counterparts, memcpy() for

exanpl e can be inplenented twce as fast in a sinple G
|l oop in Brew, while it is virtually unbeatable in W ndows

CE

— Create an abstraction layer to isolate all
calls to external library functions for
flexibility. That way you can sinmply
redirect to the stdlib function or wite
your own | npl enentation when necessary

Gane Devel opers Conference 2004 49

The franewor k

e Custom U

— Create your owmn U class so you won’t have
torely on U features and i npl enentations
on actual handsets

— Create functionality for text display,
Mmenui ng usi ng your own custom fonts

 Elimnates problens stemm ng fromfirnmuare
bugs

e Eli mnates problens from non-existing Ul
features across platforns, such as nenus wth
| con, etc.

« Creates a consistent | ook and handling across
handsets and pl atforns

T S oBErs' rffe andahl e and you have full control

ver

50

The franewor k

e Handset detection

— Create a nodule that is dedicated to
handset detection based on platformlds,
CEM Strings, or the |ike

— Make sure to al so read-out the OS version

— Retrieve handset specific information in
this nodule and nake it available to the
application

Gane Devel opers Conference 2004 51

Exanpl e of handset detection in Brew
void
DetectHandset (applet *curApp)
{
handsetID devicelID;
AEEDeviceInfo ddi = { 0 };
const platformID *ptr;

devicelID = INVALID DEVICE; // Retrieve device information
ddi.wStructSize = sizeof(ddi); // from the handset
ISHELL GetDevicelInfo(curApp->a.m pIShell, &ddi);
ScreenWidth = ddi.cxScreen;
ScreenHeight = ddi.cyScreen;
Language = ddi.dwlLang;
if (0 !'= ddi.dwPlatformID) // If the handset returns an ID
{ // things are fairly easy.
ptr = PlatformIDTable;
while (NULL != ptr->OEMID)
{
if (ptr->0OEMID == ddi.dwPlatformID)
{
deviceID = (handsetID) ptr->DevicelD;
break;
}
ptr++;
}
}
if (INVALID DEVICE == devicelD) // If it does not return a unique ID
{ // we will have to use other means...
ptr = PlatformIDTable;
while (NULL != ptr->OEMID)
{
if (ptr->Width == ScreenWidth && ptr->Height == ScreenHeight)
{
deviceID = (handsetID) ptr->DevicelD;
break;
}
ptr++;

}
}
curApp->HandsetID = devicelD;

)
Gane Devel opers Conference 2004 52

Exanpl e of handset detection in Wndows CE, Pocket PC and
Smar t phone

void
DetectHandset (applet *curApp)
{
G3ustring string[64] = { 0 }; // Unicode string required!

if (0 != SystemParametersInfo(SPI GETOEMINFO, sizeof(string), &string[0], 0))
{
ptr = PlatformIDTable;

while (NULL != ptr->DevicelID)
{
if (0 == wcsicmp(ptr->OEMString, string))
{
deviceID = (handsetID) ptr->DevicelD;
break;
}
ptr++;

}

Gane Devel opers Conference 2004

e Use the Information fromthe handset

det

ection to drive your application

| amtypically using a structure with all the relevant variabl es

f

or a nunber of key handsets

typedef struct
{
G3wordl6 SoundIdleDelay;
G3bool DeviceAllowsSoundPause;
G3wordl6 ScreenQuadX;
G3wordl6 ScreenQuady;
G3wordl6 ScreenlLogoX;
G3wordl6 ScreenlLogoY;
} deviceConfig;

static const deviceConfig DeviceConfigs[] =

{

{ 1, TRUE, 64, 65, 24, 30 }; // Motorola t720
{ 40, TRUE, 60, 57, 22, 24 }; // LGE VX6000
NULL

)2

Frequently, certain handsets can safely use the exact sane

C
0)

onfigurations, so we then identify the key handset fromthe
bt ai ned handset infornmation

switch (curApp->HandsetID)

{

}

case AUDIOVOX CDM8400:

case AUDIOVOX CDM8410:

case AUDIOVOX CDM8600:
curApp->KeyDeviceID = USE AUDIOVOX CDM8600;
break;

Gane Devel opers Conference 2004 54

Now all we have to do is, create a pointer to the correct device
configuration data for the key handset that we determ ned

curBApp->DevCfg = &DeviceConfigs[curApp->KeyDeviceID];

W now have easy access to all sorts of variables that can be hand-
optim zed for particular handsets. These can contain del ay val ues,
flags to avoid certain function calls and circunvent firmare bugs,
pl acenent coordi nates, filenames to allow for swappi ng out inmages or
sounds or anything el se you can think of

void
SoundSuspend (applet *curApp)
{
if (NULL != curApp->Sound)
{
if (TRUE == curApp->DevCfg->DeviceAllowsSoundPause)
{
ISOUNDPLAYER Pause(curApp->Sound) ;
}
else
{
ISOUNDPLAYER Stop(curApp->Sound) ;
}

This data-driven architecture m nimzes code-changes especially for

handset ports and substitutes themw th easy to edit data structures in
one pl ace

Gane Devel opers Conference 2004 55

Acconmbdat I ng Screen
resol uti ons

Screen resol utions on nobile
phones can be a ni ght mare and
range from anywhere between
96x54 to 240x320 pi xel s and
above

Usi ng the device configuration
t abl e descri bed before wll make
dealing wth these resol utions
much easier, especially when
conbined wwth a little trick

Gane Devel opers Conference 2004 56

Spl1cing

Splicing takes different graphic
el ements and draws themin a way
that creates a seam ess | nmage

Gane Devel opers Conference 2004

57

Spl1cing

Through different positioning it
all ows us to create backgrounds
Il n various sizes on the fly

Gane Devel opers Conference 2004

58

changes to

Flips: 0

.I
‘=
o

B

E
-

X
-.r-_r.r....-
)
-.,.-_,.-_,.-
-.,.-_,.-_,.-
e e
b e R R
o il il
e 1o Xe |

Flips: 0

Tire: 0:01

— The exanpl e

36 Brew handset versions of “Fliplt!” are using the exact same code base and all

=il O000) |
| DOO) - E
—. |7 : OO0 : |
— | B Eo000) &
a5 R QQAQQ!
=1l B QQOC
o | B _.@CCC_
Ll

All

resol uti ons and screen | ayouts were achi eved through the data-driven architecture and

59

Gane Devel opers Conference 2004

Sone fiInal thoughts

« Always apply common sense and try to think
ahead

« Al ways docunent your code and use vari abl e
and function nanes that are sensible and
sel f - expl anat ory

e Use Assertions liberally. They can not only
detect errors in your programlogic, but also
reveal porting issues between handsets and
pl atforns, such as incorrect endi anness,
al i gnnment i1 ssues, corrupt data, etc.

« Consciously |look for and isolate platform and
devi ce dependencies, even if it nmeans sone

extra work
Gane Devel opers Conference 2004 60

Sone fiInal thoughts

| f your data structures change while you' re
devel oping a | ater handset, nmake sure to nake
the correct adjustnents in ALL your previous
configurations. Never |eave your code open-
ended or prone to bugs

While you are doing the initial handset

| npl enent ati ons, nmake as many as possi bl e,
even if they’'re not immediately required. It

| S much easier to make handset ports while the
code is still fresh in your mnd than havi ng
to go back again | ater

Once you are done with the application, |ock
down your gane engine code so it wll not be
br oken by future handset ports. You can use

revi sion control systens to do that or sinply

Gamprgve! el Fant essnce el onl y 61

Sone fiInal thoughts

* Properly docunent the steps necessary to build
t he application

e Docunent the steps that are necessary to
| npl enent a new handset version

* Never #ifdef your way through code. It is the
| east portable solution — a hack in essence -
and typically only introduces errors in
versions and builds that were working fine
previ ously

 In general, try to touch as little code as
possi bl e when doing ports. The | ess code you
change, the snaller the chance of introducing

new bugs!
Gane Devel opers Conference 2004 62

Book recommendat| ons

« Witing Solid Code, by Steve Maguire
M crosoft Press, Al SN 1556155514

e Code conplete, by Steve MConnel l
M crosoft Press, |SBN 1556154844

e Code Reading, by Diomdis Spinellis
Addi son- Wsl ey, | SBN 0201799405

 Effective C++, by Scott Meyers
Addi son- Wsl ey, | SBN 0201924889

Gane Devel opers Conference 2004 63

	Slides
	PREVIOUS MENU
	PRINT THIS DOCUMENT
	SEARCH CD

	return:

