L]
. A

Conference

Procedural Shaders: A Feature Animation
Perspective

Hector Yee, Rendering Specialist, PDI/DreamWorks
David Hart, Senior FX Developer, PDI/DreamWorks
Arcot Preetham, Engineer, ATI Research

.
il \,

Conference

Motivation

e Movies still look better

e Up visual bar with programmable graphics
hardware

e Borrow techniques from Feature Animation
for use in Real Time

| JE

Conference

Motivation — get from here

Jak 2
(2003)

PS 2
Naughty Dog

Shrek 4D
(2003)
Film

PDI/

DreamWorks

— Y ar
Conference

Talk Outline

e Technological similarities & differences

e Techniques from feature animation

e Techniques from real-time rendering

\ e
Conference

Where we are

e Typical values for Shrek
— Typical frame
— Pentium 4 @ 2.8 GHz
e Typical values for DX 9 part
— Assuming 30 FPS
— Based on Radeon 9800
— Some values based on theoretical max

= =
Conference
Similarities
Technology Feature Animation Realtime
Rendering

Resolution 720 x 486 (NTSC) 640 x 480
1828 x 1102 (Academy 1024 x 768
1.66) 1280 x 1024

Anti-Aliasing 8x8 4x4

Bits per channel |32 (internal float) 32 (internal float)
4-8 (YUV 4:2:2) 8 (RGB 8:8:8)

()

- - \ P I'

Conference

Differences (Geometry)

Technology |Feature Realtime Order of
Animation Rendering |Magnitude

Time per 8000 secs 0.015secs |6

frame

Polys / frame | 100 M 0.1IM-1M |2

Bones & 350 32 1

Skinning CPU proc. 4 mat/bone

- - " - ..

Conference

Geometric Resolution

e Feature Animation

— Mostly procedural geometry

— NURBS, NUBS or subdivision surfaces
e Realtime

— Usually triangles and quads

— Recently N-patches or RT-patches

| e

Y e i
Conference @
Differences (Rendering)
Technology |Feature Realtime Order of
Animation Rendering |Magnitude
Time per 7000 secs 0.015secs |6
frame
Number of 100 5-10 2
Lights
Shadow 1000 (soft 1 (depth 3
samples shadows) map)

e o 3 1.
Conference

Differences (Shading)

Shader network for

Shrek’ s body

i SN S

- - \ P I'

Cnnf!rc @

Differences (Shading)

Technology |Feature Realtime Order of

Animation Rendering |Magnitude

Shader ops 1M 100 4

per pixel

Shader ~100 ~10 2

Parameters |(chained)

Texture 1545 MB 64 MB 1.5

RAM

- - " - ..

Conference

Other Differences

Texture Filtering

— Analytic vs Trilinear Mipmap (Dave)
Shader Environment

— P, dPdUV, N vs streams (Dave)
Shading Language

— C/C++ vs Cg/HLSL/GLSL (Preetham)
Color Calibration

| B o S

F_ " - ‘ -..I-
Conference

Color Calibration

e Consistent view for

— Artists, content provider, consumers
e Feature Animation

— Artists calibrate, Theatres calibrate
e Realtime Rendering

— Artists calibrate (sometimes)

— Gamers turn up the gamma!

e o 3
Conference

Shader Environment

By shader1 mean plugin
Compiled .dso (.dll) written in C
Materials, maps, lights, geometry, etc..

Shaders are (ideally) stream filters / DG nodes
Look at inputs and outputs only

But we (PDI) always cheat

Traversing scene, loading files, ray tracing, etc..

Full access to all app. libraries

8)
. L -I'-

Conference

Shader Environment

P, N, Ng, UV, dPd[UV], ref[PN], etc...

These data come in both singles & tuples
Singles = data at the poly center
Tuples = data at poly vertices

(e.g. vertex normals, vertex UVs, etc...)

. ¢ P
I
1

o iy wiel
Texture

uv[0]

.'_ .‘ ._.':- - W . E - i |
Conference = .

Anti-aliasing

No-one wants aliasing, but in reality...
Hardware support

Performance
features / quality / speed

no aliasing allowed (noise is not OK)

Fortunately, we (FA) have lots of time

Conference = .

Image mapping for RT

Input UV is a single 0
Tri-linear MIPMAP w1] _wie] -
interpolation mEnk
w[0]
MIPMAP is point-sampled IEI P
using single (face) UV '

10

L)
. L -I'-

Conference

Image mapping for FA

Input UV is tuple
P P wit] w2l u
L)
. ik 3
Integrate filtered A
) uwv[0]
texels in tuple

Quality knob chooses MIPMAP level

(e.g. GL_TEXTURE_LOD_BIAS_EXT in openGL)

- L L

Conference

Brick Shader

Use uv tuple polygon

Find fully & partly

enclosed bricks

Fully enclosed =

average color

Partly enclosed =

clip & evaluate

11

Conference

Brick Shader

Conference

Env mapping

Tuple UVs computed with tuple
N &P

UV tuple is passed on to image
map

T e— 'IM' 4 ‘

Function maps (I,N) to UV _— .
Using reflection vector R ﬂ -
Builds on Image mapping - -.

)

12

| JE

Conference

Env mapping

Tuple UVs might cross
seams, so subdivide tuple

UV polygon T"g
Each tuple polygon is N

evaluated by image map

shader.

e teae

WA

1

=,
=

N

S

13

Confe renc

¥ 1]

Procedural noise

We use noise heavily B T RS

Many different types - B 2t ﬁ%ﬂ
gradient, cell, convolution, - - ek T
turbulence, marble, worley '*.- ' ‘Eﬁ » Y X
1d,2d,3d,4d... b ;.;'g: B

Fractal noise anti-aliasing e
Evaluate frequency in ‘octaves’ . ;-"'J: ‘2{‘* W
Only evaluate the frequencies e AL

that are below Nyquist limit

14

| JE

Cnnf!f:nce

Shading Models

Wide range of complex models
Default material has standard terms:
Ambient, Diffuse, Specular
And some non-standard terms:

Shadowing, Directional ambient, Directional diffuse,
Retro-reflection, Fresnel reflectivity, transparency...

Not just surface materials:

Maps, Fabric, Fur, Particles, Volumes,

| JE

Cnnf!f:n:e

Fur Shader

Shading model for curves [Kajiya "89]

15

Cnnfence

1dmm left 1l

10mm left 1l

Shrek 4D

16

17

18

Cnnfurénce

earmaDeve

Conf!lénce

10mm left 1l

Shrek 4D

Shrek 4D

19

S HER

e RenderMan®

e C Libraries

e HLSL, GLSL, Cg.
e Assembly.

20

. 3
] e |

Conference

Shading Blocks

e On CPU

— Light, Surface, Volume shaders.
e On GPU

— Vertex & Pixel shaders.

= T
Conference

Shading on graphics hardware

e Instruction set
— Limited Control Flow
— No Bitwise operators

e Resources

— Limited Registers (Temp, Interpolators,
Constants)

e No Global Memory

21

- . "-_I'

Cnn!rc
Shading on graphics hardware
(cont’d)

e Finite number of instructions

PS Shader Model vs Instructions

100000

10000 ~

1000

100 /
L

Instruction Slots

10 —

1

PS11 PS1.213 PS14 PS 2.0 PS2.X PS 3.0

. % "-_I"

Can!rc
Multipassing

¢ Interactive multi-pass
programmable shading, Siggraph
2000 - Peercy et al

e Efficient partitioning of fragment
shaders for multi-pass rendering on
programmable graphics hardware,
Siggraph 2002 — Chan et al.

Peercy et al, 2000.

Chan et al, 2002.

22

CPU vs GPU Shading
Shading
CPU
GPU
—
Speed

v TS0 2]
Conference

CPU Quality & GPU speed

e Use GPU for offline shaders.
— Procedural Lights.
— Complex Surfaces.
— Noise.

23

L] ;
. L -I'-

Conference

Lights

e Fixed Function
— 8 lights
— Dir, Point, Spot
e Programmable
— Any number of lights

— Custom light shaders
— Eg. Windowlight

v !

Conference

Windowlight

e Light through a window.

e Parameters:
— # horiz panes, vert panes
— from, to, up
— frame width & height
— fuzz.

24

. 3
] e |

Conference

Surface Models

e Fixed Function
— Diffuse, Phone, Multi-texture

e Programmable

— Custom surface models.
— Eg. OrenNayar, Anisotropic, Fur.

= T
Conference

e Fur geometry rendered as
triangles.

e Shading uses fur tangent
direction

25

L]
. A

Conference

Widely used in studios.

GLSL & HLSL shading languages have
noise functions.

Popular implementation

— Perlin noise

Eg: Ocean waves

Conference

Texture Noise

e Noise based demos used textures.
e Advantages: Fast.

e Disadvantages: Repeat, memory expensive,
linear filtering

26

. 3
] e |

Conference

Procedural Noise

e Advantages: No filtering artifacts.

e Disadvantages: Computationally expensive.
e Perlin noise implementation on GPU.

— float noise3d(): 56 alu, 16 tex.
— float3 noise3d(): 172 alu, 48 tex.

v TS0 2]
Conference

Conclusion

Cinematic quality in real time ?

Still a long way to go.

27

- . \ {F

Conference

Acknowledgements

PDI: Jonathan Gibbs, Jerry Hebert, Harry Max, Paul
Rademacher, Dan Yu, Taylor Shaw, Andy
Hendrickson, Rachel Falk, lighting, char TDs, FX,
R&D

ATI: Avi Bleiweiss, Dominik Behr, Seth Sowerby,
Pierre Boudier, Axel Mamode, Mike Huber, Raja
Koduri.

28

	Slides
	PREVIOUS MENU
	PRINT THIS DOCUMENT
	SEARCH CD

	return:

