
1

Procedural Shaders: A Feature Animation
Perspective

Hector Yee, Rendering Specialist, PDI/DreamWorks

David Hart, Senior FX Developer, PDI/DreamWorks

Arcot Preetham, Engineer, ATI Research

Motivation

• Movies stil l look better

• Up visual bar with programmable graphics
hardware

• Borrow techniques from Feature Animation
for use in Real Time

2

Motivation – get from here

Jak 2

(2003)

PS 2
Naughty Dog

… to here

Shrek 4D

(2003)

F i lm
PDI/

DreamWorks

3

Talk Outline

• Technological similarities & differences

• Techniques from feature animation

• Techniques from real-time rendering

Where we are

• Typical values for Shrek

– Typical frame

– Pentium 4 @ 2.8 GHz

• Typical values for DX 9 part

– Assuming 30 FPS

– Based on Radeon 9800

– Some values based on theoretical max

4

“Typical” Shrek frame

Similarities

32 (internal float)

8 (RGB 8:8:8)

32 (internal float)

4-8 (YUV 4:2:2)

Bits per channel

4 x 48 x 8Anti- Al iasing

640 x 480

1024 x 768

1280 x 1024

720 x 486 (NTSC)

1828 x 1102 (Academy
1.66)

Resolution

Realtime

Rendering

Feature AnimationTechnology

5

Differences (Geometry)

132

4 mat/bone

350

CPU proc.

Bones &
Skinning

20.1M - 1M100 MPolys / frame

60.015 secs8000 secsTime per
frame

Order of
Magnitude

Realtime

Rendering

Feature

Animation

Technology

Geometric Resolution

• Feature Animation

– Mostly procedural geometry

– NURBS, NUBS or subdivision surfaces

• Realtime

– Usually triangles and quads

– Recently N-patches or RT-patches

6

Differences (Rendering)

31 (depth
map)

1000 (soft
shadows)

Shadow
samples

25 - 10100Number of
Lights

60.015 secs7000 secsTime per
frame

Order of
Magnitude

Realtime

Rendering

Feature

Animation

Technology

Differences (Shading)

Shader network for
Shrek’s body

7

Differences (Shading)

1.564 MB1545 MBTexture
R A M

2~10~100
(chained)

Shader
Parameters

41001 MShader ops
per pixel

Order of
Magnitude

Realtime

Rendering

Feature

Animation

Technology

Other Differences

• Texture Filtering

– Analytic vs Trilinear Mipmap (Dave)

• Shader Environment

– P, dPdUV, N vs streams (Dave)

• Shading Language

– C/C++ vs Cg/HLSL/GLSL (Preetham)

• Color Cal ibration

8

Color Calibration

• Consistent view for

– Artists, content provider, consumers

• Feature Animation

– Artists calibrate, Theatres calibrate

• Realtime Rendering

– Artists calibrate (sometimes)

– Gamers turn up the gamma!

Shader Environment

By shader I mean plugin
Compiled .dso (.dll) written in C

Materials, maps, lights, geometry, etc..

Shaders are (ideally) stream filters / DG nodes
Look at inputs and outputs only

But we (PDI) always cheat
Traversing scene, loading files, ray tracing, etc..

Full access to all app. libraries

9

Shader Environment

P, N, Ng, UV, dPd[UV], ref[PN], etc...

These data come in both singles & tuples

Singles = data at the poly center

Tuples = data at poly vertices
(e.g. vertex normals, vertex UVs, etc...)

Polygon

Texture

10

Ant i-aliasing

N o-one wants aliasing, but in reality…

Hardware support

Performance
features / quality / speed

no aliasing allowed (noise is not OK)

Fortunately, we (FA) have lots of time

Image mapping for RT

Input UV is a single

Tr i- l i near MIPMAP
interpolation

MIPMAP i s po in t -sampled
using single (face) UV

11

Image mapping for F A

Input UV is tuple

Integrate filtered

texels in tuple

Quality knob chooses MIPMAP level
(e .g . GL_TEXTURE_LOD_BIAS_EXT in openGL)

Brick Shader

Use uv tuple polygon

Find fully & partly

enclosed bricks

Fully enclosed =

average color

Partly enclosed =

clip & evaluate

12

Brick Shader

Env mapping

Function maps (I,N) to UV

Using reflection vector R

Builds on Image mapping

Tuple UVs computed with tuple
N & P

UV tuple is passed on to image
map

13

Env mapping

Tuple UVs might cross
seams, so subdivide tuple
UV po lygon

Each tuple polygon is
evaluated by image map
shader.

Env mapping

Singles

eval

Tuples

eval

14

Env mapping

Procedural noise

We use noise heavily
Many different types

gradient, cell, convolution,

turbulence, marble, worley

1d,2d,3d,4d…

Fractal noise anti-aliasing
Evaluate frequency in ‘octaves’

Only evaluate the frequencies

that are below Nyquist limit

15

Shading Models

Wide range of complex models
Default material has standard terms:

Ambient, Diffuse, Specular

And some non-standard terms:
Shadowing, Directional ambient, Directional diffuse,

Retro-reflection, Fresnel reflectivity, transparency…

Not just surface materials:
Maps, Fabric, Fur, Particles, Volumes,

Fur Shader

Shading model for curves [Kajiya ’89]

16

Shrek 4D

Shrek 4D

17

Shrek 4D

Shrek 4D

18

Shrek 4D

Shrek 4D

19

Shrek 4D

Shrek 4D

20

Shrek 4D

Shading Languages

• RenderMan®

• C Libraries

• HLSL, GLSL, Cg.

• Assembly.

C P U GPU

21

Shading Blocks

• On CPU

– Light, Surface, Volume shaders.

• On GPU

– Vertex & Pixel shaders.

Shading on graphics hardware

• Instruction set

– Limited Control Flow

– No Bitwise operators

• Resources

– Limited Registers (Temp, Interpolators,
Constants)

• No Global Memory

22

Shading on graphics hardware
(cont’d)

• Finite number of instructions

PS Shader Model vs Instructions

1

10

100

1000

10000

100000

PS 1.1 PS 1.2,1.3 PS 1.4 PS 2.0 PS 2.X PS 3.0

In
st

ru
ct

io
n

 S
lo

ts

Multipassing

• Interactive multi-pass
programmable shading, Siggraph
2000 - Peercy et al

• Efficient partitioning of fragment
shaders for multi-pass rendering on
programmable graphics hardware,
Siggraph 2002 – Chan et al.

Chan et al, 2002.

Peercy et al, 2000.

23

CPU vs GPU Shading

CPU

GPU

Quality

Speed

Shading

CPU Quality & GPU speed

• Use GPU for offl ine shaders.

– Procedural Lights.

– Complex Surfaces.

– Noise.

24

Lights

• Fixed Function

– 8 lights

– Dir, Point, Spot

• Programmable

– Any number of lights

– Custom light shaders

– Eg. Windowlight

Windowlight

• Light through a window.

• Parameters:

– # horiz panes, vert panes

– from, to, up

– frame width & height

– fuzz.

25

Surface Models

• Fixed Function

– Diffuse, Phone, Multi -texture

• Programmable

– Custom surface models.

– Eg. OrenNayar, Anisotropic, Fur.

Fur

• Fur geometry rendered as
triangles.

• Shading uses fur tangent
direction

26

Noise

• Widely used in studios.

• GLSL & HLSL shading languages have
noise functions.

• Popular implementation

– Perlin noise

• Eg: Ocean waves

Texture Noise

• Noise based demos used textures.

• Advantages: Fast.

• Disadvantages: Repeat, memory expensive,
linear filtering

27

Procedural Noise

• Advantages: No filtering artifacts.

• Disadvantages: Computationally expensive.

• Perlin noise implementation on GPU.

– float noise3d(): 56 alu, 16 tex.

– float3 noise3d(): 172 alu, 48 tex.

Conclusion

Cinematic quality in real time ?

Still a long way to go.

28

Acknowledgements

PDI: Jonathan Gibbs, Jerry Hebert, Harry Max, Paul
Rademacher, Dan Yu, Taylor Shaw, Andy
Hendrickson, Rachel Falk, lighting, char TDs, FX,
R&D

ATI: Avi Bleiweiss, Dominik Behr, Seth Sowerby,
Pierre Boudier, Axel Mamode, Mike Huber, Raja
Koduri.

	Slides
	PREVIOUS MENU
	PRINT THIS DOCUMENT
	SEARCH CD

	return:

