
1

Real World
Multithreading in PC Games

Case Studies
Maxim Perminov, maxim.perminov@intel.com
Aaron Coday, aaron.c.coday@intel.com
Will Damon, WDamon@EA.com

Agenda

• Hyper-Threading Technology Review

• Multithreading Challenges & Strategies for
Games

• Case Studies

– Lego/Argonaut “Bionicle”

– Codemasters/SixByNine “Colin McRae Rally 4”

• Summary

2

How HT Technology Works
Physical Physical

processorsprocessors
Logical processors Logical processors

visible to OSvisible to OS
Physical processor Physical processor
resource allocationresource allocation ThroughputThroughput

TimeTime

Resource 1Resource 1

Resource 2Resource 2

Resource 3Resource 3

Thread 2Thread 2 Thread 1

W
ith

ou
t

H
yp

er
W

ith
ou

t
H

yp
er

--
T

h
re

ad
in

g
T

h
re

ad
in

g
W

ith
 H

yp
er

W
ith

 H
yp

er
--

T
h

re
ad

in
g

T
h

re
ad

in
g

Thread 2
Thread 2

Thread 1 Resource 1Resource 1

Resource 2Resource 2

Resource 3Resource 3

+

Higher resource utilization, higher output
with two simultaneous threads

Higher resource utilization, higher output
with two simultaneous threads

HT Technology, Not Magic

MultiprocessorMultiprocessor HyperHyper--ThreadingThreading
Arch State Arch StateArch StateArch State

Data Caches

CPU
Front-
End

Out-of-
Order

Execution
Engine

Data Caches

CPU
Front-
End

Out-of-
Order

Execution
Engine

Data Caches

CPU
Front-
End

Out-of-
Order

Execution
Engine

HT Technology increases processor
performance by improving resource utilization

HT Technology increases processor
performance by improving resource utilization

3

Agenda

• Hyper-Threading Technology Review

• Multithreading Challenges & Strategies for
Games

• Case Studies

– Lego/Argonaut “Bionicle”

– Codemasters/SixByNine “Colin McRae Rally 4”

• Summary

Why Games Are Hard to Thread

• Technical Reasons
– Sequential pipeline model with single dataset shared among stages (à

next slide)
– Highly optimized, dense code minimizes HT benefits

– Threading frequently involves significant high level design change

• Business Reasons
– Little experience in multithreading programming

– Limited market share of systems w. HT (e.g. vs. SSE)

– Consumer unaware of HT

4

Why should you thread your game

• Technical reasons
– Parallelism is the future of CPU architectures -> easy to scale (HT,

multi-core, etc)
– Do other things while waiting for the graphics card/driver
– Good MT design scales, and prevents repeated re-writes

• Biz reasons
– Differentiate yourself in a competitive landscape
– All PC platforms will support Multi-threading
– Parallel programming education will pay off with multiple

platforms (PC, consoles, server, etc)
– MT scales more -> extends product lifetime.

Multithreading Question’s

• What?
Multithreading Strategy

• How?
Multithreading Implementation

5

Multithreading Strategy

• Utilize Task Parallelism
– Process disjoint tasks simultaneously

• Utilize Data Parallelism
– Process disjoint data simultaneously

Game’s Pipeline Model

Render
World

Update
World

World
Data

World
Data

d
a

ta
 d

e
p

e
n

d
e

n
cy

6

Data Parallelism in Games
• Execute tasks on secondary thread

– Audio processing

– Networking (including VoIP)

– Particle Systems and other graphics effects

– Physics, AI (also in Java* / C#)

– Content (speculative) loading & unpacking

• Multithread Procedural Content creation

– Geometry, Textures, Environment, etc…

• Threading Potential

– Good for CPU bound games

– Easy to implement

Render
World

UpdW
Thrd

2

Subset
2

Subset
2

UpdW
Thrd

1

Subset
1

Subset
1

*Other names and brands may be claimed as the property of others

Task Parallelism in Games

Render
World
Thread

Update
World
Thread

World
t = (n+1)

World
t = (n+1)

World
t = n

World
t = n

• Multithread whole 3D Graphics
Pipeline

– Thread 1 = Render
Frame (n)

– Thread 2 = Update
Frame (n+1)

• Threading potential

– Good for GPU bound games

– Difficult to implement due to
dependencies, but not impossible

7

Multithreading Implementation
• API / Library

– Win32* threading API

– P-threads

• Programming language
– Java*

– C#

• Programming language
extension
– OpenMP™

My_thrd_func(void* params)
{
begin, end <- params
for(i=begin;i<end; i++) {

a[i] = b[i] * sqrt(c[i]);
}

}

// Win32
handle =
CreateThread(NULL,0,my_thrd_func,

param,0,NULL);
// C#
myThread = new Thread(
new ThreadStart(my_thrd_method));

// OpenMP
#pragma parallel for
for(i=0; i<max;i++){
a[i] = b[i] * sqrt(c[i]);

}

Agenda

• Hyper-Threading Technology Review

• Multithreading Challenges & Strategies for
Games

• Case Studies

– Lego/Argonaut “Bionicle”

– Codemasters/SixByNine “Colin McRae Rally 4”

• Summary

8

Case Study 2:
LEGO*/Argonaut* Bionicle*

• 3rd person Action Adventure
– Based on successful LEGO toy

franchise
– Play as Toa in struggle of good

vs. evil in the world of Mata Nui

*Other names and brands may be claimed as the property of others

Thread System
• Problem: Need a Threading system

that is easy to use, object oriented
and cross platform

• Solution: Roll our own Thread
classes and message passing model.
– Pros: Max flexibility, full control,

and platform indep.
– Cons: Harder up front, less

supporting tools
• CThreadManager

– Controls lifetime
• CThread

– Wraps Win32 nitty gritty

CThread

….
Public Interface
PostMsg
ReceiveMsg

Private
Construct
Start, Stop
msg queues

CThread

CThreadManager

CreateThread
DestroyThread

9

DWORD ThreadMain(void* args)
{
Forever loop

Sleep for incoming msg
Call msg_func
Send reply msg

}

//Usage

pThread = CThreadManager->
CreateThread(msg_func_to_dowork)

…
// Wake up thread to do work
pThread.PostMessage(aMessage)
…
// Later, get results
Results = pThread.ReceiveMessage()

• Usage

• Implementation
– Win32 requires C func.

Procedural Sky

• Clouds in second thread
– Task level parallelism
– Streaming SIMD extensions

(SSE2) to do blending as well.

• Pro:
– Easy to add effect

• Con:
– Effect spread over multiple

frames, need to be careful with
resource management

Before

After

10

Background Resource Streaming

• File Read and Decompress in Second thread
– Task Level Parallelism

• Pro:
– Common code base across OS’s -> reduced code

complexity and better bug repro.
– Some additional performance gained by multi-threading

blocked-IO

• Con:
– Hard to abort File loading operations, impact on

switching streams at will

Bionicle Wrap-up

• Things that went right
– CThread and CThreadManager encapsulated multi-threading

details: synchronization, creation, destruction-> easier to use.
– Procedural sky effect easy to add
– Threading streamed IO reduces code complexity.

• Gotcha’s
– Resource persisting across frames, complicates complexity of

resource lifetime management

11

Agenda

• Hyper-Threading Technology Review

• Multithreading Challenges & Strategies for
Games

• Case Studies

– Lego/Argonaut “Bionicle”

– Codemasters/SixByNine “Colin McRae Rally 4”

• Summary

Case Study 3: Codemasters / SixByNine
- Collin McRae 4

• Product type
– Cross platform off road driving simulation.

– PC version is an enhanced port of the Xbox
released last year.

• Ma in MT
– Weather System – particle

– Procedural sky – dynamic clouds

12

Weather System

• Problem
– Snow OK on console, but weak on PC

– Existing Cross Platform 3D engine

– Flat VTune profile

• Solution
– Increase amount of particles

– Use OpenMP to increase performance

– #pragma omp ignored by compilers on none PC
platforms.

//Calculate position of particle box.
#pragma omp parallel for
for(int nParticle = 0; nParticle < nNumParticles;
nParticle++)
{

Calculate particle position.
Wrap particle position inside of box.
Calculate distance into screen.
Light and alpha fade particle.

}

// check 10% of all particles each frame
If(Box interacts with ground)
{

#pragma omp parallel for
for(int nParticle = Start; nParticle < End; nParticle++)
{

If(particle below ground)
Respawn particle

}
}

• Implementation.
– Remove global

variables from
inside loop.

– Use of Intel
compiler gave 5%
speed up on loop

– #pragma omp gave
a further 7%
speedup

13

Particle System

• 4x Increase in area effected by particles.
• 8x Increase of particle density.

Before
After

Wrap-up CMR4

• Pros
– Much nicer Snow effect possible

– Mu l t i-threading adds 7-8% speedup

• Gotcha’s
– Ensure the use of global variables is thread safe.

– Use VTune to check for 64K alias performance issues.

– Use Thread profiler to check load imbalance and
overheads.

14

Summary & Call to Action

• Thread your Game – it can be done!

• Experience & BKMs help, but be creative &
experiment!

• Start multithreading as early as possible, ideally in
code design stage

• Consider using OpenMP ™ to reduce TTM

• Save your time – Use Intel® Threading Tools to
maximize threaded performance!

	Slides
	PREVIOUS MENU
	PRINT THIS DOCUMENT
	SEARCH CD

	return:

