
Unified Telemetry
Building an infrastructure for
Big Data in Games Development

Maurizio de Pascale, Ph.D.

Technical Architect, Ubisoft Montreal

Agenda

● Intro

● Unified Telemetry Rationale and Design

● RainbowSix|Siege Telemetry

● Postmortem

● Q&A

Rainbow Six|Siege

● Competitive Multiplayer Shooter

● Next Gen Only

● Fully Destructible Environments

● Check out our RealBlast Talk on GDC16 Vault

● Heavily Multithreaded

Rainbow Six|Siege - Multiplayer

Rainbow Six|Siege - Game Server

● Dedicated Servers

● Hosted on Microsoft’s Xbox Live Cloud

● Azure (mostly)

● No Remote Debugging 

● Outside Ubisoft Internal Network

Problem

● How to profile/debug a game that:

● Runs client-side code on 10 machines

● Runs server-side code on a cloud-hosted VM

● Is a live online service

● Developed and tested by hundreds of devs

● At several locations worldwide

Old Workflow

● Instrument/Record:
● Logs

● Profile Points

● Functional Scopes

● Function Callstacks

● Memory Snapshots

● Memory Alloc/Free

● Network Replication

● Network Bandwidth

● Size of Buffers

● Particles

● Gameplay Events

● Structured Data

● Resource Activity

● and more...

Old Workflow

● Run the game locally

● Play it yourself

● Try to reproduce the issue

● Investigate

● Rinse & Repeat

Old Workflow for multiplayer

● Run multiple instances locally

● “Play” some of them

● Try to reproduce the issue

● Investigate

● Doesn’t Work for profiling and timing
related bugs 

Telemetry Powered Workflow

● Instrument/Record:
● Logs

● Profile Points

● Functional Scopes

● Function Callstacks

● Memory Snapshots

● Memory Alloc/Free

● Network Replication

● Network Bandwidth

● Size of Buffers

● Particles

● Gameplay Events

● Structured Data

● Resource Activity

● and more...

Telemetry Powered Workflow

● Always-on Recording

● Every engine/tool instance

● Every developer

● Everywhere

● Every Platform

● Automatically Collected Remotely

● Post Processed & Stored Centrally

Telemetry Uses Cases

● Performance Metrics

● Spikes Detection

● Load Time Metrics

● Startup Time Metrics

● Compile Time Metrics

● User Focus Metrics

● Centralized Logs

● Memory Tracking

● Buffers/Pools Size
Tracking

● Used Assets/Localization
Tracking

● Network Replication
Debugging

● Bandwidth/Latency
Metrics

● Editor MTBC Stats

Agenda

● Intro

● Unified Telemetry Rationale / Design

● Rainbow Six Siege Telemetry

● Postmortem

● Q&A

Definition of Telemetry

“Telemetry is the highly automated
communications process by which
measurements are made and other data
collected at remote or inaccessible
points and transmitted to receiving
equipment for monitoring.”

source: Wikipedia

Definition of Telemetry

“Telemetry is the highly automated
communications process by which
measurements are made and other data
collected at remote or inaccessible
points and transmitted to receiving
equipment for monitoring.”

source: Wikipedia

“Telemetry is the highly automated
communications process by which
measurements are made and other data
collected at remote or inaccessible
points and transmitted to receiving
equipment for monitoring.”

source: Wikipedia

Use Cases

● Stats Gathering

● Events

● State Snapshots

● Live Debugging

Current Tech

● Logging Systems (file)
● Tracing Libraries (file)
● Metrics Collection (network)
● Memory Profilers (file)
● Performance Profilers (file)
● Physics Debugger (live tool)
● Animation Debugger (live tool)

The Need for Unified Telemetry

Scattered Tools

Scattered Data

Scattered Knowledge

lo
g
g
in

g

p
e
rf

s
a
m

p
le

s

M
e
m

o
ry

s
ta

te

Non Uniform Telemetry Data

GPU
Profiler

Anim
Debugger

memory_dump.memento
log.txt

perf_capture.fap

animation data

gpu data

metrics

gameplay events

ENGINE

Multiple Processes

lo
g
g
in

g

p
e
rf

s
a
m

p
le

s

M
e
m

o
ry

s
ta

te

animation data

gpu data

metrics

gameplay events

SCIMITAR
ENGINE

e
d
ito

r
lo

g
g
in

g

RPC activity

mouse events

Usage metrics

EDITOR

Large Teams / Multisite Develop

Unified Telemetry

Unified Telemetry

1. A single pipe for all telemetry data

lo
g
g
in

g

p
e
rf

s
a
m

p
le

s

M
e
m

o
ry

s
ta

te

animation data

gpu data

metrics

gameplay events

TELEMETRY STREAM

Unified Telemetry Stream

gpu
data

anim
data

gameplay
events

memory
state

perf
samples

loggingmetricsENGINE

Unified Telemetry

1. A single pipe for all outgoing telemetry
data

2. Universal timestamping / ID

Universal Timestamp / ID

TELEMETRY STREAMX1 Y1 X2 Y2Z2Z1

TIMELINE

TELEMETRY STREAMX1 Y1 X2 Y2Z2Z1

X1

Y1

X2

Y2

Z2Z1

Stream 2

Stream 1

Unified Telemetry

1. A single pipe for all outgoing telemetry
data

2. Universal timestamping / ID

3. A scalable infrastructure to
1. Collect

2. Process (Custom)

3. Store

4. Retrieve

Live
Debugger

TELEMETRY
RECEIVER

TELEMETRY STREAM

Perf
Profiler

Memory
Profiler

Telemetry Infrastructure

Current Tech, Extended

● Logging Systems (telemetry, file)
● Tracing Libraries (telemetry, file)
● Metrics Collection (telemetry, network)
● Memory Profilers (telemetry, file)
● Performance Profilers (telemetry, file)
● Physics Debugger (telemetry, live tool)
● Animation Debugger (telemetry, live tool)

Benefits

● Simpler Tools

● Cross Domain Analysis

● Team Wide Analysis of non-stats Data

● Easier Collaboration

Agenda

● Intro

● Unified Telemetry Rationale / Design

● Rainbow Six Siege Telemetry

● Postmortem

● Q&A

Telemetry Stream

Lossless

Ordered

Stream of

Heterogeneous

Binary Encoded

Events

C++ Client

● Layered
● Engine/platform agnostic base (C++11)

● Engine/Platform integration code (PC, PS4, XB1)

● Completely Passive
● No memory allocations

● No implicit I/O

● Modular & Configurable
● Runtime Bit Mask per class of events

Telemetry Primitives

● Counter

● Value

● Constant

● GraphSettings

● Marker

● Scope

● Log

● BinaryData

● TextData

● SendFile

● Task

● Resource

● ProcessInfo

● ...

Telemetry Primitives (Scimitar)

● CPU Frame

● GPU Frame

● Engine Update

● Graphics Update

● ProfilerStreaming

● MemoryEvent

● UserInfo

● CodeDataSound

● Tainted

● ...

Telemetry Primitives (Rainbow6)

● Match

● Round

● Map

● GameMode

● GameType

● GameplayEvent

● LocalizationEvent

● ...

C++ API Usage Examples
//track destructible entities creation

TELEMETRY_HI_FREQ_COUNTER("[Engine][EntityCreate] scimitar::DestructibleComponent");

//Generate Graph data for latency

TELEMETRY_GRAPH_SETTINGS("Name=latency; Unit=ms; Color=red; Group=Network;");

TELEMETRY_VALUE("latency", sampledLatency);

//Record connected user

TELEMETRY_MARKER_FORMAT(“[Gameplay][Network] user connected {0}", username);

//Track loading time for maps

{

TELEMETRY_LOW_FREQ_SCOPE_FORMAT("[Loading] Map {0}", mapName);

FastLoadData(mapName);

}

C++ API Usage Examples
//Save profiler snapshot and collect file centrally

auto&& const filename = Profiler::GetFilename();

Profiler::SaveToDisk(filename);

TELEMETRY_SEND_FILE(filename);

//Record settings after recursive inclusion of all ini files

TELEMETRY_TEXT_DATA("IniSettings", settings.ToString());

//Send Begin/End Frame Markers

SCIMITAR_TELEMETRY_BEGIN_CPU_FRAME(frameNumber);

SCIMITAR_TELEMETRY_END_CPU_FRAME();

//Send Gameplay specific info

R6_TELEMETRY_BEGIN_ROUND(mapName);

R6_TELEMETRY_END_ROUND();

C++ Client Initialization

● Init

● Very first line in main()

● Uses provided temporary buffers

● Connect

● Called after engine has been initialized

● Establishes connection (or setup file output)

● Flushes data and switches to normal behavior

C++ Client Performance

● Queues of buffers
● 16MBs Total for RainbowSix

● Lockless access to buffers
● Uses a Read-Copy-Update strategy

● Hierarchy of TLS buffers
● When global ordering is irrelevant

● Ammortized Cost per Global Primitive:
● RDTSC + 3 CMPXCHG + REP MOV

C# Client

● A Mirror of the C++ API

● Less performance obsessed

● Pure C#

● no P/Invoke

● no managed C++

● Supports Async Data Transfer

● Uses [Conditional] to be compiled out

C# API Usage Examples
//Collect file

Telemetry.SendFile(“user.ini");

//track focus switch

Telemetry.Counter("[Anvil][Tool] Focus Switch“, +1);

//Record events

Telemetry.Marker(“[Anvil][Tool] Plugin {0} Loaded", pluginName);

//Track loading time for maps

using(Telemetry.TimingScope("[Anvil][Loading] Map {0}", mapName))

{

Scimitar.LoadWorld(mapName);

}

Network Usage

Perf
Profiler

Memory
Profiler

Live
Debugger

Scimitar

PC

PS4

PC

Adaptive Scalability

XB1

Telemetry Receiver

● Receives data fast
● to avoid buffer overruns on client

● Dispatches deserialized data to Processors

● Used as
● Local Receiver

● Global Receiver

Telemetry Processors

● Aggregate Data

● Analyze Data

● Transform/Forward Data to visualizers

● (e.g. Local Tools)

● Store Data into DB

C# Processor Examples
public class CountersStreamProcessor : TelemetryStreamProcessor
{

void OnEvent(StreamOpenEvent evnt, Guid guid) …
void OnEvent(EndOfPrologueEvent evnt, Guid guid) …
void OnEvent(StreamClosedEvent evnt, Guid guid) …
void OnEvent(ProcessInfoEvent evnt, Guid guid) …
void OnEvent(AnvilInfoEvent evnt, Guid guid) …
void OnEvent(ScimitarInfoEvent evnt, Guid guid) …
void OnEvent(EndOfProcessingEvent evnt, Guid guid) …
void OnEvent(RecordNameMappingEvent evnt, Guid guid) …
void OnEvent(CounterEvent evnt, Guid guid) …
void OnEvent(RecordSlotMappingEvent evnt, Guid guid) …
void OnEvent(HighFrequencyCountersEvent evnt, Guid guid) …
void OnEvent(BinaryDataEvent evnt, Guid guid) …
void OnEvent(TaintedDataEvent evnt, Guid guid) …

}

Scalability

● Optional Local Telemetry receiver

● Global Telemetry receivers

● Centralized NoSQL Database

Infrastructure Performance

● Local Telemetry Receiver

● Real-time processing on typical workstation under
typical load (i.e. 1 Editor, 1 Engine)

● Global Telemetry Receiver

● But more streams (500~1000 on Rainbow Six)

● Up to 30~60 minutes behind, during busy periods

● Peak on Rainbow Six: 300+ GBs / day

Hardware Spec

● Intel XEON

● E5-1650 v2 @ 3.50 Ghz

● 32/64 GB RAM

Data Visualization

● Custom Tools

● Kibana

● Tableau

● Custom Web Interface

GearStudio

Kibana

Web Interface

Centralized Data Storage

● MongoDB

● main storage, documents and files (GridFS)

● ElasticSearch

● replicated data, consumed by Kibana

Offline Support

● Just save to disk in a receiver is not
available

● e.g. XLC

● Each Receiver can load and process
offline streams

Wire Protocol

● Binary Encoded
● Memcpy, no endian-swap on x64

● Frames (MessageID, Length, Payload)
● Can skip unsupported events

● Timestamps not part of the protocol
● Even though is in almost every message type

● Supports 7bits encoding
● But we never had to use it

Agenda

● Intro

● Unified Telemetry Rationale / Design

● Rainbow Six Siege Telemetry

● Postmortem

● Q&A

Telemetry Uses Cases

● Performance Metrics

● Spikes Detection

● Load Time Metrics

● Startup Time Metrics

● Compile Time Metrics

● User Focus Metrics

● Centralized Logs

● Memory Tracking

● Buffers/Pools Size
Tracking

● Used Assets/Localization
Tracking

● Network Replication
Debugging

● Bandwidth/Latency
Metrics

● Editor MTBC Stats

Postmortem (Pro)

● Simpler Tools

● Data Cross Correlation

● More Effective Collaboration

Go get a Unified Telemetry System!

Postmortem (Fails)

● Sockets
● Lesson Learned: don’t use blocking sockets from non-background threads

● Optional Timestamp
● Lesson Learned: bandwitdh never an issue, add timestamp to protocol

● C# Server
● Lesson Learned: overspec for memory

● Servers Hardware Setup
● Lesson Learned: don’t run out of space on Mongo

Postmortem (Reccomendations)

● Know your Questions before Tracking
● Tracking is costly. Only do it if necessary

● No Tracking without Owner (not you)
● Both tracking and data rots quickly

● Having Data is good
● Having too much data is bad
● Having bad data is a dangerous

What’s Next

● Stress tested in full production cycle
● Rainbow Six Siege
● Unannounced Project

● Close the loop
● Record/Replay/Automated Testing

● Internal Network Only
● yet multisite (North America, Europe, Asia)
● Would it work on the Internet?

Special Thanks

● Ubisoft

● The R6 Team

● The R6 Tools Team

● Mark Besner

● Gabriel Langelier

● Florent Jousset

● Ouamer Dahmani

● Jean-Francois Richard

● Sebastien Lussier

● Julien Merceron

Thank You!

Questions?

maurizio.depascale@ubisoft.com

