
1

If you are unfamiliar with the skylanders franchise, it’s a fantasy action adventure game that takes players to the skylands which is a magical place suspended in the air.
Players travels through out the skylands completing quests and challenges unlocking powers and abilities for over 200 playable characters.
In Superchargers we introduced vehicle gameplay where the player can take to land sea or air interesting vehicles.
These are some concepts and screenshots to show the amount of variety we are going for.

2

If you are unfamiliar with the skylanders franchise, it’s a fantasy action adventure game that takes players to the skylands which is a magical place suspended in the air.
Players travels through out the skylands completing quests and challenges unlocking powers and abilities for over 200 playable characters.
In Superchargers we introduced vehicle gameplay where the player can take to land sea or air interesting vehicles.
These are some concepts and screenshots to show the amount of variety we are going for.

3

If you are unfamiliar with the skylanders franchise, it’s a fantasy action adventure game that takes players to the skylands which is a magical place suspended in the air.
Players travels through out the skylands completing quests and challenges unlocking powers and abilities for over 200 playable characters.
In Superchargers we introduced vehicle gameplay where the player can take to land sea or air interesting vehicles.
These are some concepts and screenshots to show the amount of variety we are going for.

4

If you are unfamiliar with the skylanders franchise, it’s a fantasy action adventure game that takes players to the skylands which is a magical place suspended in the air.
Players travels through out the skylands completing quests and challenges unlocking powers and abilities for over 200 playable characters.
In Superchargers we introduced vehicle gameplay where the player can take to land sea or air interesting vehicles.
These are some concepts and screenshots to show the amount of variety we are going for.

5

If you are unfamiliar with the skylanders franchise, it’s a fantasy action adventure game that takes players to the skylands which is a magical place suspended in the air.
Players travels through out the skylands completing quests and challenges unlocking powers and abilities for over 200 playable characters.
In Superchargers we introduced vehicle gameplay where the player can take to land sea or air interesting vehicles.
These are some concepts and screenshots to show the amount of variety we are going for.

6

If you are unfamiliar with the skylanders franchise, it’s a fantasy action adventure game that takes players to the skylands which is a magical place suspended in the air.
Players travels through out the skylands completing quests and challenges unlocking powers and abilities for over 200 playable characters.
In Superchargers we introduced vehicle gameplay where the player can take to land sea or air interesting vehicles.
These are some concepts and screenshots to show the amount of variety we are going for.

7

So why did we look into mixed resolution rendering?

8

Being in the skylands we really wanted to sell the feeling of being suspended in the air.
With the addition of air vehicles it became even more important to have interesting atmosphere to travel with in.
With these goals we started looking at cloud rendering tech, like real clouds not internet cloud….

9

After prototyping a bunch of different approaches we decided to go forward with a sprite based approach so we could have it working on 360 and ps3.
While it was capable of achieving the aesthetic we were targeting we still had to address the fill rate performance of having these overlapping sprites.

10

At this point we began our process of investigating what previous work was done in this area. Turns out there was a lot of it, there are a few of the references that we started our implementation from.
[Shopf 09] Jeremy Shopf, “Mixed Resolution Rendering”, GDC 2009http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/ShopfMixedResolutionRendering.pdf
[Jansen 11] Jon Jansen, Louis Bavoil, “Fast rendering of opacity-mapped particles using DirectX 11 tessellation and mixed resolutions”, Whitepaperhttp://developer.download.nvidia.com/assets/gamedev/files/sdk/11/OpacityMappingSDKWhitePaper.pdf
[Sloan 07] Peter-Pike Sloan, Naga K. Govindaraju, Derek Nowrouzezahrai, John Snyder, “Image-Based Proxy Accumulation for Real-Time Soft Global Illumination”, Pacific Graphics 2007http://www.ppsloan.org/publications/ProxyPG.pdf
[Cantlay 07] Iain Cantlay, “High-Speed, Off-Screen Particles”, GPU Gems 3 http://http.developer.nvidia.com/GPUGems3/gpugems3_ch23.html

11

The initial implementation of mixed resolution rendering that we used is what I’m calling a single pass.
The scene depth is downsampled then we rasterize against that lower resolution buffer
Then that low resolution render is upsampled using a bilateral upsample and then finally composited on to the scene buffer.

12

The bilateral upsample essentially takes a standard bilinear filter and augments sample weights based on the similarity of the high resolution depth with the depths associated at each low resolution sample.

13

This is the opening shot for one of our levels where the clouds act as a fog of war for the player, obscuring the path forward and hiding secrets.
As you can see there is a lot of clouds in the shot and there is a decent sense of atmosphere because of that.

14

So with the initial implementation that I described you can see in this image that we are getting some artifacts
For instance we are loosing some of the think features in this model
So why is that?

15

Well the first part of this has to do with the depth downsample. A few different methods are recommended in the various posts and papers so we decided that we would look at them to see which worked best.

16

Taking the furthest depth was the first thing that we started with, this shows what the result would be on the right hand side of the screen and what pixels would be left with low quality data on the left.
You can see that many of the depth values for the high resolution pixels are not well represented.

17

Similarly with the min depth we have a decent amount of pixels that are not represented

18

Turns out that average is actually the worst performing method, at depth discontinuities you end up creating new depth values that don’t represent any high resolution pixels well.

19

So looking back it would be great if we could combine min and max because the pixels they handled were nearly mutually exclusive.

20

Turns out the simple thing can work some times. Here we just alternate the min and the max in a checkerboard pattern, this gives the total 4x4 blocks of pixels good depth representation.

21

22

The resulting depth buffer from this turns high frequency depth discontinuities into a checkerboard pattern as you can see from the grass blades under the archway.
So with this implemented we needed a way of evaluating them. We looked a lot at just back and forth but wanted to formalize it a little more.

23

We did a quick debug visualization where we highlighted all the pixels that had low total weights as red.
We scraped this data from captures and accumulated the number of pixels that are considered to be errors into the table on the left.
As you can see the min/max method produced the fewest error pixels in this scenario.

24

Here is the final comparison between the full resolution solution on the left and the min/max half resolution on the right.

25

We investigated the upsample for quite a while but we didn’t find anything that had better performance characteristics for the quality.
We did re-structure the code a bit which saved us a few texture fetches in the upsample shader.
The basic idea is that instead of using 4 point filtered taps of the low resolution depth texture we took two linearly sampled taps between 1 and 2 and 3 and 4 respectively.
Then these samples are blended together, this lets us represent any combination of weights like the full bilateral upsample but with fewer texture fetch instructions.
So we do all of this and we check it in…. And then we get the first wave of feedback.

26

27

28

29

Turns out there were some cases where the result had some funky artifacts, when you compared it against a simple linear filtering with out the depth weights you could tell something was going on.
So why is this happening?
It has to do with the bilateral upsample and how depth similarity is computed.

30

31

Typically the depth similarity is computed by determining the difference in depth from the high resolution pixel and the low resolution pixels. That number is used along with a threshold to determine if the depth is similar. So if you pick a small threshold you end up detecting false edges.

32

Similarly if your threshold is too large you start to lose edges that are close together. Like the blades of grass in the front of this image.

33

This was due to the fact that we were using a fixed depth bias value for the bilateral weighting. The problem was that as the surface receded into the screen the number of units that a single pixel step represented increased.
We decided to have a threshold value that was based on the depth because of this.

34

We actually used the model of a plane being pushed back into the scene as our basis for determining the threshold.
As an input to this we give the angular difference of a single pixel and the slope of the plane that we want to ensure that we maintain linear blending in front of.
This turns it into a simple trig problem and you get this result.
We scale that value to compensate for the fact that when we downsample the depth value may come from up to 2 pixels away.

35

Here is the scene using the target slope threshold

36

Going back to the original example you can see that it resolved the serrated edge problem we were seeing before.

37

Here is another example of this problem before and after using the target slope threshold
You can see on the left that we are getting filtering horizontally but not vertically.

38

39

To mitigate edge aliasing we moved to a two pass approach

40

In order to benefit from the fact that we are rendering low frequency effects like clouds into the offscreen buffer we use a color buffer to detect edges as suggested in the references.
This results in fewer edges than testing depth and addresses texture and raster aliasing in the image.

41

42

43

44

45

Visualizations were still important to ensure that the artists knew how this two pass approach was adding to the cost of their scenes.

46

Because we had the vfx in a separate buffer we were able to apply an alternate thresholding to it to generate blooming vfx

47

The alpha channel in a pre-multiplied buffer is simply a mask, you can use this to inform other post effects like sun-shafts and bloom.

48

Because the single pass approach is inherently part of the two pass approach we can selectively disable the second pass entirely. This converts it back to the single pass in scenarios where we really need the perf.

49

50

Because we used dither fading in our game it was important to have a downsample that respected that. Here you can see that the min/max buffer clearly maintained the dithered nature of the tree that is fading out.

51

52

53

54

55

56

57

58

