GOC

Mixed Resolution Rendering in
Skylanders: Superchargers

Padraic Hennessy
Engineering Specialist
Vicarious Visions

GAME DEVELOPERS CONFERENCE' March 14-18, 2016 - Expo: March 16-18, 2016 #GDC16

If you are unfamiliar with the skylanders franchise, it’s a fantasy action adventure game
that takes players to the skylands which is a magical place suspended in the air.

Players travels through out the skylands completing quests and challenges unlocking
powers and abilities for over 200 playable characters.

In Superchargers we introduced vehicle gameplay where the player can take to land sea or
air interesting vehicles.

These are some concepts and screenshots to show the amount of variety we are going for.

If you are unfamiliar with the skylanders franchise, it’s a fantasy action adventure game
that takes players to the skylands which is a magical place suspended in the air.

Players travels through out the skylands completing quests and challenges unlocking
powers and abilities for over 200 playable characters.

In Superchargers we introduced vehicle gameplay where the player can take to land sea or
air interesting vehicles.

These are some concepts and screenshots to show the amount of variety we are going for.

If you are unfamiliar with the skylanders franchise, it’s a fantasy action adventure game
that takes players to the skylands which is a magical place suspended in the air.

Players travels through out the skylands completing quests and challenges unlocking
powers and abilities for over 200 playable characters.

In Superchargers we introduced vehicle gameplay where the player can take to land sea or
air interesting vehicles.

These are some concepts and screenshots to show the amount of variety we are going for.

If you are unfamiliar with the skylanders franchise, it’s a fantasy action adventure game
that takes players to the skylands which is a magical place suspended in the air.

Players travels through out the skylands completing quests and challenges unlocking
powers and abilities for over 200 playable characters.

In Superchargers we introduced vehicle gameplay where the player can take to land sea or
air interesting vehicles.

These are some concepts and screenshots to show the amount of variety we are going for.

If you are unfamiliar with the skylanders franchise, it’s a fantasy action adventure game
that takes players to the skylands which is a magical place suspended in the air.

Players travels through out the skylands completing quests and challenges unlocking
powers and abilities for over 200 playable characters.

In Superchargers we introduced vehicle gameplay where the player can take to land sea or
air interesting vehicles.

These are some concepts and screenshots to show the amount of variety we are going for.

If you are unfamiliar with the skylanders franchise, it’s a fantasy action adventure game
that takes players to the skylands which is a magical place suspended in the air.

Players travels through out the skylands completing quests and challenges unlocking
powers and abilities for over 200 playable characters.

In Superchargers we introduced vehicle gameplay where the player can take to land sea or
air interesting vehicles.

These are some concepts and screenshots to show the amount of variety we are going for.

MIXED RESOLUTION RENDERING

So why did we look into mixed resolution rendering?

Being in the skylands we really wanted to sell the feeling of being suspended in the air.

With the addition of air vehicles it became even more important to have interesting
atmosphere to travel with in.

With these goals we started looking at cloud rendering tech, like real clouds not internet
cloud....

After prototyping a bunch of different approaches we decided to go forward with a sprite
based approach so we could have it working on 360 and ps3.

While it was capable of achieving the aesthetic we were targeting we still had to address
the fill rate performance of having these overlapping sprites.

10

Previous Work

——~ [Shopfiio] Wi eV oWk, 7 AU "]
« [Jansen 11]
—~ [Sloan G/le gumm e - =~ it .

« [Cantlay 07]

At this point we began our process of investigating what previous work was done in this
area. Turns out there was a lot of it, there are a few of the references that we started our
implementation from.

[Shopf 09] Jeremy Shopf, “Mixed Resolution Rendering”, GDC 2009
http://amd-dev.wpengine.netdna-
cdn.com/wordpress/media/2012/10/ShopfMixedResolutionRendering.pdf

[Jansen 11] Jon Jansen, Louis Bavoil, “Fast rendering of opacity-mapped particles using
DirectX 11 tessellation and mixed resolutions”, Whitepaper
http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/OpacityMappingSDK
WhitePaper.pdf

[Sloan Q7] Peter-Pike Sloan, Naga K. Govindaraju, Derek Nowrouzezahrai, John Snyder,
“Image-Based Proxy Accumulation for Real-Time Soft Global lllumination”, Pacific Graphics
2007

http://www.ppsloan.org/publications/ProxyPG.pdf

[Cantlay 07] lain Cantlay, “High-Speed, Off-Screen Particles”, GPU Gems 3
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch23.html

Single Pass

Depth Low Res
Scene Depth Downsample Render Bilateral Upsample Composite

The initial implementation of mixed resolution rendering that we used is what I'm calling a
single pass.

The scene depth is downsampled then we rasterize against that lower resolution buffer

Then that low resolution render is upsampled using a bilateral upsample and then finally
composited on to the scene buffer.

12

Bilateral Upsample

float4 vBilinearWeights = GetBilinearWeights (vTexCooxd) ;

float4 vSampleDepths = GetLowResolutionDepths (vTexcoord) ;
float vPixelDepth = GetHighResolutionDepth (vIexCooxrd) ;

float4 vDepthWeights = GetDepthSimilarity(vPixelDepth, vSampleDepths)

return vDepthWeights * vBilateralWeights;

The bilateral upsample essentially takes a standard bilinear filter and augments sample

weights based on the similarity of the high resolution depth with the depths associated at

each low resolution sample.

13

This is the opening shot for one of our levels where the clouds act as a fog of war for the
player, obscuring the path forward and hiding secrets.

As you can see there is a lot of clouds in the shot and there is a decent sense of
atmosphere because of that.

14

Reference |

-

So with the initial implementation that | described you can see in this image that we are
getting some artifacts

For instance we are loosing some of the think features in this model

So why is that?

15

Depth Downsample

Well the first part of this has to do with the depth downsample. A few different methods
are recommended in the various posts and papers so we decided that we would look at
them to see which worked best.

16

Taking the furthest depth was the first thing that we started with, this shows what the

result would be on the right hand side of the screen and what pixels would be left with low
quality data on the left.

You can see that many of the depth values for the high resolution pixels are not well
represented.

17

Similarly with the min depth we have a decent amount of pixels that are not represented

18

Average

Turns out that average is actually the worst performing method, at depth discontinuities
you end up creating new depth values that don’t represent any high resolution pixels well.

19

Can we get this?

So looking back it would be great if we could combine min and max because the pixels they
handled were nearly mutually exclusive.

20

Another option?

Turns out the simple thing can work some times. Here we just alternate the min and the
max in a checkerboard pattern, this gives the total 4x4 blocks of pixels good depth
representation.

21

Code reference

Texture2D SourceDepthTexture;
SamplerState PointSampler;

float main(float2 vTexcoord : TEXCOORDO, float2 vWindowPos : SV_Position) : SV_Target

from

SourceDepthTexture

NOTE: It 3 h is negat ve here

loat fMaxDepth = max4 (fDepthTaps.x, fDepthTaps.y, fDepthTaps.z, fDepthTaps.w):
loat fMinDepth = min4 (fDepthTaps.x, fDepthTaps.y, fDepthTaps.z, fDepthTaps.w):

1er a max texel

? fMaxDepth : fMinDepth:;

Min/Max in 2x2 block

The resulting depth buffer from this turns high frequency depth discontinuities into a
checkerboard pattern as you can see from the grass blades under the archway.

So with this implemented we needed a way of evaluating them. We looked a lot at just
back and forth but wanted to formalize it a little more.

23

Pixel Error Results

' Method |
bbb

Average
Closest

Farthest
Min/Max

* @ 1920x1080

We did a quick debug visualization where we highlighted all the pixels that had low total
weights as red.

We scraped this data from captures and accumulated the number of pixels that are
considered to be errors into the table on the left.

As you can see the min/max method produced the fewest error pixels in this scenario.

Min/Max

24

Reference |

e

Here is the final comparison between the full resolution solution on the left and the
min/max half resolution on the right.

25

Bilateral Upsample

We investigated the upsample for quite a while but we didn’t find anything that had better
performance characteristics for the quality.

We did re-structure the code a bit which saved us a few texture fetches in the upsample
shader.

The basic idea is that instead of using 4 point filtered taps of the low resolution depth
texture we took two linearly sampled taps between 1 and 2 and 3 and 4 respectively.

Then these samples are blended together, this lets us represent any combination of
weights like the full bilateral upsample but with fewer texture fetch instructions.

So we do all of this and we check it in.... And then we get the first wave of feedback.

26

Code reference

float4 main(float2 vTexcoord : TEXCOORDO) : SV_Target
{

float4 viWeights = GetBilinearWeights(vIexcoord, vUpperLeftCoord) * GetDepthWeights (vTexCoord):

rmalize the upper
float2 vRowTotals = vWWeights.xz + vileights.yw:;
float2 vRowOffsets = vieights.yw / vRowSums;

float4 vRowResultl = LowResColorTexture.Samplelevel (LinearSampler, vUpperLeftCoord + float2(vRowOffsets.x,) * vInvLowResTextureSize, 0);
float4 vRowResult2 = LowResColorTexture.Samplelevel (LinearSampler, vUpperLeftCoord + float2 (vRowOffsets.y,) * vInvLowResTextureSize, 0);

return

Code reference

float2 GetUpperLeftCoord(float2 vTexcoord)

return (floor(vIexCoord * vLowResTextureSize -) * vLowResTextureSize:;

float2 vFracUV = frac((vIexCoord - vUpperLeftCoord) * vLowResTextureSize):
float4 vWeights:

viWeights.x = (- vFracUv.x) +« (- vFracUv.y):

viWeights.y = vFracUV.x * (- vFracUV.y):

viWWeights.z = (- vFracUV.x) # vFracUV.y:

vWeights.w = vFracUV.x * vFracUV.y:

return viWeights;

float4 GetDepthWeights(float2 vIexCoord)
her m the
float fDepth HighResDepthTexture.SampleLevel (PointSampler, vITexcoord, 0):;

float4 vSampleDepths = LowResDepthTexture.GatherRed(PointSampler, vTexcoord,

fTolerance = CalculateDepthTolerance (fDepth);
return min(/ (fTolerance * abs(vSampleDepths - fDepth) + fEps),

) .wzxy:

28

Second Attempt Feedback

— + Sometimes results fook worse than 72—
resolution
Ie ¢ hi "

upsample?

« Is it using point sampling?

29

Linear Bilateral

Turns out there were some cases where the result had some funky artifacts, when you
compared it against a simple linear filtering with out the depth weights you could tell
something was going on.

So why is this happening?

It has to do with the bilateral upsample and how depth similarity is computed.

30

Depth Similarity

float4 GetDepthSimilarity(float fCenterDepth, float4 vSampleDepths)

{
float fScale = /| £fThreshold;

float4 vDepthDifferences = abs(vSampleDepths - fCenterDepth) ;
return min (/ (fScale * vDepthDifferences + fEpsilon),) 1

31

Small threshold

Typically the depth similarity is computed by determining the difference in depth from the
high resolution pixel and the low resolution pixels. That number is used along with a
threshold to determine if the depth is similar. So if you pick a small threshold you end up
detecting false edges.

32

Large threshold

INiE/
(R)SPITFIRE
P

&y
404

Similarly if your threshold is too large you start to lose edges that are close together. Like
the blades of grass in the front of this image.

33

This was due to the fact that we were using a fixed depth bias value for the bilateral
weighting. The problem was that as the surface receded into the screen the number of
units that a single pixel step represented increased.

We decided to have a threshold value that was based on the depth because of this.

34

Target slope threshold

005(0}7_‘) ' sin(ﬁplmw)

Sill(aplmm - gp\)

Max pixel distance in neighborhood

We actually used the model of a plane being pushed back into the scene as our basis for
determining the threshold.

As an input to this we give the angular difference of a single pixel and the slope of the
plane that we want to ensure that we maintain linear blending in front of.

This turns it into a simple trig problem and you get this result.

We scale that value to compensate for the fact that when we downsample the depth value
may come from up to 2 pixels away.

35

Target slope threshold

Here is the scene using the target slope threshold

36

Linear Bilateral w/ Target Slope

Going back to the original example you can see that it resolved the serrated edge problem
we were seeing before.

37

Here is another example of this problem before and after using the target slope threshold

You can see on the left that we are getting filtering horizontally but not vertically.

38

Third Attempt Feedback

—« Some effects stitttook bad
« Lots of aliasing

~— < Transparent models are even worse

39

Scene Depth +
Depth Downsample +
Low Resolution Pass Edge Aware Partial Upsample Second Pass

To mitigate edge aliasing we moved to a two pass approach

Two Pass

Composite

40

Edge Detection
— Depth = = N L ewCOIOR: 7 6y * 5

+ Guarantee that all depth + Detects texture aliasing
discontinuities are caught

In order to benefit from the fact that we are rendering low frequency effects like clouds
into the offscreen buffer we use a color buffer to detect edges as suggested in the

references.

This results in fewer edges than testing depth and addresses texture and raster aliasing in
the image.

41

Partial upsample

— IS Passgae B _eW STl ' A O AanrYT ™
« clip where there are edges

) o

2"d Pass
« Configure hi-stencil
« Draw fullscreen quad to reload hi-stencil

42

Fourth attempt feedback

 Does it still save us time?

43

RESULTS

44

360 Timing
| Pass | Mixed | Full |

Downsample 0.2
Low Res Pass 1.8

Edge Detect 0.3

Upsample 1.0

Hi-S Reload 0.2
High Res Pass 1.6
Total 4.9

Visualizations

Visualizations were still important to ensure that the artists knew how this two pass
approach was adding to the cost of their scenes.

46

Happy accidents

Bloom for VFX

Because we had the vfx in a separate buffer we were able to apply an alternate
thresholding to it to generate blooming vfx

47

Happy accidents

The alpha channel in a pre-multiplied buffer is simply a mask, you can use this to inform
other post effects like sun-shafts and bloom.

48

Happy accidents

... - i

Performance scaling

Because the single pass approach is inherently part of the two pass approach we can
selectively disable the second pass entirely. This converts it back to the single pass in
scenarios where we really need the perf.

49

Happy accidents

Dither Handling

50

Happy accidents

Refarenes | Reference
Dither Handling

Because we used dither fading in our game it was important to have a downsample that
respected that. Here you can see that the min/max buffer clearly maintained the dithered

nature of the tree that is fading out.

51

PROS & CONS

52

Pros & Cons

Pros: e AV K el .
« Helps with our content
« Offscreen target is useful
« Allowed performance scaling

Cons:

« Pre-multiplied render target, limited blend modes
« Reliance on high stencil

« Worst case scenario is more expensive

- High overhead

53

Which to use?

Single Pass

+ Less complex
+ Less draw calls
- Aliasing

Good for: Low frequency effects

Two Pass

+ Only render what is needed at full

- 2 x draw calls

- More intermediate render targets
- Reliant on hi-stencil or hi-z

- More overhead

Good for: General transparency with some
large high fill rate effects

54

One more option

—PerEffect — S S ST =T LSS O

« Upsample only effects that need it.
« Interleave with regular draw calls.

+ Less overhead in common case

+ Submit draw calls once

- Potentially more overhead in worst case

- Lots of render target switching in worst case

Good for: Infrequent use of low frequency effects.

55

Per Effect Optimizations

.+ Reuse downsampled depth

« Clear sub-rectangles
— Partial resolve if applicable

Compute upsample weights once

— Store the 2 sample offsets and blend weight in
R10G10B10

— Point sample weight buffer when upsampling
Use depth bounds during upsample

56

Future Work
— s+ Improve target slopetaresnold™— .97 ©

« Better blend mode support

— s Increased depthvariance

« Implement per-effect
« Improved edge detection
 Cheaper upsample w/ two pass

57

QUESTIONS?

58

