
Running Live:
Many Games
for a Long Time

ChangKyu Song

Head of Live Infra Technology, Nexon

Who am I?

ChangKyu Song
Head of Live Infra Technology Department, Nexon

• 1999, developed HanStar, a Korean Localization Utility for Starcraft

• 1999, Gabriel Knight 3 Korean Localization

• 2001, Worms World Party Korean Localization

• 2002, Crazy Arcade BnB (Arcade) Programmer

• 2002-2003, Dizzy Pang (Puzzle Arcade) Lead Programmer

• 2004-2006, Big Shot (2D Shooter) Lead Programmer

• 2006-2010, Bubble Fighter (Third-person Shooter) Lead Programmer

• 2010-2011, Mabinogi 2 (3D MMORPG) Programmer

• 2011-2014, Dungeon & Fighter (2D Action MORPG) Technical Director

• 2014-, Head of Live Infra Technology Department, Nexon

About Nexon
• A Korean Publisher

Running many games for a long time

About Nexon
• A Korean Publisher

Running many games for a long time

• >30 PC titles

• Dungeon & Fighter, Maple Story,
Bubble Fighter, ..

About Nexon
• A Korean Publisher

Running many games for a long time

• >30 PC titles

• Dungeon & Fighter, Maple Story,
Bubble Fighter, ..

• >20 mobile games

• DomiNations, HIT, Legacy Quest ..

About Nexon

• 2015’s full year revenue:

$1.67 billion
(190.3 billion yen)

Table of Contents

• Fighting against Legacy - Running game for a Long Time
• Focusing on hotspot by change analysis

• Establishing Integration Process during live stage

• Mitigating Common Technical Risk of Many Games

• Conclusion

Fighting against Legacy –
Running game for a Long Time

Finding hotspot in source code by change analysis

Working on Dungeon & Fighter
• Joined and worked as Global Development Lead and Technical Director in 2011

• One of most successful game in Nexon
(*Neople is a subsidiary company of Nexon)

• Launched On Aug 2005 (10 years old)

• More than 3 million concurrent users in China

• More than $1.0 billion revenue in 2015

• Still one of most top-grossing MMOs in 2016

When running live service for a long time,

Code size grows, team doesn’t scale

Time

Size

Code Size

Team Size
Launch

Successive Launch
(market expansion) Gap grows

Source code after 6 years

2282 .cpp files
2935 .h files
5855 classes

Game grew too big

• As in 2014 (After 9 years of service):
• >2,000 skills

• >4,500 quests

• >10,000 C++ source files

• >50,000 equipment items

• >200,000 animations

• >5,000,000 lines of code

• >10,000,000 images

• The biggest and fastest-paced project ever experienced

Needed to pay off Technical Debt

• Dev team was suffering from technical debt
• Adding very small content was very costly

• Needed to pay off technical debt

Finding the realistic, efficient way

• >10,000 source code files

• Most code smelled bad

• Rather than understanding gigantic size of code
and improving hand by hand

• Decided to take advantage of automation

Doing some Automation

• Introduced Build Server, Data Validation Test and Static Analysis

• Build Server, Data Validation helped a lot
• Improving notification made it much better

• Static Analysis didn’t help much
• Fixed thousands of warnings over weeks with many people

• Valuable but high cost, little gain

• Need to focus on important thing/area
• Added basic things like crash reporter,

• “What is important?”

• Where is the important area? – each developer said different area

Finding what’s important for Software quality

• Separating frequently-changing area and less-frequently
changing area is important

Example case Frequently-changing area Less frequently changing area

Software Engineering Interface Implementation

STL Algorithms Data Structure

Template/Generic Logic Data Type

Game Engine / Framework / Library Library Code Logic Code

Data-driven Development Data Code

Finding hotspot: Principle of locality

• If particular source location is changed, it is likely to
change again in the near future

Analyzing change of code over time
• Not just doing static analysis which treats code as static data,

• But also tried to treat code as changing data and
analyze code changes in VCS over time

Current
data

Past
data

Future
data

changes changes

Static data

Expanded approach:

Static analysis approach:

First step: Simple Analysis

• How many files have changed and
how often has each changed?

Wrote 300 lines of python script to analyze
change of source code

First result

More readable result
Zoomed out (group by week)
& Sorted by recent change, frequency of change

Bird’s-eye view

Source files that are changing often

= Hotspots

Highly efficient when improved

For source files that change rarely
we can consider separating them from the

main project and reduce build time

Each name looks a lot like library code

WTL (Windows Template Library)
DNFSpline:
Tinyxml
EquipmentImagePack

53% decreased
(x2.1 improvment)

Before After

Applying unity build technique for the half of less-frequently-changing
code made compiling twice as fast.

Visualizing dependency graph
to check impacts of files when changed

Not good if files with big impact

change frequently

Considering about Change Impact

• Change Impact =
Change Frequency * Impact (=Reverse-dependencies including itself)

Analyzing change impact
along the time

• Average impact of
irdmonster.h: 3178

• Change of irdmonster.h caused
3178 cpp files to be required to
recompile for a week in average

• Huge side effect along the time

• Began to work on major
bottlenecks

• Popup window

• CNRDAnimation

Focusing on hotspot was quite efficient

• Large gain with low cost
• When focusing on hotspot by changes and change impacts over time

• Build time cut in half with very small effort

• Effective even without understanding the whole system or source code

Fighting against Legacy –
Running game for a Long Time

Establishing Integration Process while in live

Another important problem:

Branches were not being integrated

• Was a small company when launching

• Dev team and the industry didn’t have much experience of
launching service overseas 10 years ago

• Made separate branches for service regions and separate teams
worked on them

Overseas live dev team suffered from merge hell

Work on authenticaiton, billing, etc for China Launch

China Live Team develops China content and events

Fork main trunk source to get updated for major contents

China Live Team develops China content and events

Merge back previous China content

Merge back previous China content

China Live Team develops China content and events

Fork main trunk source to get updated for major contents

Heavy release with risk & trouble-shooting

Heavy release with risk & trouble-shooting

Launch! (First Release)

Gone too far, too late

• Cost and time to merge along the main branch for a major update
constantly increased to 4 months to work

• “I feel like launching a new game every 6 months”

• Missed golden time to integrate

• Decided to establish an integrate process
• unsustainable process, highly likely not to make the major update within 2~3 years

70 Programmers working on a single project

7 Development Teams on a Project

Domestic
Development

Server Dev

Client Dev

Contents Dev

Global
(International)

Developement

China Live Dev

Japan Live Dev

Tools & Infra

Security

Tools/Library

Growing
superfast

• >100,000 revisions

• New source comitted
every 1~2 min

• Beginning of 2011: 5,000 files

• End of 2012: 10,000 files

• End of 2013: 11,000 files

Growing superfast:

Source commit
visualization

in a single day
*gource visualization

19 official releases every month

• Korea: 4 releases / month

• Japan: 2 releases / month

• China: 2~4 releases / month

• U.S: 2 releases / month

Replacing wheels of a car while driving
Establishing integration process while live operation

Must not stop update releases with marketing plans

Long Story, Short Takeaways
• Took 2~3 years to establish integrating pipeline

• as a every 7 team’s merge/test/integrating process

• DRY - Duplication is Evil
• Do not underestimate the force of darkness and the evil

• To make large size of change / refactoring
• Can’t do big thing by self or with small number of people

• Establish Roadmap in big picture, Share Vision

• Make people talk and communicate about the long term need, and goal
• Cooperate with influential people and leaders to follow the vision and goal

• Persuade the opponent side

• Plan to Minimize Risk as much as possible

• Establish Roles and Responsibilities
• especially for parts that have overlapped responsibilities between different organizations

• Earn small-wins, Leverage them

Short Tips : 3 ways to merge in SVN

1 2 3

Short tips: with integration branch,
you can choose timing and speed to merge, integrate

Established Code Integration Process

 new process

distance of code

time

Mitigating Technical Risk

of Many Games for a long time
(in reusable, efficient way)

What Nexon is doing more

For Maintaining Success for the Long Term

Nexon’s Aged Live Games:
Games that Nexon is Running for a Long Time

Title Release date Age (as of Mar 2016)

Maple Story Apr 2003 13 yrs

Mabinogi Jun 2004 12 yrs

Atlantica Feb 2008 7 yrs

Shaiya Jun 2006 10 yrs

Vindictus Jan 2010 5 yrs

Counter Strike Online Dec 2007 9 yrs

Kart Rider Jun 2004 12 yrs

Crazy Arcade BnB Oct 2001 15 yrs

Nexus: The Kingdom of the Winds Apr 1996 20 yrs

Dungeon and Fighter Aug 2005 11 yrs

20 years!

>60 services
in different countries

Most games suffered from similar problems

• Most live teams were individually solving similar problems

• Some of the solutions were not working properly

• In 2014, Made ‘Live Infra Technology Team’
• Support 14 titles (60+ live game services)

• Create efficient solutions to solve common technical problems

• Focus to help live game services, while persuing Reusable/Scalability

• Help future titles/services launches

Important problems in running live service

• For Game as a Service, mitigating risk is crucial to maintain its success

• Kind of common risks in game services:
• Technical Risks (=Stability Issues)

• Crash often

• Memory error

• Too laggy to play

• Preventing client hacking (especially in PvPs)

• Server problems (cannot log in, unstable server)

• Other risks

• Loss of Virtual Properties (items, achievements, etc)

• Negative press

Stability Problems are important
• Stability Problems are big in online games because:

• Users will leave the game when stability problem last for days

• Users usually don’t get a choice to upgrade or rollback

• Stability unresolved = Dead Game

→ Ensuring minimum stability baseline is very important

• Major Stability Issues
• Crashes

• Memory Problems

• Lag Issues

• Unstable Server

• Hacking

How should we deal with the Risks

Recognize Define/Prioritize
• Define Problem

• Determine Severity

Find Cause Act (Fix)
• Develop/Build/Test

• Deliver/Deploy

The lesser time & cost, The better

Major Stability Issues

• Crashes

• Memory Problems

• Lag Issues

• Unstable Server

• Hacking
(not this talk’s scope)

Recognize Prioritize Find Cause Fix

Many of old PC games used manual tools

• Collecting and Analyzing data was costful

• Had to collect dump across servers

• Required a lot of manual work and time to collect and analyze

• Publisher, QA team requested crash reports if issued but not for every releases

Recognize Prioritize Find Cause Fix

Crash Reporting as a Service
• For game as a services, Crash Reporting also should be a service

• everybody should be able to crash status
not only developers, but also QA team

• How to make it more efficient and effective
to live game services?

*In mobile games, App Stores usually have developers’ console for crashes

Recognize Prioritize Find Cause Fix

Determining Severity Properly

• There’re many noises to determine severity properly
• Out of memory crashes, C Runtime Errors weren’t caught in general

• Many crashes were being occurred after pressing Exit Game button -
priorities different

• Crash count fluctuated with DAU

Recognize Prioritize Find Cause Fix

Monitoring Crashes

Is it still unstable?

• After 12 Nov update,
of crashes increased a lot

• Released 13 Nov fix patch

• Still high on 14 Nov

• Is it still unstable?

Monitoring Crashes

Is it still unstable?

• Active Users increased a lot
after 11/13 patch

Recognize Prioritize Find Cause Fix

Monitoring Crashes

Is it still unstable?

• Tried to reduce fluctuation noise
regardless of active user volume

• Crashes per session – better. still noisy

• Crashes per hour – represents very well

• Both session and time are related
but per unit time indicated stability better

Recognize Prioritize Find Cause Fix

Avoiding Boiling Frog Syndrome
Recognize Prioritize Find Cause Fix

Avoiding Boiling Frog Syndrome
Recognize Prioritize Find Cause Fix

Made a Crash Report as a Service

Recognize Prioritize Find Cause Fix

• 14 projects

• 54 crash dashboards

• Not only client

• But also
• Game Servers

• Dedicated Servers

• Middlewares

For many game services Recognize Prioritize Find Cause Fix

Made a Crash Report as a Service

Details

Recognize Prioritize Find Cause Fix

Details Recognize Prioritize Find Cause Fix

Monitoring Crashes

Adding Notification and Alarms

Automatically detects patch
and sends notificaion mail
after 2 hours

Some kind of dumps

are sent immediately

(Server dumps, from internal test)

Recognize Prioritize Find Cause Fix

Monitoring Crashes

Adding Notification and Alarms

If crash rate is increased
a lot more than usual,
it immediately sends mail
within 2 hours

Recognize Prioritize Find Cause Fix

Monitoring Crashes:

Sometimes Call Stack is not enough..

• When broken state caused crash later
• Heap Corruption

• Dangling Pointer

• If it is not reproduced, it is sometimes very hard to find cause

Recognize Prioritize Find Cause Fix

Monitoring Crashes:

Provided more detailed informations

*Type of data to collect varies for different game and countries under game policy and user agreements.

Recognize Prioritize Find Cause Fix

Screenshots give clues

*Type of data to collect varies for different game and countries under game policy and user agreements.

Recognize Prioritize Find Cause Fix

Monitoring Crashes:

Don’t require to ask player to send client log

*Type of data to collect varies for different game and countries under game policy and user agreements.

Recognize Prioritize Find Cause Fix

Jupyter connected

• Can do any other analysis just-in-time:
(powered by python & Jupyter)

• How much of RAM do crashed users have

• Check whether crashes is occurring more to specific users

Recognize Prioritize Find Cause Fix

Monitoring Crashes

Helped Live Service & Live dev team!

Helped live dev team to concentrate more
on developing game

without being distracted with live issues

Recognize Prioritize Find Cause Fix

Major Stability Issues

• Crashes

• Memory Problems

• Lag Issues

Memory Problem:

Inevitable when running game for a long time

• As contents accumulated, most games suffered out of memory problem
even with plenty of RAMs

• 32 bit process memory address space limitation: 2GB

• 2GB is not enough for many module images and resources including UI images, textures, animations and sounds

• /LARGEADDRESSAWARE helped, but an one-time opportunity
(allows process to use 3GB of user memory address)

• Especially with many of high-res textures, or many displayed characters:
• 2D animation with many frames

• MMORPG with various character costumes

• Lots of background/UI/Illustration images

Memory Problem:

Many of Crashes are because of Out of Memory
• Most game projects operating more than 5 years had plenty of out-of-memory

problems

Memory Problem:

Tracking Memory wasn’t easy for PCs

• Especially for many old games didn’t have good engine with
resource/memory tracking functionality.

• Reports based on Task Manager used to have noises
• XP Task Manager displayed “working set” which doesn’t count paged-out memories

• Size gap was big between “Private Bytes” and tracked memory size,
Needed to narrow the gap

• Using ‘_CrtSetAllocHook’ and Overriding new didn't have full coverage (e.g. DirectX, GUI middlewares, Sound library)

• Performance Counter did not represent application level memory usage, but showed memory page usage

• did not count: free & allocate again, pooling

• Couldn’t distinguish between graphics, sound or cache usages

Recognize Prioritize Find Cause Fix

Memory Problem:

Limitations Using existing Memory Profiler
• Tried Memory Validator, GlowCode, Visual Leak Detector

• Need to ‘play’ game, without running too slowly

• Client Security Solution denied access to client process, including Visual Studio
• Need to track real-server-situation with many of active users

• Many problems were not reproduced with test doll characters
e.g. realm vs. realm battle, village with many people doing many things

• Should handle large amount of allocation data to track out-of-memory situation
• Most used a lot of memory to keep result

• Used to crash because of out of memory while profiling

• Want to compare certain two points of time in detail
• To check leaks between certain two point of time (ex. between after second battle and third battle)

• Or to find cause of the drastic increase

• Want to track memory-pooled objects

Recognize Prioritize Find Cause Fix

bool LoadAnimation(..) {
...
 If (LoadImage(imageName) == false) {
 HandleError();
 return false;
 }
…
}
LoadAnimation(..)
LoadImage(..)
CreateTextureFromMemory(..)
..
HeapAlloc(..)

Profile Result Viewer (64bit .NET application)

Game Client (32bit Native Application)

Rank Call Stack Total Bytes Allocated Total Count of allocation Avg. Allocation Size

1 LoadAnimation():12 xxx,xxx,xxx x,xxx x,xxx,xxx

2 LoadBackground():23 xxx,xxx,xxx x,xxx x,xxx,xxx

3 .. xx,xxx,xxx xxx x,xxx,xxx

..

in-process
Memory Profiler Module

- hooks HeapAlloc API
- callback from Memory Pool Manager

sends
memory allocation stats

periodically via UDP

Memory Problem:

Made own Memory Profiler for DNF

Recognize Prioritize Find Cause Fix

Memory Problem:

Made own Memory Profiler for DNF
• Project-independent but in-process memory profiler

• Just one initialize call hooks win32 HeapAlloc

• Pooled object was monitored via one line of simple callback

• Sends allocation stats to aggreator/analyzer server (64-bit .NET application) via UDP periodically
(fast / no insufficient memory)

• Runtime switches to trade off performance and detail (fast)

• Usable in real environment with client security solution

• Can track external library memory usage (DirectX textures, UI middlewares, sound library, ..)

• Can diff memory blocks and its call stack between marked point

• Very useful to track untracked memory gap between performance counter and in-game memory
tracking, and various leaks as well

• Plan: Making a generic memory profiler for live games as a service ready-to-use at any time to
developers.

• Process-independent solution – reusable in many live games in many cases.

Recognize Prioritize Find Cause Fix

Major Stability Issues

• Crashes

• Memory Problems

• Memory-Lag overlapped Problem

• Lag Issues

Memory, Lag - Overlapped Problem

Memory Lag

Thrasing

Preloading
vs.

Loading.

CPU/GPU
bottlenecks

Network Lag

Memory vs. Lag trade-offs

Shorter Stage Loading Time Longer Stage Loading Time

Less Memory More Memory
Causes Out of memory even with plenty of RAM
(insufficient 32bit Address Space)
Causes Thrasing with little RAM

More in-game Loading Lag
(Can’t use background loading sometimes)

Less in-game Loading Lag

Need Preload Resources,
Need to find their reverse-dependency easily.

Recognize Prioritize Find Cause Fix

Preload manager for DNF

• Challenge: Hard to determine likely-used resources
• Didn’t have game engine or resource manager with unified resource references

• Many of resource reference was not in declarative form

• Suggested to build preload list based on actual resource usage log
• method used in Bubble Fighter

• AI/Skill-related resources were especially hard for DNF
• Some were not bound to single animation

• DNF had variety of AI/skills (> 2000 skills) which were not represented in declarative form

Recognize Prioritize Find Cause Fix

Building Preload List automatically
• Logged every player’s event in Test Server

for couple of weeks
• 77,500,000 image file loadings

• 1,400,000 skill events

Building Preload List automatically

• Performed Cluster Analysis
with variance of time, and
associated with likely-related
Skill or Map ID.

Dungeon/Map

NPC Spawns

Anim Images

Anim

Map Objects

Anim Images

Images

Character

Skill A

Anim Images

Conditional
/Combo Anim

Images

Skill B …

…

Building Preload List automatically

• A lot of noise, couldn’t cover 100% but very effective
• Preloading skill resources make players feel far more lag-less than others

because it’s related to control response time in battle

• Problems / Limitations
• Lots of noise in skill timing, because of low-

• Players with low RAM experienced thrashing
- Added automatically decided option to choose preloading

• Plan: Generic preload manager module with dashboard service
• Another General Approach for costly and hard problems

• A Burden for live dev teams to develop full system as a service and maintain

• Helpful to many live projects having memory-lag issues

Recognize Prioritize Find Cause Fix

Major Stability Issues

• Crashes

• Memory Problems

• Lag/Slowdown Issues

Lag/Slowdown issues:

Hard to recognize and define problem

• Lag/Slowdown problem is hard to define a issue because it occurs differently in
different environment

• Development Team and QA Team had a good machine with SSD
• couldn’t realize about most of loading / lag issues

• got a test machine with 1GB RAM / XP

• Hard to realize how much it is happening to every/certain kind of players

• Still many XP users
• especially in other countries like China, Vietnam, ..

• Not easy to test all the contents with every kind of machine for weekly releases

Recognize Prioritize Find Cause Fix

Limitations of Conventional FPS monitoring

• Normally monitors average FPS

• Collects FPS a single user session / game session

• Monitors FPS for all or specific contents

• Can monitor overall performance degradation for all or specific contents

• Hard to monitor FPS spikes / Frame Lag

Recognize Prioritize Find Cause Fix

Monitoring Lag/slowdown better

• FPS monitoring to collect FPS distribution per time slot

• Along with various information

• Map, Character Type

• Recent Skills

• System environments (Graphic option / Screen resolutions)

• Can monitor overall performance including laggy experiences

• Still hard to reproduce, find cause and optimize

Recognize Prioritize Find Cause Fix

Limitations in Finding Cause
using existing Performance Profiler

• Hard to use conventional profiler in game
• Client security solution denies whole access from outer process, including Visual Studio

• Many games had developer-mode profiler
• Many Had to define profile entries

• or had limitations in breaking down

• Hard to reproduce performance degradation
• Get an old system to reproduce

• Have to perform several experiments because of side effects like hard disk cache

Recognize Prioritize Find Cause Fix

JYP – Just Yet-another Profiler (actually not)

• FPS monitoring with just-in-time Sampling profiler
• embedded sampled Call Stack info with FPS monitoring

• Can find performance hotspot when needed
• When frame rate drops

• When a player experiences lag

• Not to be confused with JYP,
famous K-POP producer
(͡° ͜ʖ ͡°)

Recognize Prioritize Find Cause Fix

JYP – Challenges

• FPO (Frame pointer omission)
• Can not perform stack-walking properly with PDB

• Requires PDB to analyze properly

• Stack-walking by PDB is very slow

• Security
• PDB must be not accessible from client / publisher

• Performance
• Must not slow down gameplay

Recognize Prioritize Find Cause Fix

JYP Prototype & PoC

• FPS distribution
with various tag filters

Recognize Prioritize Find Cause Fix

JYP Prototype & PoC

• FPS distribution
with various tag filters

• When clicked histogram,
can compare call stack
hot spots

Recognize Prioritize Find Cause Fix

JYP Prototype & PoC

• Can grouped by
max frame interval as well

• Represents
laggy experiences well
and can break down
into call stacks and
find causes

Recognize Prioritize Find Cause Fix

JYP Prototype & PoC

• Can grouped by
max frame interval as well

• Represents
laggy experiences well
and can break down
into call stacks and
find causes

Call stack hotspot in lag with 50~100ms:
 GxRoot::Render (GUI)
 IndexBuffer::lock

Call stack hotspot in lag with 100~ms:
 BgLoader::Resource::waitLoad

Recognize Prioritize Find Cause Fix

Doing more to prevent risks

• Major Stability Issues

• Crashes

• Memory Problems

• Lag/Slowdown Issues

• Doing more

Doing more in Runtime, On-demand

• Often, need to put debug-log to find causes of not-reproducible problems

• Usually takes 1~2 weeks to develop, test, and deploy for average projects
running in multiple service regions

• Isn’t there a way to track state easily on-demand?

Recognize Prioritize Find Cause Fix

Live Watch technology
• Telemetry on-demand

• Not only for debugging

• But also for Data Analysis, Hacking Prevention, Service Operation

• Can retrieve variety of information that are not planned, prepared

• Doesn’t need to rebuild or redeploy
• which takes days ~ weeks to release

• Doesn’t even need to add telemetry code
• prevents log bloat

Recognize Prioritize Find Cause Fix

Live Watch technology

Players

Game Client

Publisher

Game Server

DB

DevTeam

Dashboard

PDB Server

1

2

3

4

5
6

GetMyChr()->GetSkillUseCount()

lua VM marshalling code to get the value

GetMyChr()->GetSkillUseCount()

42
42

lua VM marshalling code to get the value

Recognize Prioritize Find Cause Fix

“Blackbox” – a dashcam for a game

• Records gameplay video constantly
• only activated for developers / QA team

• Ctrl+F12 directly pops up
JIRA create-issue-window
with recent gameplay video attached

• Equipped with functionalities
• auto-login

• screenshots / edit to annotate

• enables video preview with re-encoding
(JIRA doesn’t support, had to download)

Recognize Define Find Cause Fix

“UserVoice” – hearing from user’s voice
Recognize Prioritize Find Cause Fix

“UserVoice” – hearing from user’s voice

Recognize Prioritize Find Cause Fix

Anomaly Monitoring
Recognize Prioritize Find Cause Fix

Live Data Portal – Data Analysis On-demand

• Variety of reports from live data as a service
including:

• Anomaly Reports

• User Overlap Reports

• Group Comparison

Recognize Prioritize Find Cause Fix

Bottomline

• In live services, mitigating and preventing risks are very important

• Prevent service not to stay unstable

• Making problem visible is important
In many cases, problems are not easily visible

• If you make a solution or tool,
Make a solution easy-to-use, on-demand for everyone, and
Make a solution more reusable as you find duplicated costs

• e.g. Crash Analysis, Data Analysis anytime for anyone

• Minimizing time spent to recognize prevent risk is crucial
Whatever it takes time,
we can try to break it down to reduce time spent

Thank You

innover@nexon.co.kr
https://twitter.com/_CKSong

mailto:innover@nexon.co.kr

