
Building a Low-Fragmentation
Memory System for 64-bit Games

Aaron MacDougall
Senior Systems Programmer – SCE London Studio



Background

● Old memory system ported from PlayStation®3

● Fixed sized memory pools

● Emulated VRAM



Problems

● Wasted a lot of memory

● Every pool sized for worst case

● Overhead with small allocations

● Suffered from fragmentation

● Texture streaming impractical



Memory Fragmentation

● Heap fragmented in small non-contiguous blocks

● Allocations can fail despite enough memory

● Caused by mixed allocation lifetimes

1MB 1MB 1MB 1MB 1MB 1MB 1MB 1MB

1MB 1MB 1MB 1MB

2MB



Design Goals

● Low fragmentation

● High utilisation

● Simple configuration

● Support PlayStation®4 OS and PC

● Support efficient texture streaming

● Comprehensive debugging support



Virtual Memory

● Process uses virtual addresses

● Virtual addresses mapped to 
physical addresses

● CPU looks up physical address

● Requires OS and hardware support

Virtual Physical



Benefits of Virtual Memory

● Reduced memory fragmentation

● Fragmentation is address fragmentation

● We use virtual addresses

● Virtual address space is larger than physical

● Contiguous virtual memory not contiguous in 
physical memory



Virtual Address Space

Physical Memory

944GB

8GB



Memory Pages

● Mapped in pages

● x64 supports:
● 4kB and 2MB pages

● PlayStation®4 OS uses:
● 16kB (4x4kB) and 2MB

● GPU has more sizes

Virtual Physical



Page Sizes

● 2MB pages fastest

● 16kB pages wastes less memory

● We use 64kB (4x16kB pages)

● Smallest optimal size for PlayStation®4 GPU

● Also use 16kB for special cases



Onion Bus & Garlic Bus

● CPU & GPU can access both

● But at different bandwidths

● Onion = fast CPU access

● Garlic = fast GPU access



Flexible & Direct Memory on PlayStation®4

● Same virtual address space

● Flexible

● 512MB pre-allocated by OS

● 16kB pages mapped to Onion (CPU bus)

● Direct

● 16kB or 2MB pages

● Must be allocated and mapped to Onion or Garlic (GPU bus)

● Both emulated on PC using 64kB pages



Our Memory System

● Splits up the entire virtual address space

● Physical memory mapped on demand

● Allocator modules manage their own space

● Each module specialised

● Allocator objects are the interface to the system



Allocator

class Allocator

{

public:

virtual void* Allocate(size_t size, size_t align) = 0;

virtual void Deallocate(void* pMemory) = 0;

virtual size_t GetSize(void* pMemory) { return 0; }

const char* GetName(void) const;
};



Example – GeneralAllocator
void* GeneralAllocator::Allocate(size_t size, size_t align)

{

if (SmallAllocator::Belongs(size, align))

return SmallAllocator::Allocate(size, align);

else if (m_mediumAllocator.Belongs(size, align))

return m_mediumAllocator.Allocate(size, align);

else if (LargeAllocator::Belongs(size, align))

return LargeAllocator::Allocate(size, m_mappingFlags);

else if (GiantAllocator::Belongs(size, align))

return GiantAllocator::Allocate(size, m_mappingFlags);

return nullptr;

}



“Large” 160GB “Giant” 256GB “Medium” 8GB

“Small” 512MB

Mem Tracing 1GB

Unused

Others (scratch etc.)

Bookkeeping

944GB0GB

Our Virtual Address Space



Physical Memory on PlayStation®4

● Flexible memory already allocated

● Direct memory split into 64kB pages

● Allocated and deallocated on demand

● Memory bus set when allocated

● Two free lists containing unused pages

● Onion

● Garlic



Small Allocation Module

● Majority of allocations are <= 64 bytes

● ~250,000 allocations - ~25MB

● Pack together to prevent fragmentation

● 16kB pages of same-sized allocations

● No headers



16kB Virtual Pages

UnmappedPage Free List



16kB Virtual Pages

UnmappedPage Free List

16kB Page (16 byte entries)

8 byte Free List

16 byte Free List16 byte Free List

24 byte Free List

32 byte Free List

40 byte Free List

48 byte Free List

etc.



16kB Virtual Pages

UnmappedPage Free List

16kB Page (8 byte entries)

16kB Page (8 byte entries)

16kB Page (16 byte entries)

8 byte Free List

16 byte Free List16 byte Free List

24 byte Free List

32 byte Free List

40 byte Free List

48 byte Free List

etc.



Small Allocation Module Pros & Cons

+ Tiny implementation

+ Very low wastage

+ Makes use of flexible memory

+ Fast

- Difficult to detect memory stomps



0MB 16GB

64kB

64kB

128kB

256kB

512kB

1MB

2MB

…
32MB

Large Allocation Module

● Reserves huge virtual address space (160GB)

● Each table divided into equal sized slots

● Maps and unmaps 64kB pages on demand

● Guarantees contiguous memory



Texture Streaming

● Reserve large allocation slot

● Rounded up to nearest pow 2

● Load max of smallest mip and 64kB

● Map and unmap pages on demand

● No need to copy or defrag



Large Allocation Module Pros & Cons

+ No headers

+ Simple implementation (~200 lines of code)

+ No fragmentation

- Size rounded up to page size

- Mapping and unmapping kernel calls relatively slow



Medium Allocation Modules

● Medium

● Headerless

Render Pool

System Pool

Physics Pool

2MB

2MB

2MB

2MB

2MB

2MB

2MB

0MB

8GB



Medium Allocation Module

● All other sizes go here

● Non-contiguous virtual pages

● Grows and shrinks

● Traditional doubly linked list with headers

● Unsuitable for Garlic memory
● Headers stored with data

● Pow2 free lists



Headerless Allocation Module

● Used for GPU allocations

● Small to medium allocations

● Hash table lookup



Allocator Types

● GeneralAllocator

● VramAllocator

● MappedAllocator

● GpuScratchAllocator

● FrameAllocator

● …

class Allocator

{

public:

virtual void* Allocate(

size_t size,

size_t align) = 0;

virtual void Deallocate(

void* pMemory) = 0;

virtual size_t GetSize(void* pMem);

const char* GetName(void) const;
};

…

MM_NEW(pAllocator) MyType();



GPU Scratch Allocator

● Used by renderer for per frame allocations

● Double buffered

● No need to deallocate

● Protected with atomics



GPU Scratch Allocator – Pros & Cons

+ No headers or bookkeeping

+ No fragmentation

+ Fast!

- Fixed size

- Worst-case alignment wastes space



Frame Allocator

● Frames pushed and popped

● No need to free memory

● Unique to each thread

● Useful for temp work buffers

#include <ls_common/memory/ScratchMem.h>

struct Elem
{

…
};

void ProcessElements(size_t numElements)
{

ls::ScratchMem frame;

Elem* pElements =
(Elem*)MM_ALLOC_P(

&frame,
sizeof(Elem) * numElements

);
}



Frame Allocator Pros & Cons

+ No headers or bookkeeping

+ No fragmentation

+ No synchronisation

+ Fast!

- Careful passing pointers around!



Thread Safety

• Mutexes at lowest level

• Allocator instances not protected

• Frame allocator has no locks

• Nice and simple 



Performance

● Performance not the focus
● Still important

● Mapping/unmapping slow

● No noticeable difference
● Don’t allocate much during game

● File loading is bottleneck



Clear Values

● memset to byte value

● Keep it memorable

● 0xFA – Flexible memory allocated

● 0xFF – Flexible memory free

● 0xDA – Direct memory allocated

● 0xDF – Direction memory free

● 0xA1 – Memory allocated

● 0xDE – Memory deallocated



Statistics

● Track everything possible

● Live graphs available

● Recorded by automated tests



Tracing

● ls::MemoryTracing::Lookup(0x000000D01F600000)
● Watch window function call

● Works for addresses in the middle of a block



Tracing

● Accessed using iterators
● Write to TTY

● Dump to HTML file

● Dump on:
● Demand

● Out of memory

● Leak detection



Memory Header Guards

● Free bytes in medium allocation headers

● Detect memory stomps

● Often too late

● Easy to spot 1ee7 speak in memory view 

● 0xA110C8

● 0xDE1E7E



Memory Block Sentinels

● Bypass normal allocators

● Each allocation in own page

● Unmapped pages before and after

● Crash on over/under write



Memory Protection Flags on PlayStation®4

● Allocs protected using memory protection flags

● Specified by each allocator instance

● Crash when CPU or GPU accesses wrong memory

● Prevents

● Stomps from CPU/GPU

● Unintentional read/write using slow bus

● Wasting page tables



PlayStation®4 GPU Debugging

● Keep mapping table at fixed address

● Stores bus and protection flags

● Two-stage lookup table to save space

● Renderer validates addresses before submit

● Modify shaders on load

● Check address before read/write



Summary

● Modern consoles have rich virtual memory support

● Virtual memory provides many options

● Design your memory system around your allocation patterns

● Analysis is important

● Small allocations are a good place to start

● Modularised allocators make customisation easy!

● Debug features are vital!



Thanks

● Mark Cerny

● Mike Schaadt

● Joe Milner-Moore

● Simon Hall

● Mark Lintott



Questions?

aaron_macdougall@scee.net


