
Nuts and Bolts: Modular AI from 
the Ground Up 
 
Kevin Dill 
Christopher Dragert 
Troy Humphreys 



What is Modular AI? 
● It’s a way to structure your AI Architecture 

● Applies to state machines, behavior trees, HTNs, etc. 
● Emphasises small, easily reused modules 
● Can be transformative to your development process 

● Fast prototyping, rapid iteration, increased stability 

Abstract 



The Nuts and Bolts 
1. Academic Underpinnings (Chris Dragert) 
2. Implementation Details with Code Samples (Kevin 

Dill) 
3. Shipped Example and Architecture Discussion (Troy 

Humphreys) 

Abstract 



Nuts and Bolts: Modular AI from 
the Ground Up 
 
Christopher Dragert, Ph.D. 
Ubisoft Toronto 



Modular AI 
● Software engineering has a lot to say 

about modular reuse 

● Apply these principles to 
modular AI 

Introduction 



Our Goals 
● Learn techniques to develop a suitable  

modularization for your project 
 

● Understand how to manage and reduce 
modular complexity 

Introduction 



Classifying Complexity 
● Essential complexity  
  - Complexity of the problem itself 
● Accidental complexity 
  - Problems created by us 

 
[Fred Brooks, “No Silver Bullet”, 1986] 

Complexity 



What drives Modular Complexity? 
1. The Module itself 
2. Complexity of the Interface 
3. The Integration process 

Complexity 



Module Complexity 
● Good modules do not try to do too much! 

 
● Smaller modules improve comprehension by having 

singular purpose 

Module Complexity 



Limiting Scope 
● Separate cross-cutting concerns 

● Example - Melee combat module selects a target, ranged 
module selects a target, flee module selects a target… 
 

● Solution - Remove target selection from existing modules, 
create a target selection module 

Module Complexity 



● Traditional abstraction techniques should be applied 
●  Hierarchical Approaches 
●  Subsumption and Layering 
●  Parallelism 

Control the Size 

Module Complexity 



Well-Defined Semantics 

● Your AI logic must operate in a understandable, 
well-defined fashion 
 

● Necessary for portability between games 

Module Complexity 



Semantics Example 

● What transition does your implementation take? 
● The new context must make the same choice! 

Combat 

Cover Fire 

Flee 

Hide 
Run 

flee 
flee 

? 
 

 
 

Module Complexity 



Modular Interface 

● Communicates the required context for the module 
 

● Raises the level of abstraction, reducing accidental 
complexity 

Interface Complexity 



● State machines (event-based formalisms) 
● What input events in do you need to handle? 
● What output events do you generate? 

Defining the Context 

Interface Complexity 



Interface Complexity 

Enemy Position Tracker 
Description :  Tracks the position of an enemy 
Game :  Ubisoft Open World Game  
Parameters :  <T> The type of the enemy entity 
Language :  C++ 

Input Events Output Events 
- ev_EnemySpotted(<T> enemy) 
- ev_EnemyLost(<T> enemy) 

ev_EnemyPositionChanged(<T> 
enemy) 



Interface Complexity 

Enemy Position Tracker 
Description :  Tracks the position of an enemy 
Game :  ‘Game X’ by Ubisoft 
Parameters :  <T> The type of the enemy entity 
Language :  C++ 

Input Events Output Events 
- ev_EnemySpotted(<T> enemy) 
- ev_EnemyLost(<T> enemy) 

ev_EnemyPositionChanged(<T> 
enemy) 



Interface Complexity 

Enemy Position Tracker 
Description :  Tracks the position of an enemy 
Game :  ‘Game X’ by Ubisoft 
Parameters :  <T> The type of the enemy entity 
Language :  C++ 

Input Events Output Events 
- ev_EnemySpotted(<T> enemy) 
- ev_EnemyLost(<T> enemy) 

ev_EnemyPositionChanged(<T> 
enemy) 



Interface Complexity 

Enemy Position Tracker 
Description :  Tracks the position of an enemy 
Game :  ‘Game X’ by Ubisoft 
Parameters :  <T> The type of the enemy entity 
Language :  C++ 

Input Events Output Events 
- ev_EnemySpotted(<T> enemy) 
- ev_EnemyLost(<T> enemy) 

-ev_EnemyPositionChanged 
(<T> enemy) 



● Primarily data-driven 
● What blackboard entries are read (input) and written 

(output)? 
 

● Not the full story! 
 

Behavior Tree Contexts 

Interface Complexity 



Behavior Tree Contexts 

● New behavior trees where nodes can return {success, 
failure, running} 
● What interrupts a running node? 

● Tree structure itself 
 

Interface Complexity 



Behavior Tree Interfaces 

Interface Complexity 

→ 

→ 
→ 

Check 
Conditional ∞ 

? 

→ … 

… 

Reuse? ∞ 

Reuse! 



Integration Overview 

● The essential problem is connecting inputs and 
outputs between modules 
 

● Everything else is accidental complexity! 

Integration Complexity 



Integration Complexity 

● Module connections must be derivable solely from the 
interface 
● This preserves modular encapsulation! 

 
● A consistent integration approach can be supported 

with tools 

Integration Complexity 



Module Coupling 

● Loosely-Coupled: A missing module impairs only that 
behavior 
 

● Loosely coupled modules support fast prototyping and 
rapid iteration 

 

Integration Complexity 



Module Coupling 

● Tightly-Coupled: Missing modules cause failures, 
prevent compilation, etc 
● Often caused by broken encapsulation 
● Could also be an error in abstracting modular concerns 
 

Integration Complexity 



Special Cases 
● Special case exceptions break reuse 

● Sensor: Reports every ev_newEnemySpotted event 
● Reaction: ev_newEnemySpotted causes a new enemy reaction 
● Event system adds hysteresis, caps generation of 

ev_newEnemySpotted at one per minute 
● This is a broken module encapsulation error 

Integration Complexity 



The Payoff 
● Fast Prototyping 

● Quickly modify functionality by adding and removing modules 
● Fine Tuning 

● Parameterized module instances allow for customization 
● Better Development Process 

● Reuse existing behavior, spend time innovating new behaviors 
 

Summary 



A good modular approach: 
● Uses small modules that separate concerns 
● Operates with well-defined semantics 
● Has a clear interface 
● Preserves modular encapsulation 
● Uses a loose-coupling approach 

Summary 


