
Optimizing the Graphics
Pipeline with Compute 
 
Graham Wihlidal 
Sr. Rendering Engineer, Frostbite

Hello,	my	name	is	Graham	Wihlidal,	a	senior	rendering	engineer	on	the	Frostbite	team	at	EA.	Today	I	am	talking	about	op>mizing	the	graphics	pipeline	with	compute,	or	more	specifically,	how	to	render	
triangles	fast,	by	not	rendering	so	many	triangles.

Acronyms
u Optimizations and algorithms presented are AMD GCN-centric [1][8]

VGT Vertex Grouper \ Tessellator

PA Primitive Assembly

CP Command Processor

IA Input Assembly

SE Shader Engine

CU Compute Unit

LDS Local Data Share

HTILE Hi-Z Depth Compression

GCN Graphics Core Next

SGPR Scalar General-Purpose Register

VGPR Vector General-Purpose Register

ALU Arithmetic Logic Unit

SPI Shader Processor Interpolator

To	start	things	off,	I’d	like	to	list	a	few	acronyms.	The	op>miza>ons	and	algorithms	presented	are	specific	to	AMD	GCN	hardware,	as	this	first	version	was	aimed	at	“geLng	it	right”	on	consoles	and	high	end	
AMD	PCs.	The	following	defini>ons	map	to	GCN	hardware	concepts,	and	are	used	throughout	this	presenta>on.

During	an	onsite	at	MicrosoO	with	the	Advanced	Technology	Group,	while	op>mizing	Dragon	Age:	Inquisi>on,	it	was	clear	that	our	displacement	mapping	was	performing	poorly	on	the	hardware.	Despite	
small	improvements	done	to	the	shaders	to	reduce	LDS	usage,	it	was	obvious	that	we	were	at	the	mercy	of	various	boTlenecks.	

I	began	experimen>ng	with	offloading	the	hull	shader	adap>ve	tessella>on	factor	calcula>ons	to	a	compute	shader	and	reading	the	results	back	in	the	hull	shader.	This	prototype	was	quite	successful,	and	
included	interes>ng	approaches	like	HTILE	sourced	Hi-Z	culling	of	the	triangle	patches.

libEdge

This	then	led	me	to	build	a	new	prototype	for	regular	triangle	and	patch	culling,	as	a	spiritual	successor	to	libEdge	on	PS3.	This	prototype	was	interes>ng;	some	scenes	would	be	a	win,	and	some	would	be	a	
complete	loss.	I	played	around	with	various	GCN	instruc>ons,	memory	op>miza>ons,	and	asynchronous	compute,	and	found	scenes	that	showed	a	significant	win	using	compute	based	triangle	culling.	

At	a	conference,	I	started	chaLng	with	Alex	Nankervis	and	James	Stanard	from	MicrosoO,	and	learned	they	had	been	doing	their	own	inves>ga>ons	for	this	[18].	We	did	a	lot	of	excellent	idea	sharing	back	
and	forth,	and	my	technology	definitely	improved	thanks	to	their	help.	

The	final	advancement,	was	when	I	met	MaThäus	Chajdas	at	AMD	Munich,	whom	was	also	experimen>ng	with	compute	triangle	culling,	now	>tled	GeometryFX	[20],	and	released	open	source	as	part	of	
AMD	GPUOpen.	This	sparked	a	great	collabora>on	to	push	this	technology	further…	

…	which	is	now	integrated	into	the	Frostbite	Engine,	on	the	majority	of	our	>tles	moving	forward.	

/ clock

/ clock

/ clock

Lets	break	down	peak	triangle	rate	for	our	target	plahorms,	and	prove	how	we	can	beat	it.	Both	Xbox	One	and	PlaySta>on	4	have	2	shader	engines,	where	each	can	issue	1	triangle	per	clock.	Newer	AMD	
GPUs	on	PC	have	4	shader	engines,	so	a	total	of	4	triangles	per	clock.

12 CU * 64 ALU * 2 FLOPs
1,536 ALU ops / cy

18 CU * 64 ALU * 2 FLOPs
2,304 ALU ops / cy

64 CU * 64 ALU * 2 FLOPs
8,192 ALU ops / cy

If	we	mul>ply	the	number	of	Compute	Units	(CUs)	by	the	number	of	ALUs	per	CU,	and	mul>ply	that	value	by	2	floa>ng	point	opera>ons,	since	one	CU	can	execute	64	FMA	in	one	cycle,	we	get	the	number	of	
ALU	ops	that	can	be	executed	per	cycle.	There	is	a	technical	caveat	to	men>on	with	this	math.	There	are	actually	4x	as	many	waves	running,	but	each	ALU	takes	4	clocks,	so	those	two	factors	of	4	cancel	out.

1,536 ALU ops / 2 engines
 768 ALU ops per triangle

2,304 ALU ops / 2 engines
1,017 ALU ops per triangle

8,192 ALU ops / 4 engines
2,048 ALU ops per triangle

If	we	take	the	number	of	ALU	ops	that	can	be	executed	per	cycle,	and	divide	that	by	the	number	of	available	shader	engines,	we	get	the	number	of	ALU	ops	that	can	be	executed	per	triangle.

768 ALU ops / 2 ALU per cy
= 384 instruction limit

1,017 ALU ops / 2 ALU per cy
= 508 instruction limit

2,048 ALU ops / 2 ALU per cy
= 1024 instruction limit

Finally,	if	we	divide	the	number	of	ALU	ops	per	triangle	by	the	number	of	ALU	ops	per	clock,	we	get	a	final	instruc>on	upper	limit	that	we	have	to	cull	a	triangle	with,	and	s>ll	beat	the	fixed	func>on	primi>ve	
setup	and	scan	converter.

Can anyone here cull a triangle in less than
384 instructions on Xbox One?

… I sure hope so ☺

So	the	ques>on	I	propose	to	the	audience,	is	whether	or	not	you	can	write	a	compute	shader	within	384	instruc>ons	that	can	efficiently	cull	a	triangle.	I	sure	hope	so	☺

Motivation – Death By 1000 Draws
u DirectX 12 promised millions of draws!

u Great CPU performance advancements

u Low overhead

u Power in the hands of (experienced) developers

u Console hardware is a fixed target 

u GPU still chokes on tiny draws

u Common to see 2nd half of base pass barely utilizing the GPU

u Lots of tiny details or distant objects – most are Hi-Z culled

u Still have to run mostly empty vertex wavefronts 

u More draws not necessarily a good thing

We	now	have	DirectX	12,	and	we	were	promised	millions	of	draws.	The	new	API	has	given	great	CPU	performance	advancements	through	low	overhead,	and	places	the	power	in	the	hands	of	experienced	
developers.	However,	the	GPU	s>ll	chokes	on	>ny	draws;	it	is	quite	common	to	see	the	2

nd
	half	of	the	base	pass	barely	u>lizing	the	GPU.	Typically	there	are	lots	of	>ny	details	or	distant	objects,	of	which	

most	are	Hi-Z	culled.	The	efficiency	loss	comes	from	the	GPU	s>ll	having	to	run	mostly	empty	vertex	wavefronts.	More	draws	are	not	necessarily	a	good	thing..

Motivation – Death By 1000 Draws

In	this	GPU	capture,	you	can	see	on	the	leO	that	we	start	out	alright,	but	very	quickly	on	the	right	we	end	up	spinning	on	vertex	shader	wavefronts	that	that	don’t	result	in	any	pixels.

Motivation – Primitive Rate
u Wildly optimistic to assume we get close to 2 prims per cy – Getting 0.9 prim / cy 

u If you are doing anything useful, you will be bound elsewhere in the pipeline 

u You need good balance and lucky scheduling between the VGTs and PAs 

u Depth of FIFO between VGT and PA

u Need positions of a VS back in < 4096 cy, or reduces primitive rate 

u Some games hit close to peak perf (95+% range) in shadow passes

u Usually slower regions in there due to large triangles

u Coarse raster only does 1 super-tile per clock

u Triangles with bounding rectangle larger than 32x32?

u Multi-cycle on coarse raster, reduces primitive rate

I’ve	shown	how	easy	it	can	be	to	beat	the	peak	primi>ve	rate	at	a	cursory	glance.	The	GPU	has	a	lot	more	going	on,	so	we	s>ll	have	to	profile	and	op>mize	our	culling	aggressively,	especially	bandwidth	
usage.	A	saving	grace	is	that	it	is	wildly	op>mis>c	to	expect	that	we’ll	get	2	triangles	per	clock	cycle	on	consoles,	as	the	rasterizer	is	subjected	to	other	pipeline	boTlenecks;	on	Xbox	One	I	measured	an	actual	
rate	of	0.9	triangles	per	clock	with	regular	rendering,	which	is	really	quite	healthy,	as	prim	rate	is	not	where	you	want	to	be	bound.	

In	prac>ce,	if	you	are	actually	submiLng	geometry	this	fast,	and	doing	any	useful	rendering,	then	you	will	be	bound	elsewhere	in	the	pipeline,	at	least	during	some	intervals.	Also,	you	need	good	balance	
and	lucky	scheduling	between	the	two	VGTs	and	PAs	to	get	max	rate	on	each.	For	instance,	the	same	vertex	in	two	different	waves	might	have	to	be	shaded	twice,	because	the	waves	alternate	between	PAs,	
and	the	PAs	operate	independently.	

Due	to	the	depth	of	the	FIFO	between	VGT	and	PA,	you	need	to	get	the	posi>ons	of	a	VS	back	in	less	than	4096	cycles,	coun>ng	from	the	moment	the	vertex	goes	into	the	FIFO.	This	leaves	you	with	slightly	
fewer	cycles	than	that	to	compute	your	posi>ons.	If	your	VS	takes	longer,	prim	rate	goes	down	linearly.	Some	games	hit	very	close	to	peak	perf	(in	the	95+%	range)	in	shadow	passes.	There	are	usually	some	
slower	regions	in	there	due	to	large	triangles.	The	coarse	rasterizer	only	does	1	super->le	per	clock,	so	triangles	with	a	bounding	rectangle	larger	than	32x32	will	need	to	mul>-cycle	on	the	coarse	rasterizer,	
reducing	primi>ve	rate.

Motivation – Primitive Rate
u Benchmarks that get 2 prims / cy (around 1.97) have these characteristics:

u VS reads nothing

u VS writes only SV_Position

u VS always outputs 0.0f for position - Trivially cull all primitives

u Index buffer is all 0s - Every vertex is a cache hit

u Every instance is a multiple of 64 vertices – Less likely to have unfilled VS waves

u No PS bound – No parameter cache usage

u Requires that nothing after VS causes a stall
u Parameter size <= 4 * PosSize

u Pixels drain faster than they are generated

u No scissoring occurs 

u PA can receive work faster than VS can possibly generate it
u Often see tessellation achieve peak VS primitive throughout; one SE at a time

Benchmarks	that	get	very	close	to	2	prims/clock	(around	1.97)	have	these	characteris>cs:	
	 VS	reads	nothing	
	 VS	writes	only	SV_Posi>on	
	 VS	always	outputs	0.0f	for	posi>on	-	So	every	primi>ve	is	trivially	culled	
	 Index	buffer	is	all	0's		
	 	 So	every	vertex	is	a	cache	hit.	
	 	 Cache	hits	don't	count	as	verts	for	purposes	of	peak	vertex	rate.	
	 	 That's	the	only	way	we	can	get	near	2	prims/clock	without	hiLng	2	ver>ces/clock	first.	
	 Every	instance	is	a	mul>ple	of	64	ver>ces	-	Makes	unfilled	VS	waves	less	likely	
	 No	PS	bound		-	So	no	parameter	cache	usage	

The	peak	primi>ve	rate	also	requires	that	nothing	aOer	VS	causes	a	stall.	
-	ParamSize	<=	4	*	PosSize	
-	Pixels	drain	faster	than	they	are	generated	
-	No	scissoring	occurs	

Apart	from	that,	the	PA	can	receive	work	faster	than	VS	can	possibly	generate	it.	We	oOen	see	tessella>on	achieve	peak	VS	primi>ve	throughput	-	for	one	SE	at	a	>me.

Motivation – Opportunity
u Coarse cull on CPU, refine on GPU 

u Latency between CPU and GPU prevents optimizations 

u GPGPU Submission!
u Depth-aware culling

u Tighten shadow bounds \ sample distribution shadow maps [21]

u Cull shadow casters without contribution [4]

u Cull hidden objects from color pass 

u VR late-latch culling

u CPU submits conservative frustum and GPU refines 

u Triangle and cluster culling

u Covered by this presentation

Engines	typically	do	various	methods	of	coarse	culling	on	the	CPU,	prior	to	GPU	submission.	Due	to	latency	between	CPU	and	GPU,	many	op>miza>ons	are	inappropriate,	or	It	would	mean	>ght	lock	
stepping.	The	CPU	is	a	limited	resource	on	consoles,	and	this	isn’t	a	great	use	of	a	CPU	core.	

On	PC	you	have	to	get	the	data	over	PCIE	which	would	be	prohibi>ve.	Because	of	this,	we	want	the	culling	to	happen	on	the	GPU’s	>meline,	so	the	solu>on	is	to	do	GPGPU	submission.	GPU	based	
approaches	include	depth-aware	culling,	VR	late-latch	culling,	or	triangle	and	cluster	culling,	which	is	covered	by	this	presenta>on.

Motivation – Opportunity
u Maps directly to graphics pipeline

u Offload tessellation hull shader work

u Offload entire tessellation pipeline! [16][17]

u Procedural vertex animation (wind, cloth, etc.)

u Reusing results between multiple passes & frames

u Maps indirectly to graphics pipeline
u Bounding volume generation

u Pre-skinning

u Blend shapes

u Generating GPU work from the GPU [4] [13]

u Scene and visibility determination 

u Treat your draws as data!
u Pre-build

u Cache and reuse

u Generate on GPU

Compute	shader	mesh	processing	opens	up	opportuni>es	for	more	efficiently	suppor>ng	a	variety	of	high	fidelity	features	and	improvements.	BeTer	yet,	by	reusing	post-shader	results	between	mul>ple	
passes,	and	doing	less	draw	setup	work	on	the	CPU,	there	is	increased	op>miza>on	poten>al.	

The	mantra	is	to	treat	all	your	draws	as	regular	data.	The	data	can	be	pre-built,	cached	and	reused,	and	generated	on	the	GPU.	This	approach	allows	us	increased	flexibility,	including	the	ability	to	work	
around	various	fixed	func>on	boTlenecks.

Culling Overview

I’m	going	to	start	off	by	giving	an	overview	of	the	culling	methods

Culling Overview
Scene

u Consists of:

u Collection of meshes

u Specific view

u Camera, light, etc.

Lets	first	define	some	terms	to	reduce	confusion.	A	scene	consists	of	a	collec>on	of	meshes,	displayed	from	a	specific	view

Culling Overview
Batch

u Configurable subset of meshes
in a scene 

u Meshes within a batch share
the same shader and strides
(vertex/index)

u Near 1:1 with DirectX 12 PSO

(Pipeline State Object)

Then	we	have	a	batch,	which	is	a	configurable	subset	of	meshes	in	a	scene.	

Except	on	Xbox	One,	we	require	all	meshes	in	a	batch	to	share	the	same	shader,	and	also	that	all	meshes	share	the	same	vertex	and	index	strides.	

These	requirements	are	due	to	the	way	that	GPU	driven	rendering	works	currently,	at	least	on	PC.	A	batch	here	can	be	thought	of	as	a	near	1	to	1	with	DirectX	12’s	Pipeline	State	Object	concept,	or	PSO.

Culling Overview
Mesh Section

u Represents an indexed draw
call (triangle list) 

u Has its own:

u Vertex buffer(s)

u Index buffer

u Primitive count

u Etc.

We	also	have	a	mesh	sec>on,	which	represents	an	indexed	draw	call.	A	mesh	sec>on	has	its	own	vertex	buffers,	index	buffer,	primi>ve	count,	and	other	proper>es.

Culling Overview
Work Item

u Optimal number of triangles for
processing in a wavefront

u AMD GCN has 64 threads per
wavefront

u Each culling thread processes 1
triangle

u Work item processes 256 triangles

Lastly,	we	have	a	work	item,	which	represents	a	subset	of	triangles	in	a	batch	that	will	be	processed	by	a	compute	shader	wavefront.	

The	number	of	triangles	has	been	chosen	based	on	the	underlying	hardware,	and	characteris>cs	of	the	algorithm.	AMD	GCN	has	64	threads	per	wavefront	(which	includes	both	consoles),	each	culling	
thread	processes	1	triangle,	and	each	work	item	processes	256	triangles.

Culling Overview

Batch

Work Item

Mesh Section

Batch

Mesh Section Mesh SectionMesh Section

Work Item Work Item Work Item Work Item Work Item Work Item Work Item

Multi Draw Indirect

Draw Args Draw Args Draw Args Draw Args

Culling Culling Culling Culling Culling Culling Culling Culling

Draw Call Compaction (No Zero Size Draws)

Draw Args Draw Args Draw Args

Scene

…

Here	is	a	high	level	overview	of	how	a	scene	breaks	down	into	work	items	that	first	undergo	coarse	view	culling,	and	then	surviving	clusters	undergo	triangle	culling,	with	a	variety	of	tests.	We	run	a	quick	
compac>on	pass	that	ensures	we	do	not	have	zero	size	draws	if	a	mesh	sec>on	is	en>rely	culled	(like	in	the	case	of	occlusion	or	frustum	culling).	

At	the	end	of	the	pipeline,	we	have	a	group	of	indexed	draw	arguments	that	we	can	kick	from	the	GPU	with	ExecuteIndirect	on	DirectX	12,	or	via	the	AMD_mul>_draw_indirect	extension	on	OpenGL.	

On	Xbox	One,	ExecuteIndirect	has	some	incredible	extensions	where	PSOs	can	be	switched	by	indirect	arguments,	meaning	we	can	issue	a	single	ExecuteIndirect	for	our	en>re	scene,	regardless	of	state	or	
resource	changes.

Mapping Mesh ID to MultiDraw ID
u Indirect draws no longer know the mesh section or instance they came from

u Important for loading various constants, etc.

u A DirectX 12 trick is to create a custom command signature

u Allows for parsing a custom indirect arguments buffer format

u We can store the mesh section id along with each draw argument block

u PC drivers use compute shader patching

u Xbox One has custom command processor microcode support 

u OpenGL has gl_DrawId which can be used for this
u SPI Loads StartInstanceLocation into reserved SGPR and adds to SV_InstanceID

u A fallback approach can be an instancing buffer with a step rate of 1 which maps from
instance id to draw id

Construc>ng	each	draw	argument	block	is	fairly	straight	forward,	it’s	mostly	a	maTer	of	determining	what	star>ng	index	and	count	each	block	is	responsible	for	during	rendering.	

However,	things	get	complicated	when	you	try	to	load	constants	or	other	resource	data	from	a	regular	vertex	or	pixel	shader,	unaware	that	this	culling	pass	has	occurred.	In	order	to	avoid	state	changes,	we	
have	an	instancing	buffer	that	contains	the	transforms,	colors,	etc.	per	instance,	but	in	this	case	it’s	no	longer	one	to	one	with	a	draw	call.	Essen>ally,	we	need	to	add	a	custom	32	bit	word	to	the	argument	
buffer	that	tracks	what	original	draw	index	it	is	associated	with.	

A	DirectX	12	trick	is	to	create	a	custom	command	signature.	Doing	so	allows	for	parsing	a	custom	indirect	arguments	buffer	format,	where	we	can	store	a	custom	id	packed	alongside	the	other	hardcoded	
draw	indexed	argument	values.	

On	PC,	drivers	use	compute	shader	patching,	where	the	id	is	loaded	into	a	register	for	a	shader	to	reference	per	invoca>on.	On	OpenGL,	you	can	use	gl_DrawId	for	this	purpose.	The	command	processor	
microcode	on	Xbox	One	handles	indirect	draws	without	intermediate	steps	or	patching,	which	is	extremely	op>mal.	

An	alterna>ve	would	be	to	bind	a	buffer	with	per-instance	step	rate	of	1	which	maps	from	instance	id	to	draw	id.	Depending	on	the	driver	implementa>on,	this	might	be	faster	than	the	root	constant	
approach	for	the	>me	being	while	drivers	mature.

Mapping Mesh ID to MultiDraw ID

Mesh Section Id

Draw Args

Index Count Per Instance

Instance Count

Start Index Location

Base Vertex Location

Start Instance Location

Here	you	can	see	the	appropriate	command	signature	descrip>on	to	define	the	custom	format	that’s	displayed	on	the	right.	Argument	0	defines	the	32	bit	mesh	sec>on	id,	including	the	parameter	index	
into	the	root	signature.	Argument	1	then	follows,	which	is	the	fixed	list	of	5	arguments	that	make	up	a	draw	indexed	packet.	This	mapping	will	cause	the	0

th
	word	of	your	argument	block	to	be	loaded	into	an	

SGPR	register	for	use	by	the	shader.	

On	PC,	having	a	command	signature	with	complex	commands	will	cause	ExecuteIndirect	processing	to	go	through	a	compute	shader.	However,	having	a	single	extra	word	to	represent	the	draw	id	will	remain	
on	a	fast	path	–	similar	to	AGS	Mul>DrawIndirect	or	gl_DrawId.

De-Interleaved Vertex Buffers
P0 P1 P2 P3 …

N0 N1 N2 N3 …

TC0 TC1 TC2 TC3 …

Draw Call

P0 N0 TC0 P1 N1 TC1 P2 N2 TC2 …

Draw Call

Do This!

De-Interleaved vertex buffers are optimal on GCN architectures
They also make compute processing easier!

Another	architectural	note	is	that	we	have	de-interleaved	our	vertex	buffers.	This	can	be	a	substan>al	win	on	GCN	architectures,	and	it	also	makes	the	task	of	compute	mesh	processing	much	easier.

De-Interleaved Vertex Buffers
u Helpful for minimizing state changes for compute processing

u Constant vertex position stride 

u Cleaner separation of volatile vs. non-volatile data 

u Lower memory usage overall 

u More optimal for regular GPU rendering 

u Evict cache lines as quickly as possible!

There	are	a	number	of	reasons	that	de-interleaving	your	vertex	data	is	beneficial.	In	terms	of	compute	processing	performance,	having	culling	data	like	posi>on	in	its	own	stream	away	from	other	aTributes	
like	UVs,	colors,	TSB,	etc.	means	that	we	have	an	almost	never	changing	stride.	The	only	>me	you	would	need	to	break	batching	would	be	16	bit	vs	32	bit	precision.	

Consoles	and	DirectX	12	placement	resources	can	be	spanned	across	all	the	geometry	data,	meaning	that	with	a	constant	stride,	and	some	pointer	arithme>c	to	determine	the	right	start	vertex	and	index	
loca>on	for	each	draw,	we	can	completely	avoid	binding	varying	buffers	throughout	rendering!	

In	addi>on	to	algorithmic	benefits,	de-interleaving	your	vertex	data	is	more	op>mal	for	regular	GPU	rendering	on	GCN	architectures,	so	there’s	really	no	excuse.	We	want	to	evict	cache	lines	as	quickly	as	
possible.	With	interleaved	data,	the	cache	line	needs	to	be	kept	between	the	first	and	the	last	read.	With	de-interleaved	data	and	inlined	fetch	shaders,	the	wavefront	fetches	a	cache	line,	consumes	it,	and	
it	throws	the	cache	line	away	immediately.	

An	addi>onal	benefit,	is	that	de-interleaving	delivers	faster	processing	on	the	CPU,	as	the	data	will	be	SoA	instead	of	AoS,	making	it	easier	to	process	with	SSE/AVX,	etc.,	and	the	same	advantage	applies	on	
the	GPU.	

If	you	want	to	be	the	most	op>mal	across	mobile,	AMD	and	other	IHVs,	it	is	common	to	at	least	have	mul>ple	interleaved	streams	of	mutable	vs	immutable	data,	posi>ons	in	their	own	streams	(op>onally	
with	UVs	in	the	case	of	alpha	tested	shadows),	skinning	data,	and	other	common	data	grouped	together.	

Another	advantage	of	de-interleaved	vertex	buffers	is	that	you	can	create	separate	index	buffers	per	pass.	A	depth-only	pass	(like	for	culling)	can	have	more	vertex	re-use	than	a	full	pass,	because	you	oOen	
need	to	duplicate	ver>ces	for	full	rendering	(same	posi>on	but	different	texcoord,	or	same	posi>on	but	different	normal).	

Cluster Culling

Before	geLng	into	the	per	triangle	culling,	it’s	important	to	touch	on	coarse	culling	of	triangle	clusters

Cluster Culling
u Generate triangle clusters using spatially coherent bucketing in spherical coordinates 

u Optimize each triangle cluster to be cache coherent 

u Generate optimal bounding cone of each cluster [19]

u Project normals on to the unit sphere

u Calculate minimum enclosing circle

u Diameter is the cone angle

u Center is projected back to Cartesian for cone normal 

u Store cone in 8:8:8:8 SNORM 

u Cull if dot(cone.Normal, -view) < -sin(cone.angle)

In	order	to	make	efficient	use	of	the	GPU,	we	first	do	a	coarse	GPU	culling	pass	of	our	mesh	data.	An	offline	process	par>>ons	meshes	into	256	triangle	clusters	using	a	greedy	spa>ally	and	cache	coherent	
bucke>ng	algorithm.	For	each	cluster,	we	generate	an	op>mal	bounding	cone.		

The	general	idea	is	to	project	each	triangle	normal	on	to	the	unit	sphere,	and	take	this	256	projected	normal	collec>on	and	calculate	a	minimum	enclosing	circle	against	the	phi	and	theta	pairs.	Since	the	
algorithm	is	opera>ng	on	a	difference	of	angles,	we	can	use	the	circle	diameter	as	the	cone	angle,	and	project	the	center	back	to	Cartesian	for	the	cone	normal.	

<Commence	primary	igni>on>	

4	component	8bit	SNORM	has	enough	precision	to	store	this	cone,	which	can	be	culled	on	the	GPU	by	taking	the	dot	product	of	the	cone	normal	and	a	conserva>ve	cluster-centroid	view	vector	and	
comparing	it	to	the	nega>ve	sine	cone	angle.	The	obvious	op>miza>on	is	to	store	the	cone	angle	with	the	nega>ve	sine	calculated	in	to	the	value.	

You’ll	want	to	make	an	allowance	for	rounding,	like	slightly	enlarging	the	cone	angle	to	avoid	false	rejec>on.	The	cone	normal	will	quan>ze	as	well.	Any	of	the	gbuffer	encoding	to	improve	normal	accuracy	
would	be	applicable	here,	as	long	as	they	are	not	the	ones	that	bias	depth	precision	towards	viewer	facing.

Cluster Culling
u 64 is convenient on consoles

u Opens up intrinsic optimizations

u Not optimal, as the CP bottlenecks on too many draws

u Not LDS bound  

u 256 seems to be the sweet spot

u More vertex reuse

u Fewer atomic operations 

u Larger than 256?

u 2x VGTs alternate back and forth (256 triangles)

u Vertex re-use does not survive the flip

For	determining	the	ideal	cluster	size,	I	did	a	lot	of	profiling	of	various	configura>ons.	

64	is	a	convenient	size	on	consoles,	as	this	opens	up	intrinsic	op>miza>ons.	However,	I	found	this	to	be	sub-op>mal,	as	the	CP	boTlenecks	on	too	many	draws,	and	we	were	never	bound	by	LDS	atomics.	

Based	on	profiling,	a	cluster	size	of	256	seems	to	be	the	sweet	spot.	

The	2	VGTs	flip	back	and	forth	every	256	triangles,	and	vertex	re-use	does	not	survive	the	flip,	making	a	cluster	size	of	256	a	wise	choice.	

Cluster Culling
u Coarse reject clusters of triangles [4] 

u Cull against:

u View (Bounding Cone)

u Frustum (Bounding Sphere)

u Hi-Z Depth (Screen Space Bounding Box)

u Be careful of perspective distortion! [22]

u Spheres become ellipsoids under projection

This	approach	allows	for	us	to	coarse	reject	en>re	clusters	of	triangles	prior	to	the	per	triangle	culling	pass.	Addi>onal	per	cluster	tests	include	bounding	sphere	vs	frustum,	and	tes>ng	the	bounding	
sphere’s	screen	space	bounding	box	against	a	Hi-Z	depth	pyramid.	Be	careful	that	you	account	for	perspec>ve	distor>on,	as	spheres	become	ellipsoids	under	projec>on.	

I	won’t	go	into	further	detail	on	cluster	culling,	as	it’s	covered	in	great	detail	in	the	excellent	GPU-Driven	Rendering	Pipelines	presenta>on	[4]	from	SIGGRAPH	last	year.

Draw Compaction

With	cluster	and	triangle	culling	of	draws	on	the	GPU,	it’s	extremely	important	to	remove	zero	sized	draws	from	submission.

Compaction
At 133us - Efficiency drops as we hit a string of empty draws
At 151us - 10us of idle time

The	grey	draws	in	this	GPU	capture	are	empty	draw	indirects.	At	first,	the	command	processor	(CP)	cost	is	hidden	by	in-flight	draws.	Around	133us,	the	efficiency	drops	as	we	hit	a	string	of	empty	draws.	At	
151us,	we	suffer	around	10us	of	idle	>me.	

However,	the	total	impact	is	worse	than	10us,	since	the	GPU	doesn’t	instantly	resume	100%	efficiency,	as	it	takes	>me	to	fill	the	CUs	with	waves.	Clusters	of	culled	draws	can	easily	overwhelm	the	command	
processor,	which	is	poten>ally	1.5ms	in	a	60hz	frame	(seen	in	actual	shipped	games	with	real	content).	

While	the	savings	from	GPU	culling	s>ll	exceeds	this	cost,	it	is	very	important	that	we	compact	zero	size	draws	in	order	to	get	the	biggest	gain.	Even	with	0	primi>ves,	fetching	indirect	argument	isn’t	free;	
there	is	a	memory	latency	of	~300ns.	The	CP	can	hide	a	few	of	these	in	a	row,	but	they	add	up.	Addi>onally,	the	CP	is	consuming	command	buffer	packets,	and	state	changes	aren’t	free.

Compaction

Count = Min(MaxCommandCount, pCountBuffer)

The	CPU	will	issue	the	worst	case	number	of	draws,	so	zero	size	draws	will	cause	the	GPU	to	process	indirect	args	even	if	they	have	zero	surviving	primi>ves.	The	GPU	needs	control	over	the	draw	count	and	
state	changes.	

The	ExecuteIndirect	API	in	DirectX	12	has	an	op>onal	count	buffer	and	offset,	which	the	GPU	will	use	to	clamp	the	upper	bound	of	draws	that	the	command	processor	will	unroll.	

Some	IHVs	currently	patch	this	value	with	a	compute	shader,	or	run	other	sub-op>mal	paths.	However,	the	feature	is	new,	and	widespread	use	will	encourage	IHVs	to	improve	the	drivers	in	this	area.

Compaction
u Parallel Reduction

u Keep > 0 Count Args

We can do better!

A	cross	plahorm	approach	to	draw	compac>on	is	to	do	a	parallel	reduc>on	with	atomics	in	group	shared	memory.	Each	thread	loads	the	indirect	arguments	for	a	draw	and	determines	if	the	draw	is	worth	
keeping.	A	barrier	allows	all	threads	to	complete	and	then	the	first	thread	in	a	group	allocates	output	space	for	the	surviving	draw	args.	

Another	barrier	is	performed	so	each	thread	gets	the	output	loca>on,	and	then	the	surviving	draw	args	are	wriTen	to	the	des>na>on	buffer.	In	this	example,	batchData	is	the	ExecuteIndirect	count	buffer,	
and	the	offset	is	the	loca>on	of	drawCountCompacted.	

With	GCN	intrinsics,	and	a	thread	group	size	of	64,	we	can	do	beTer!

Compaction

u Parallel prefix sum to the rescue!

0 0 0 1 2 3 3 4 4 5 5 6 7 8 8 9

The	issue	with	op>mizing	the	compac>on	is	that	each	thread	needs	to	write	in	a	con>guous	range,	so	using	the	thread	id	as	the	index	wouldn’t	give	us	this,	and	we	want	to	avoid	global	synchroniza>on	like	
the	previous	compac>on	algorithm.	

This	is	where	parallel	prefix	sum	comes	to	the	rescue!	On	the	boTom	range,	you	can	see	the	indices	we	want	computed	per	thread	in	order	for	each	ac>ve	thread	to	write	into	the	correct	con>guous	slot.

Compaction
u __XB_Ballot64

u Produce a 64 bit mask

u Each bit is an evaluated predicate per wavefront thread

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

__XB_Ballot64(threadId & 1)

The	first	thing	to	men>on	is	a	compiler	intrinsic	known	as	ballot.	Ballot	can	be	used	to	construct	a	64	bit	mask	where	each	bit	is	an	evaluated	predicate	per	wavefront	thread.	For	inac>ve	threads,	based	on	
the	execu>on	mask,	the	bit	will	be	0	for	these	threads.	

In	this	example,	you	can	see	a	predicate	that	sets	0	for	even	threads,	and	1	for	odd	threads.	

NV	has	a	32	wide	NvBallot	instruc>on	available	since	Fermi:	
hTps://www.opengl.org/registry/specs/NV/shader_thread_group.txt

Compaction

1 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

__XB_Ballot64(indexCount > 0)

&

=

Thread 5 Execution Mask
Thread 5

Population Count “popcnt” = 3

Taking	ballot	further,	we	have	this	example	showing	thread	5.	Before	thread	5,	we	have	three	other	threads	that	are	valid,	so	we	want	to	calculate	the	value	3	for	thread	5’s	output	slot.	

By	using	ballot	to	generate	a	bit	mask	of	surviving	draw	calls,	we	can	&	this	mask	against	a	thread	execu>on	mask	where	all	bits	are	0	except	for	threads	lower	than	the	current	thread.	

In	this	example,	we	can	see	the	execu>on	mask	for	thread	5,	with	only	bits	0	to	4	set.	Looking	at	the	resultant	bit	range,	one	can	see	that	a	popula>on	count	of	the	1s	will	produce	our	expected	output	slot.

Compaction
u V_MBCNT_LO_U32_B32 [5]

u Masked bit count of the lower 32 threads (0-31) 

u V_MBCNT_HI_U32_B32 [5]
u Masked bit count of the upper 32 threads (32-63) 

u For each thread, returns the # of active threads which come before it.

GCN	has	two	instruc>ons	that	can	be	paired	with	ballot	to	produce	the	correct	compac>on	results.	V_MBCNT_LO	will	produce	a	masked	bit	count	of	the	lower	32	threads,	and	V_MBCNT_HI	will	produce	a	
masked	bit	count	of	the	upper	32	threads.	

Chaining	these	instruc>ons	together	will,	for	each	thread,	count	the	#	of	ac>ve	threads	which	come	before	it,	similar	to	the	reference	implementa>on	listed	here.

Compaction

1 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1

0 0 0 1 2 3 3 4 4 5 5 6 7 8 8 9

__XB_MBCNT64(__XB_Ballot64(indexCount > 0))

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Combining	ballot	and	masked	bit	count	will	compact	our	surviving	draw	call	stream	within	a	wavefront	without	the	need	for	any	synchroniza>on	or	group	shared	memory.

Compaction
u No more barriers! 

u Atomic to sync
multiple wavefronts 

u Read lane to replicate
global slot to all
threads

The	GCN	op>mized	compac>on	shader	looks	like	this.	We	no	longer	have	any	barriers.	In	order	to	compact	across	mul>ple	wavefronts,	we	have	a	single	atomic	opera>on	per	wavefront	that	reserves	the	
output	space	for	all	the	surviving	draw	calls	across	each	wavefront.	

Instead	of	using	a	barrier	so	that	all	threads	get	globalSlot	calculated	correctly,	we	can	read	the	value	of	globalSlot	from	the	lane	that	computed	it.

Triangle Culling

I’m	now	going	to	go	over	the	per	triangle	culling	filters	performed	on	clusters	that	survive	the	ini>al	coarse	culling.

Per-Triangle Culling
u Each thread in a wavefront processes 1 triangle

u Cull masks are balloted and counted to determine compaction index

u Maintain vertex reuse across a wavefront

u Maintain vertex reuse across all wavefronts - ds_ordered_count [5][15]

u +0.1ms for ~3906 work items – use wavefront limits

As	men>oned	already,	each	thread	in	a	wavefront	processes	1	triangle.	Various	culling	opera>ons	are	applied,	and	the	surviving	triangles	across	a	wavefront	need	to	be	counted	to	determine	the	
compac>on	index,	or,	the	loca>on	in	the	resultant	index	buffer	where	the	surviving	indices	will	be	wriTen.	This	step	is	important	for	maintaining	vertex	reuse	across	a	wavefront.	

Each	wavefront	then	writes	out	the	block	of	surviving	indices	to	its	output	loca>on.	If	ordering	across	all	wavefronts	is	important,	such	as	with	translucent	or	procedural	rendering,	then	the	block	of	
surviving	indices	can	be	wriTen	out	in	wavefront	crea>on	order	using	ds_ordered_count.	I	found	that	using	ds_ordered_count	to	maintain	vertex	reuse	across	an	en>re	mesh	was	usually	not	worth	the	cost,	
as	work	items	of	256	triangles	gives	perfect	vertex	reuse.	

The	factors	contribu>ng	to	the	added	cost	are	due	to	the	way	ds_ordered_count	works	under	the	hood,	the	size	of	the	vertex	cache,	and	what	happens	to	vertex	reuse	when	you	start	to	remove	parts	of	the	
mesh.	If	using	ds_ordered_count,	you	can	op>mize	it	further	through	carefully	tuned	wavefront	limits.

Per-Triangle Culling
For Each Triangle

Unpack Index and Vertex Data (16 bit)

Orientation and Zero Area Culling (2DH)

Small Primitive Culling (NDC)

Frustum Culling (NDC)

Count Number of Surviving Indices

Compact Index Stream (Preserving Ordering)

Reserve Output Space for Surviving Indices

Write out Surviving Indices (16 bit)

Depth Culling – Hi-Z (NDC)

Perspective Divide (xyz/w) Scalar Branch (!culled)

Scalar Branch (!culled)

Scalar Branch (!culled)

__XB_GdsOrderedCount 
 (Optional)

__XB_MBCNT64

__XB_BALLOT64

This	is	an	overview	of	opera>ons	that	the	cull	shader	is	performing	on	1	triangle	per	thread	across	each	work	item.	

Triangle	data	is	unpacked,	the	various	culling	filters	are	executed,	count/compac>on/reserve	is	performed,	and	then	the	indices	are	wriTen	out	as	16	bit.	Since	compute	cannot	write	out	16	bit	types,	I	first	
zero	the	output	buffer,	use	&	1	as	a	predicate	on	the	thread	id	to	determine	low	or	high	masking,	and	use	InterlockedOr	against	the	output	loca>on.	This	cleverly	uses	the	L2	cache	as	a	write	combiner.	

Another	important	op>miza>on	to	men>on,	is	that	on	consoles,	you	can	use	branch	on	a	comparison	with	ballot	to	give	the	compiler	a	scalar	branch	uniformity	hint	in	order	to	improve	your	code	gen.	

Per-Triangle Culling

u Without ballot

u Compiler generates two tests for most if-statements

u 1) One or more threads enter the if-statement

u 2) Optimization where no threads enter the if-statement

u With ballot (or high level any/all/etc.), or if branch on scalar value (__XB_MakeUniform)

u Compiler only generates case# 2

u Skips extra control flow logic to handle divergence

u Use ballot for force uniform branching and avoid divergence

u No harm letting all threads execute the full sequence of culling tests

Without	ballot,	the	compiler	will	generate	two	tests	for	most	if	statements	-	one	is	for	the	case	where	one	or	more	threads	enter	the	if-statement,	and	the	other	is	an	op>miza>on	where	the	compiler	will	
check	to	see	if	everyone	*didn't*	enter	the	if-statement,	and	if	so	it	branches	over	the	if-statement.	

Really	it's	just	a	single	comparison	test	and	the	compiler	essen>ally	checks	to	see	if	all	lanes	had	the	same	result,	so	the	compiler	is	basically	genera>ng	a	ballot	for	you.	So	you	get	code	gen	that	looks	like	
the	top	block.	

If	you	explicitly	use	ballot	(or	any/all/etc.	which	are	high-level	versions	of	ballot),	or	if	you	branch	on	a	scalar	value	(i.e.	__XB_MakeUniform),	the	compiler	only	generates	the	single	"if	(allNotEntering)	goto	
end;"	part	and	skips	the	extra	control	flow	logic	to	handle	divergence.	

In	the	case	of	the	culling	work	loop,	I	use	ballot	to	force	uniform	branching	and	avoid	divergence	(including	the	slight	codegen	hit),	because	there's	no	harm	in	leLng	all	threads	execute	the	full	sequence	of	
culling	tests.	If	any	thread	needs	to	run	that	code,	then	all	threads	end	up	running	it	because	of	the	SIMD	being	64-wide.	

There	is	a	case	where	you	should	use	divergent	branching	-	if	any	of	the	culling	tests	involve	memory	fetches	or	LDS	ops,	it	is	worth	masking	those	out,	such	as	with	depth	Hi-Z	culling.

Orientation Culling

The	first,	and	most	important	filter,	is	orienta>on	culling.

Triangle Orientation and Zero Area (2DH)

On	average,	50%	of	a	mesh	will	be	culled	from	backface.	So	we	need	a	test	which	is	as	cheap	as	possible.	One	of	the	cheapest	tests	is	the	one	described	in	this	paper	[3],	using	the	determinant	of	a	3x3	
matrix	with	homogeneous	coordinates	[2].	This	technique	avoids	clipping	and	projec>on,	which	includes	¼	rate	reciprocal	instruc>ons	coming	from	the	perspec>ve	divide.	

Using	GCN	specific	op>miza>ons,	we	can	skip	all	the	tests	aOerwards	if	backfacing	already	removed	all	the	triangles	within	a	wavefront.	The	direc>on	of	the	determinant	test	is	based	on	whether	you	are	
culling	front	or	back	facing	triangles.	

This	par>cular	test	works	under	MSAA	or	EQAA	condi>ons,	as	the	zero	area	is	not	a	small	primi>ve	test,	but	a	degenerate	triangle	test	(which	any	decent	mesh	pipeline	should	be	removing	offline,	anyways).

Here	is	an	example	of	the	backface	determinant	test	applied	to	Solas	from	a	par>cular	view.

Locking	the	current	view,	and	then	moving	behind	him	shows	that	all	backfacing	triangles	have	been	removed,	as	expected.

Patch Orientation Culling

When	culling	tessellated	patches,	it	is	also	important	to	men>on	that	the	2DH	determinant	test	will	not	work	correctly	for	back	faces	that	displace	into	view.	These	faces	would	be	culled	pre-displacement,	
so	you	would	lose	a	contribu>ng	por>on	of	your	silhoueTe.	

For	tessellated	patches,	we	instead	do	back	face	culling	in	view	space	with	a	dot	product	bias	that	is	determined	by	the	max	displacement	amount.

Small Primitive Culling

Another	effec>ve	filter	is	small	primi>ve,	or,	culling	triangles	that	do	not	generate	pixel	coverage.

Rasterizer Efficiency

16 pixels / clock
100% Efficiency

1 pixel / clock
6.25% Efficiency

12 pixels / clock
75% Efficiency

Each	GCN	rasterizer	can	read	one	triangle	per	clock	and	produce	up	to	16	pixels	per	clock.	Because	of	this,	small	triangles	are	extremely	inefficient	to	rasterize.	

The	leO	image	produces	4	quads,	16	pixels,	at	peak	efficiency.	The	middle	image	produces	4	quads,	but	only	12	pixels	are	valid.	It	consumes	16	threads	in	the	pixel	shader	though,	due	to	helper	lanes.	Helper	
lanes	s>ll	take	>me	to	pack	and	prepare,	so	they	actually	hurt	your	pixel	rate.	Efficiency	in	the	middle	image	is	lost	due	to	par>ally	filled	quads,	as	the	GPU	shades	in	blocks	of	2x2	pixel	quads.	

The	right	image	has	become	bound	by	hiLng	primi>ve	setup	limits.

Vi

V
i

Vj

Vj

Rasterizer Efficiency

While	not	directly	related	to	culling,	this	helpful	pixel	shader	will	iden>fy	meshes	that	are	too	dense,	which	will	be	affec>ng	how	many	pixels	are	being	delivered	per	clock.	This	is	done	by	measuring	the	
number	of	helper	pixels.	Or	in	other	words,	the	number	of	covered	pixels	divided	by	the	number	of	threads	in	a	wavefront.	

MSAA	can	have	valid	pixel	threads	with	out-of-range	barycentric	coordinates,	so	switching	from	linear	center	to	linear	centroid	will	make	it	more	accurate	in	this	case.	

I	used	this	to	get	a	rough	idea	of	how	prevalent	small	triangles	were	in	our	content,	and	whether	or	not	a	small	primi>ve	filter	would	be	effec>ve.	As	a	bonus,	this	tool	can	now	be	used	by	ar>sts	to	get	a	
sense	for	how	dense	their	meshes	are	given	their	LOD	seLngs,	and	decimate	accordingly.

Small Primitive Culling (NDC)
u This triangle is not culled because it

encloses a pixel center

any(round(min) == round(max))

I	originally	started	with	a	very	exhaus>ve	fixed	point	hardware	precise	small	primi>ve	filter,	but	later	changed	it	to	the	approxima>on	you	see	here,	for	non-MSAA	targets.	

MSAA	targets	need	to	bias	the	test	by	enlarging	based	on	sample	count.	If	using	custom	programmable	sample	points,	well,	you’re	on	your	own.	For	MSAA,	we	need	to	essen>ally	determine	the	maximum	
distance	(in	subpixels)	between	the	pixel	center	and	the	outermost	subpixel	sample	and	use	this	to	influence	the	test.	

The	general	idea	is	that	you	take	a	screen	space	bounding	box	of	a	triangle,	and	snap	min	and	max	to	the	nearest	pixel	corner.	If	the	min	and	max	snap	to	either	the	same	horizontal	or	ver>cal	edge,	the	
triangle	does	not	enclose	a	pixel	center,	therefore	not	contribu>ng	pixel	coverage.	

In	this	example,	this	triangle	is	not	culled	because	it	encloses	a	pixel	center.	

	

Small Primitive Culling (NDC)
u This triangle is culled because it does not

enclose a pixel center

any(round(min) == round(max))

In	a	simple	case,	this	triangle	is	culled	because	the	min	and	max	snap	to	the	same	loca>on.

Small Primitive Culling (NDC)
u This triangle is culled because it does not

enclose a pixel center

any(round(min) == round(max))

In	a	more	complex	case,	this	triangle	is	also	culled.	The	min	and	max	snap	to	different	ver>cal	coordinates,	but	the	same	horizontal	coordinate.

Small Primitive Culling (NDC)
u This triangle is not culled because the

bounding box min and max snap to
different coordinates

u This triangle should be culled, but
accounting for this case is not worth the
cost

any(round(min) == round(max))

This	test	is	conserva>ve,	so	there	is	a	case	where	triangles	should	be	culled,	but	are	not,	as	shown	by	this	example.	The	bounding	box	min	and	max	snap	to	different	ver>cal	and	horizontal	coordinates,	yet	
the	triangle	does	not	enclose	any	pixel	centers.	Accoun>ng	for	this	case	is	not	worth	the	cost,	considering	how	cheap	this	test	is.

Here	is	an	example	of	the	small	primi>ve	test	applied	to	Solas,	standing	in	the	middle	of	the	room,	from	a	par>cular	view.

Locking	the	view,	and	moving	over	to	him	shows	quite	a	number	of	sub	pixel	triangles	that	have	been	removed	with	this	filter.

The	projector	may	not	show	the	removed	triangles	very	well,	so	hopefully	this	enlarged	version	does	a	beTer	job.	No>ce	quite	a	number	of	removed	triangles	from	the	hands,	head,	and	highly	detailed	pelt	
over	his	back.	This	extra	concentra>on	of	triangles	is	typically	due	to	importance	of	fidelity	during	close	up	cinema>c	shots	during	gameplay.

Frustum Culling

The	next	per	triangle	filter	to	cover	is	frustum	culling

Frustum Culling (NDC)

0,0

1,10,1

1,0

Max

Min

Max Min

Min.Y > 1

Max.X < 0

Min.X > 1

Max.Y < 0

Most	engines	have	whole	object	frustum	culling	on	the	CPU,	making	per	cluster	or	triangle	GPU	frustum	culling	only	effec>ve	when	these	objects	intersect	the	planes.	AOer	the	earlier	culling	filters,	we	now	
have	post-projec>on	ver>ces,	and	a	huge	budget	of	available	ALU,	so	we	do	trivial	frustum	culling	of	4	planes	in	4	cycles,	which	s>ll	does	provide	some	benefit	in	fringe	cases,	especially	for	composite	
objects	which	are	made	up	of	many	parts.	

Near	and	far	plane	culling	is	usually	not	worth	the	ALU	for	most	>tles.	Similar	to	back	face	culling,	it	is	important	to	men>on	that	tessellated	patches	also	require	some	form	of	tolerance	values,	in	order	to	
prevent	incorrect	culling	of	patches	which	tessellate	from	outside	to	inside	of	the	view.

Here	is	an	example	of	the	frustum	culling	filter.	This	is	the	current	view	with	just	frustum	culling	enabled.	We	have	an	object	which	survives	CPU	frustum	culling,	but	there	are	s>ll	quite	a	lot	of	triangles	that	
could	be	removed.

AOer	locking	the	view,	moving	backwards	shows	us	how	many	triangles	were	removed	using	this	filter.

Depth Culling

The	last	filter,	and	the	one	which	is	the	most	involved	to	implement,	is	depth	culling.

Depth Tile Culling (NDC)
u Another available culling approach is to do manual depth testing

u Perform an LDS optimized parallel reduction [9], storing out the conservative
depth value for each tile

16x16 Tiles

Another	available	triangle	culling	approach	is	to	do	manual	depth	tes>ng.	However	it	is	worth	no>ng	that	directly	reading	depth	for	cluster	or	triangle	culling	is	extremely	scene	dependent	due	to	
availability,	and	the	quality	of	occluders	at	any	given	>me.	The	general	technique	is	to	take	the	depth	buffer	and	perform	an	LDS	op>mized	parallel	reduc>on	[9],	storing	out	the	conserva>ve	depth	min	or	
max	value	for	each	>le.	

In	my	ini>al	tests,	I	ran	a	full	z	pre-pass	that	produced	a	16x16	depth	>le	grid,	which	I	then	tested	against	a	screen	space	bounding	box	of	the	triangle	or	cluster.	If	the	box	was	fully	contained	within	a	single	
>le,	I	would	do	a	fast	depth	test	and	reject	it.	This	approach,	while	fast,	would	only	remove	a	frac>on	of	triangles;	any	occluded	triangles	that	straddled	a	>le	border	wouldn’t	be	rejected.	Modifying	the	
filter	to	cull	larger	triangles	spanning	mul>ple	>les	would	be	extremely	expensive,	and	not	worth	the	cost.

Depth Tile Culling (NDC)
u ~41us on XB1 @ 1080p 

u Bypasses LDS storage 

u Bandwidth bound

u Shared with our light tile
culling

Here	is	a	variant	of	parallel	depth	reduc>on	which	uses	GCN	lane	swizzling	to	share	data,	bypassing	LDS	storage.	With	a	16	bit	ESRAM	depth	buffer	already	decompressed,	this	computa>on	runs	in	
approximately	41	microseconds	on	the	XB1	@	1080p,	and	is	completely	bandwidth	bound.	We	use	the	results	from	this	reduc>on	for	other	parts	of	our	rendering	including	light	>le	culling.

Depth Pyramid Culling (NDC)
u Another approach to depth culling is a hierarchical Z pyramid [10][11][23]

u Populate the Hi-Z pyramid after depth laydown

u Construct a mip-mapped screen resolution texture

u Culling can be done by comparing the depth of a bounding volume with the depth stored in
the Hi-Z pyramid 

int mipMapLevel = min(ceil(log2(max(longestEdge, 1.0f))), levels - 1);

Another	approach	to	depth	culling	is	a	hierarchical	Z	pyramid	[10][11],	which	starts	at	the	resolu>on	of	the	depth	buffer,	and	goes	all	the	way	to	a	single	pixel.	The	first	level	of	the	pyramid	is	populated	aOer	
depth	laydown,	similar	to	the	depth	>les	method.	AOer	which,	we	populate	the	remaining	mip	levels	in	the	pyramid	through	a	custom	downsample	pass.	

Each	texel	in	mip	level	N	contains	the	min	or	max	depth	of	all	corresponding	texels	in	mip	level	N-1.	Culling	can	be	done	by	comparing	the	depth	of	a	bounding	volume’s	longest	edge	with	the	depth	stored	
in	the	Hi-Z	pyramid.	Because	the	pyramid	goes	down	to	a	single	level,	we	can	very	easily	get	a	single	mip	level	to	fetch,	instead	of	using	mul>ple	fetches	to	handle	overlapping	quads.	

This	is	the	approach	I	ended	up	using	for	depth	based	culling,	except	I	also	accelerated	it	with	HTILE.

AMD GCN HTILE
u Depth acceleration meta data called HTILE [6][7]

u Every group of 8x8 pixels has a 32bit meta data block

u Can be decoded manually in a shader and used for 1 test -> 64 pixel rejection
u Avoids slow hardware decompression or resummarize

u Avoids losing Hi-Z on later depth enabled render passes

DEPTH HTILE

GCN	has	a	depth	accelera>on	meta	data	called	HTILE	[7]	which	accelerates	regular	GPU	depth	opera>ons.	Every	8x8	group	of	pixels	has	a	corresponding	32	bit	meta	data	block.	While	this	meta	data	
accelerates	regular	GPU	depth	opera>ons,	it	can	be	decoded	manually	in	a	shader	and	used	for	early	rejec>on	of	64	pixels	with	a	single	test,	or	for	any	other	relevant	purpose.	

HTILE	is	usually	imprecise,	and	the	bounds	must	be	conserva>ve.	Addi>onally,	the	bounds	can	only	grow	un>l	you	“resummarize”,	where	every	depth	value	must	be	read	in	order	to	recompute	the	bounds.	

On	consoles,	HTILE	is	used	to	give	us	conserva>ve	depth	tes>ng	without	having	to	decompress	the	depth	buffer	for	tes>ng	in	a	shader,	or	disabling	Hi-Z	on	subsequent	depth	enabled	render	passes.	We	
have	a	decompression	compute	shader	which	binds	the	HTILE	surface	as	an	R32	UINT	texture,	manually	decodes	the	>le	informa>on,	and	produces	a	depth	texture.	

There	are	some	gotchas	with	using	HTILE,	but	manual	HTILE	decoding	or	encoding	can	be	a	big	performance	win	in	a	variety	of	scenarios.	Currently,	HTILE	is	only	directly	accessible	to	console	developers.

AMD GCN HTILE

When	compu>ng	the	first	downsampled	mip	level	of	our	Hi-Z	pyramid,	we	can	leverage	the	fact	we’ve	already	read	the	input	depth	values.	So	we	can	also	perform	full	and\or	half	res	lineariza>on	of	the	
depth	values,	and	we	can	also	write	out	half	resolu>on	HTILE	so	other	passes	like	par>cles	can	use	Hi-Z	culling	against	that	mip	level,	without	needing	to	resummarize	the	half	resolu>on	depth	buffer.	

Since	we	need	to	build	each	HTILE	meta	data	block	from	64	pixels,	we	can’t	just	use	our	already	reduced	4	to	1	min\max	values.	We	need	to	parallel	reduce	all	pixels	in	an	8x8	>le	to	produce	the	correct	min	
and	max	values	for	HTILE.		

You	could	do	a	parallel	reduc>on	in	LDS	like	all	the	cool	kids	do,	or	you	could	be	even	more	awesome	and	do	it	with	lane	swizzling.

AMD GCN HTILE DS_SWIZZLE_B32 [5]
V_READLANE_B32 [5]

Because	each	HTILE	entry	represents	an	8x8	pixel	block,	we	can	use	a	wave	wide	min	and	max	opera>on	across	64	depth	values	in	a	>le	using	lane	swizzle.	

The	DS_SWIZZLE_B32	instruc>on	swizzles	input	thread	data	based	on	an	offset	mask	and	returns,	without	reading	or	wri>ng	DS	memory	banks.	

Lane	swizzle	only	works	on	32	lanes,	not	64,	so	we	need	to	do	a	final	combine	which	merges	the	first	32	lanes	with	the	last	32	lanes.	This	is	done	with	the	read	lane	instruc>on,	allowing	us	to	grab	the	
reduced	value	from	another	lane.

AMD GCN HTILE
u Manually encode; skip the resummarize on half resolution depth!

u HTILE encodes both near and far depth for each 8x8 pixel tile.

u Stencil Enabled = 14 bit near value, and a 6 bit delta towards far plane

u Stencil Disabled = Min\Max depth encoded in 2x 14 bit UNORM pairs

Rather	than	paying	the	cost	of	a	depth	read	back	during	a	resummarize,	we	can	manually	encode	HTILE	during	the	downsample	opera>on.	

HTILE	encodes	both	near	and	far	depth	for	each	8x8	pixel	>le.	Near	is	used	for	trivial	accept,	whereas	far	is	used	for	trivial	reject;	anything	in	between	these	planes	must	do	hi-resolu>on	tes>ng.	

If	stencil	is	enabled,	we	have	a	14	bit	near	value,	and	a	6	bit	delta	towards	the	far	plane.	

If	stencil	is	not	enabled,	min	and	max	depth	is	encoded	into	two	14	bit	pairs.	The	boTom	4	bits	in	both	cases	is	zMask,	which	we	set	to	zero	for	clear.	

Our	Hi-Z	pyramid	doesn’t	need	stencil,	so	this	encoding	rou>ne	is	for	the	non	Hi-Stencil	format.

Software Z
u One problem with using depth for culling is availability

u Many engines do not have a full Z pre-pass

u Restricts asynchronous compute scheduling

u Wait for Z buffer laydown 

u You can load the Hi-Z pyramid with software Z!
u In Frostbite since Battlefield 3 [12]

u Done on the CPU for the upcoming GPU frame

u No latency  

u You can prime HTILE!
u Full Z pre-pass

u Minimal cost

One	problem	with	using	depth	for	culling	is	availability.	Many	engines	only	have	a	par>al	z	pre-pass,	or	none	at	all.	This	restricts	how	early	you	can	kick	off	asynchronous	compute	work.	You	need	to	wait	for	
Z	buffer	laydown	before	performing	the	depth	test	for	culling.	

Frostbite	has	had	a	soOware	rasterizer	for	occluders	since	BaTlefield	3	[12],	which	is	generated	on	the	CPU	for	the	upcoming	GPU	frame;	the	results	of	which	can	be	used	to	the	load	Hi-Z	pyramid	prior	to	
any	related	rendering	passes,	with	no	latency.	

In	addi>on	to	loading	the	Hi-Z	pyramid,	you	can	also	use	your	soOware	raster	to	conserva>vely	prime	your	HTILE	buffer	as	if	you	had	a	full	pre-pass!	

Without	a	soOware	rasterizer	or	a	full	Z	pre-pass,	you	can	use	a	trick	like	re-projec>ng	your	previous	depth	buffer	and	tes>ng	with	that.	

This	image	shows	Solas	behind	a	pillar,	and	the	results	of	the	CPU	rasterized	occlusion	buffer	in	the	top	leO.	Using	this	buffer,	a	Hi-Z	pyramid	was	constructed,	and	the	triangles	for	Solas	are	being	depth	
tested	against	the	appropriate	mip	level	in	this	texture.

This	image	visualizes	the	occluder	geometry	used	to	produce	the	soOware	occlusion	buffer	for	this	scene.

Locking	the	view,	and	moving	to	the	other	side	of	the	pillar,	shows	the	surviving	triangles	for	Solas,	and	what	was	rejected	by	Hi-Z	culling.

Batching and Perf

Lastly,	I’m	going	to	go	over	how	the	batching	is	structured	to	make	the	overlap	of	culling	and	rendering	efficient.

Batching
u Fixed memory budget of N buffers * 128k triangles

u 128k triangles = 384k indices = 768 KB

u 3 MB of memory usage, for up to 524288 surviving triangles in flight

128k triangles (768KB) 128k triangles (768KB) 128k triangles (768KB) 128k triangles (768KB)

Render

128k triangles (768KB) 128k triangles (768KB) 128k triangles (768KB) 128k triangles (768KB)

Render

In	order	to	efficiently	run	all	the	culling	filters	against	a	scene	and	render	the	results,	the	batching	had	to	be	carefully	architected.	The	number	of	triangles	in	a	scene	can	wildly	vary	between	game	teams	or	
even	different	views,	and	predictable	memory	usage	is	desirable.	

We	start	with	a	fixed	memory	budget	of	N	buffers	*	128k	triangles,	where	N	is	high	enough	to	get	decent	overlap	between	culling	and	render,	and	N	should	be	at	least	4.	Doing	a	dispatch,	wait,	draw,	loop	
would	be	bad,	as	that	would	cause	the	CP	to	stuTer.	We	want	to	go	a	couple	of	dispatches	ahead	of	render	to	account	for	this	efficiently.	

Assuming	16bit	unsigned	short,	384k	triangle	indices	is	786Kb	of	memory.	

4	buffers	is	approximately	3MB,	which	allows	for	up	to	half	a	million	triangles	in	flight.	By	sizing	the	buffers	this	way,	and	with	careful	scheduling,	the	data	stays	resident	in	the	L2	cache	when	the	vertex	
wavefronts	execute.

Batching

Mesh Section (20k tri)

Mesh Section (34k tri)

Mesh Section (4k tri)

Mesh Section (20k tri)

Mesh Section (70k tri)

Culling (434k triangles)

…

434k / 512k capacity

Output #0

Output #1

Output #2

Output #0

Output #1

Output #2

Render #1

Render #0

Output #3

Output #3

In	this	example,	we	have	4	buffers,	which	gives	us	a	total	surviving	triangle	capacity	of	512k.	We	have	to	calculate	output	requirements	before	culling,	in	case	all	triangles	survive.	I	thought	of	doing	a	rough	
heuris>c	against	50%	backface	culled,	but	certain	projec>ons	could	cause	problems.	

You	can	see	that	culling	is	processing	434k	triangles,	which	fits	well	within	our	512k	limit.	Render	#0	will	occur,	and	then	the	next	pass	can	reuse	the	output	buffers.	This	leads	into	a	more	complex	case…

Culling (546k triangles)

Batching

Mesh Section (20k tri)

Mesh Section (34k tri)

Mesh Section (4k tri)

Mesh Section (20k tri)

Mesh Section (70k tri)

…

546k / 512k capacity

Output #0

Output #1

Output #2

Render #0,0

Output #0

Output #1

Output #2

Render #1

Output #0

Render #0,1

Output #3

Output #3

In	this	example,	culling	is	processing	more	triangles	than	we	have	capacity	for.	When	we	determine	that	we’ve	exhausted	our	buffers,	we	can	do	a	mid-dispatch	flush	of	the	rendering.	This	will	free	up	our	
output	buffers	for	rendering	the	remaining	triangles.	

Using	triangle	lists	is	nice,	because	we	can	trivially	cut	up	a	mesh	without	concern,	as	long	as	we	maintain	ordering	for	op>mal	vertex	reuse,	or	translucent	objects.

Batching

Dispatch #0

Render #0

Dispatch #1 Dispatch #2 Dispatch #3

Render #1 Render #2 Render #3Startup Cost

u Overlapping culling and render on the graphics pipe is great

u But there is a high startup cost for dispatch #0 (no graphics to overlap)

u If only there were something we could use….

Overlapping	culling	and	render	wavefronts	on	the	graphics	pipe	is	great,	but	there	is	a	high	startup	cost	for	the	ini>al	dispatch,	when	there	is	no	graphics	work	to	overlap.	If	only	there	were	something	we	
could	use…

Batching
u Asynchronous compute to the rescue! 

u We can launch the dispatch work alongside other GPU work in the frame

u Water simulation, physics, cloth, virtual texturing, etc.

u This can slow down “Other GPU Stuff” a bit, but overall frame is faster!

u Just be careful about what you schedule culling with 

u We use wait on lightweight label operations to ensure that dispatch and
render are pipelined correctly

Dispatch #0

Render #0

Dispatch #1 Dispatch #2 Dispatch #3

Render #1 Render #2 Render #3Other GPU Stuff

Asynchronous	compute	to	the	rescue!	We	can	launch	the	dispatch	work	alongside	other	GPU	work	in	the	frame,	such	as	water	simula>on,	physics,	cloth,	virtual	texturing,	etc.	This	can	slow	down	some	of	
the	graphics	pipe	work	a	bit,	but	overall	frame	>me	is	faster.	Just	be	careful	about	“what”	you	schedule	culling	to	run	with.	

We	use	inexpensive	wait	on	label	opera>ons	to	ensure	that	dispatch	and	render	are	pipelined	correctly.	On	PC	we	aim	for	fewer	batches	at	a	larger	size	due	to	the	inability	of	DirectX12	to	issue	efficient	mid	
command	buffer	fences.	

In	general,	you	want	to	schedule	your	async	compute	to	happen	at	the	same	>me	as	low-intensity	rendering	work,	like	a	depth	prepass	or	shadows.	Use	fences	to	bracket	the	dispatches	so	they	don’t	start	
early	or	late	on	the	GPU,	and	make	sure	to	flush	the	async	compute	command	buffer	so	it	doesn’t	stall	the	GPU	wai>ng	on	the	auto-kickoff.	

AOer	that,	you	can	use	compute	shader	limit	APIs	to	restrict	the	total	number	of	thread	groups	per	CU	allowed	or	disable	some	CUs	from	either	compute	or	graphics.	

You	can	also	kick	off	async	compute	to	do	the	work	during	the	last	stages	of	post	processing	on	the	previous	frame.

Performance

443,429 triangles @ 1080p
171 unique PSOs

For	the	performance	figures,	this	is	the	test	scene	used.	There	are	quite	a	number	of	render	passes,	and	with	171	unique	PSOs,	but	we’ll	look	at	a	single	gbuffer	pass	of	450k	triangles,	rendered	at	1080p	on	
both	plahorms.	For	the	Xbox	One,	the	depth	buffer	and	a	few	of	the	gbuffer	color	targets	are	in	ESRAM,	with	everything	else	in	DRAM.

Performance

Filter Exclusively Culled Inclusively Culled

Orientation 46% 204,006 46% 204,006

Depth* 42% 187,537 20% 90,251

Small* 30% 128,705 8% 37,606

Frustum* 8% 35,182 4% 16,162

* Scene Dependent

Processed 100% 443,429

Culled 78% 348,025

Rendered 22% 95,404

Aside	from	orienta>on	culling,	the	other	filters	are	very	scene	dependent.	If	you	have	a	lot	of	dense	meshes,	the	small	primi>ve	filter	can	be	very	effec>ve,	especially	in	the	case	of	dense	shadow	maps.	If	
you	have	aggressive	view	culling	on	the	CPU,	or	in	the	coarse	cluster	culling	pass,	then	the	frustum	culling	may	be	less	useful.	However,	once	you	have	projected	your	ver>ces	for	the	other	filters,	doing	
frustum	culling	is	4	cycles	for	4	planes,	so	it	doesn’t	hurt	to	leave	it.	

Next	to	orienta>on	culling,	the	depth	filter	is	the	2
nd
	most	effec>ve,	but	is	completely	dependent	on	the	quality	of	your	depth	buffer	prior	to	culling.	If	you	have	a	full	z	pre-pass,	or	can	load	it	from	soOware	

occluders	or	re-projected	previous	frame	depth,	then	it	may	do	wonders.	

You’ll	no>ce	that	for	this	scene,	we’ve	managed	to	cull	enough	that	we	are	only	leO	with	22%	of	the	original	triangle	count.	Now	imagine	feeding	the	resultant	culled	index	buffer	into	related	passes,	where	
we	don’t	need	to	worry	about	the	cost	of	culling.

Performance

Cull Draw Total

0.26ms 4.56ms 4.56ms

0.15ms 3.80ms 3.80ms

0.06ms 0.47ms 0.47ms

No Tessellation

Platform

XB1 (DRAM)

PS4 (GDDR5)

PC (Fury X)

Base

5.47ms

4.56ms

0.79ms

Cull Draw Total

0.24ms 4.54ms 4.78ms

0.13ms 3.76ms 3.89ms

0.06ms 0.47ms 0.53ms

Synchronous Asynchronous

443,429 triangles @ 1080p
171 unique PSOs No Cluster Culling

Here	are	the	performance	figures	for	this	scene,	on	both	consoles,	and	an	AMD	Fury	X	on	PC.	Even	in	DRAM,	the	XB1	culling	is	slowest,	and	barely	any	>me	at	all	to	process	half	a	million	triangles	in	a	
gbuffer	pass.	Synchronously,	we’re	saving	15-30%	of	our	rendering	cost,	and	asynchronously	we’re	saving	a	bit	more.	The	draw	and	cull	>mes	get	a	liTle	bit	longer	when	running	asynchronously,	but	you’ll	
no>ce	that	the	overall	cost	goes	down.	This	is	due	to	some	resource	conten>on	between	compute	and	graphics.	

	A	shadow	or	depth	pass	would	improve	performance	even	further	than	this,	likely	but	an	addi>onal	10-15%,	but	I	wanted	to	show	the	effec>veness	of	per	triangle	culling	even	in	a	color	pass	with	varying	
PSO	changes.

Performance

Cull Draw Total

0.26ms 11.2ms 11.2ms

0.15ms 8.10ms 8.10ms

0.06ms 0.64ms 0.64ms

Tessellation Factor 1-7 (Adaptive Phong)

Platform

XB1 (DRAM)

PS4 (GDDR5)

PC (Fury X)

Base

19.3ms

12.8ms

3.01ms

Cull Draw Total

0.24ms 11.1ms 11.3ms

0.13ms 8.08ms 8.21ms

0.06ms 0.64ms 0.70ms

AsynchronousSynchronous

443,429 triangles @ 1080p
171 unique PSOs No Cluster Culling

And	here	are	the	performance	figures	when	we	add	a	complex	tessella>on	expansion	factor	to	all	the	triangles.	Specifically,	a	screen	space	adap>ve	phong	tessella>on	with	a	factor	no	larger	than	7.	Here	
you’ll	see	a	massive	increase	in	ini>al	rendering	cost,	due	to	numerous	hardware	boTlenecks.	

Because	of	this,	our	culling	cost	stays	the	same,	as	we	are	doing	culling	prior	to	tessella>on,	but	the	performance	improvement	to	the	final	draw	>me	is	much	higher,	as	the	cost	of	rendering	a	surviving	
triangle	is	much	more	extreme.	

In	this	scene,	synchronously	culling	saves	between	40-80%	of	the	rendering	>me,	and	asynchronously	it	saves	a	bit	more.

Future Work
u Reuse results between multiple passes

u Once for all shadow cascades

u Depth, gbuffer, emissive, forward, reflection

u Cube maps – load once, cull each side 

u Xbox One supports switching PSOs with ExecuteIndirect

u Single submitted batch!

u Further reduce bottlenecks 

u Move more and more CPU rendering logic to GPU 

u Improve asynchronous scheduling

It	can	be	argued	that	tradi>onal	triangle	processing	in	compute	may	not	be	the	most	effec>ve	use	of	the	silicon,	though	aside	from	performance	improvements,	especially	for	shadow	maps,	this	system	
serves	as	a	plahorm	for	chaining	other	passes	using	the	filtered	index	buffer	for	source	triangles,	instead	of	the	unfiltered	original	index	buffer.	

Addi>onally,	the	results	from	the	culling	can	be	resubmiTed	into	subsequent	passes	from	the	same	view,	giving	a	performance	amplifica>on	by	skipping	culling	and	reusing	results.	

The	Xbox	One	supports	switching	PSOs	per	mul>	draw	packet	with	ExecuteIndirect!	This	means	we	can	submit	a	single	batch,	regardless	of	PSO	differences,	and	further	reduce	boTlenecks.	I	can’t	stress	how	
awesome	this	feature	is,	and	we	will	definitely	be	using	it	going	forward.

Future Work
u Instancing optimizations

u Each instance (re)loads vertex data 

u Synchronous dispatch

u Near 100% L2$ hit

u ALU bound on render - 24 VGPRs, measured occupancy of 8

u 1.5 bytes bandwidth usage per triangle 

u Asynchronous dispatch

u Low L2$ residency - other render work between culling and render

u VMEM bound on render

u 20 bytes bandwidth usage per triangle

For	future	improvements:	

Each	instanced	draw	is	unrolled	into	mul>ple	draws,	since	each	instanced	draw	needs	its	own	culled	index	buffer	range.	Instancing	is	primarily	a	CPU	win,	so	the	unrolling	isn’t	an	issue	for	that	under	DX12,	
except	for	the	unnecessary	memory	pressure	of	each	instance	reloading	the	same	vertex	data.	However,	this	system	is	geLng	incredible	L2$	hits	for	the	instanced	data,	when	running	synchronously.	

With	un-instanced	data,	I’ve	measured	about	20	bytes	of	bandwidth	usage	per	triangle,	but	with	instancing	due	to	the	batch	chunk	size	and	near	perfect	L2$	residency,	I’m	measuring	1.5	bytes	of	bandwidth	
usage	per	triangle,	which	is	excellent.	So	nothing	needs	to	be	done	in	the	synchronous	case,	but	the	asynchronous	case	can	be	improved	a	lot.

Future Work
u Maximize bandwidth and throughput

u Load data into LDS chunks, bandwidth amplification
u Partition data into per-chunk index buffers
u Evaluate all instances 

u More tuning of wavefront limits and CU masking

An	improvement	to	instancing	would	be	to	load	the	vertex	data	once	into	chunks	of	LDS	for	bandwidth	amplifica>on,	as	each	instance	would	perform	culling	against	LDS	loaded	data.	

We	also	want	to	inves>gate	more	at	careful	tuning	of	wavefront	limits,	and	also	CU	masking.

Hardware Tessellation

Another	interes>ng	use	case	for	compute	mesh	processing	is	to	op>mize	hardware	tessella>on	GPU	boTlenecks.	There	are	a	number	of	cases	where	hardware	tessella>on	can	be	extremely	beneficial,	
especially	when	you	are	looking	at	op>mizing	content	crea>on,	procedural	algorithms,	or	offloading	CPU	level	of	detail	to	the	GPU.	

It	isn’t	for	everyone,	as	even	internally	there	are	some	>tles	that	cannot	afford	the	overhead,	but	I’m	going	to	briefly	men>on	some	strategies	I	did	to	further	improve	performance	when	hardware	
tessella>on	is	used,	such	as	on	Dragon	Age:	Inquisi>on,	and	Star	Wars:	BaTlefront.

Hardware Tessellation
Input Assembler

Vertex (Local) Shader

Hull Shader

Tessellator

Domain (Vertex) Shader

Rasterizer

Pixel Shader

Output Merger

• Tessellation Factors
• Silhouette Orientation
• Back Face Culling
• Frustum Culling
• Coarse Culling (Hi-Z)

When	using	tessella>on,	the	goal	is	to	produce	vertex	waves	at	peak	rate	per	SE.	If	not,	then	you	want	the	reason	to	be	“pixel	waves	are	not	draining	fast	enough”,	i.e.	the	tessella>on	itself	is	not	geLng	in	
your	way.	

In	a	tradi>onal	hardware	tessella>on	pipeline,	the	hull	shader	would	do	the	heavy	liOing	of	calcula>ng	adap>ve	screen	space	tessella>on	factors,	as	well	as	various	patch	level	culling	techniques.	The	
calculated	factors	would	range	between	0	and	whatever	your	max	tessella>on	factor	is	set	to.	

Let	me	explain	the	two	main	reasons	why	hull	shaders	are	so	bad	and	why	we	want	to	move	the	work	over	to	compute.	Hull	shaders	tend	to	have	very	few	ac>ve	threads	out	of	the	64	per	wave.	One	issue	is	
because	the	GPU	can	only	fit	so	much	control	point	data	into	LDS.	

The	other	issue	is	because	the	shader	compiler	implements	the	patch	constant	func>on	by,	in	the	case	of	3	vertex	triangle	patches,	turning	off	2	out	of	the	3	ac>ve	threads,	and	only	running	code	on	the	
remaining	thread.	

Between	these	two	problems,	you	are	geLng	very	low	parallelism	in	what	tends	to	be	a	very	complex	shader.	

In	general,	the	recommenda>on	for	small	tessella>on	factors	is	to	load	as	much	data	as	late	as	possible	so	it	happens	aOer	expansion,	i.e.	in	the	domain	shader.

Hardware Tessellation
Input Assembler

Vertex (Local) Shader

Hull (Pass-through) Shader

Tessellator

Domain (Vertex) Shader

Rasterizer

Pixel Shader

Output Merger

Load Final Factors

Mesh Data

• Tessellation Factors
• Silhouette Orientation
• Back Face Culling
• Frustum Culling
• Coarse Culling (Hi-Z)

Compute Shader

A	first	step	op>miza>on	is	to	offload	the	work	that	the	hull	shader	is	doing,	by	moving	these	costly	calcula>ons	to	a	compute	dispatch	earlier	in	the	frame.	The	results	would	be	stored	into	a	factors	buffer	
that	the	hull	shader	could	then	index	with	SV_Primi>veId.	

This	op>miza>on	makes	the	hull	shader	stay	ac>ve	for	the	bare	minimum	amount	of	>me,	which	is	nice,	but	s>ll	suffers	from	high	expansion	boTlenecks	and	other	inefficiencies.	A	factor	of	0	would	tell	the	
hardware	to	cull	the	patch,	and	anything	else	would	do	a	tessellated	draw,	including	a	factor	of	1.	

When	I	first	started	trying	out	tessella>on	on	GCN,	I	expected	some	overhead,	but	I	was	shocked	to	find	such	a	disparity	between	the	cost	of	rendering	a	regular	draw	vs.	a	tessellated	draw	with	a	factor	of	
1.	Low	tessella>on	factors	would	perform	reasonably	well,	but	high	tessella>on	factors	performed	very	poorly.	

Digging	into	it	more,	it	turns	out	that	vertex	reuse	is	disabled	at	the	vertex	shader	stage,	and	is	instead	enabled	at	the	domain	shader	stage	when	the	tessella>on	factor	is	greater	than	1.	This	equates	to	
about	3x	more	ver>ces!	

Addi>onally,	these	factor	1	draws	suffer	from	the	same	parallelism	constraints	that	I	just	discussed.

Hardware Tessellation

Mesh Data

Compute Shader

Structured Work Queue #1
(Patches with factor [1…1]

Tessellation Factors

Structured Work Queue #2
(Patches with factor [2…7]

Tessellation Factors

Structured Work Queue #3
(Patches with factor [8…N]

Tessellation Factors

Patches with factor 0 (culled) are
not processed further, and do not
get inserted to any work queue.

The	improved	op>miza>on	is	to	have	a	compute	dispatch	that,	based	on	the	compute	tessella>on	factors,	buckets	the	patches	into	one	of	three	structured	work	queues.	Culled	patches	with	a	factor	of	0	are	
not	processed	further,	and	do	not	get	inserted	to	any	work	queue.

Hardware Tessellation
Structured Work Queue #1
(Patches with factor [1…1]

Tessellation Factors

Structured Work Queue #2
(Patches with factor [2…7]

Tessellation Factors

Structured Work Queue #3
(Patches with factor [8…N]

Tessellation Factors

Compute Shader
Patch SubD 1 -> 4

Tessellation Factor 1/4

Tessellated Draw

Non-Tessellated Draw

Low Expansion Factor
GCN Friendly ☺

High Expansion Factor
GCN Unfriendly ☹

No Expansion Factor
Avoid Tessellator!

Patches	with	a	factor	of	1	get	placed	into	a	queue	that	will	be	rendered	without	tessella>on.	

Patches	with	a	factor	of	2…7	get	placed	into	a	queue	to	be	rendered	with	tessella>on.	

Patches	with	higher	factors	get	placed	into	a	queue	that	will	undergo	coarse	refinement	prior	to	tessella>on	[14].	

The	general	goal	here	is	to	produce	small	patches,	so	that	we	can	parallelize	more	of	the	mesh	across	more	CUs.	All	the	ver>ces	heading	into	the	domain	stage	need	to	be	processed	on	the	same	CU,	due	to	
tessella>on	patch	constants	being	stored	in	LDS.	So	the	larger	a	patch,	the	less	parallelism	is	achieved.	

The	compute	shader	will	do	a	coarse	subdivision	of	the	patch	into	4	smaller	patches,	and	push	them	into	the	tessella>on	work	queue	with	¼	of	the	original	tessella>on	factor.	

One	thing	you	need	to	handle	is	accoun>ng	for	T-junc>ons	between	varying	patch	levels.	Using	an	algorithm	like	PN-AEN	will	give	you	triangle	patches	which	include	edge	adjacency	informa>on.	This	is	
helpful	for	solving	this	issue.

Summary
u Small and inefficient draws are a problem

u Compute and graphics are friends 

u Use all the available GPU resources 

u Asynchronous compute is extremely powerful 

u Lots of cool GCN instructions available 

u Check out AMD GPUOpen GeometryFX [20]

In	summary,	small	and	inefficient	draws	are	a	problem.	DirectX	12	gives	us	an	API	to	submits	tons	of	draws	at	great	performance	from	the	CPU,	but	the	GPU	can	s>ll	choke	on	these.	

Compute	and	rasteriza>on	are	friends;	treat	your	draws	as	data,	and	have	both	compute	and	graphics	help	each	other	out.	

Use	idle	GPU	resources	to	remove	fixed	func>on	boTlenecks.	

Asynchronous	compute	is	extremely	powerful	-	be	sure	to	schedule	compute	wavefronts	alongside	the	rest	of	your	frame,	but	don’t	forget	that	you	can	overlap	compute	and	graphics	work	on	the	same	
pipe,	many	developers	do	not	realize	this.		

Remember	that	there	are	lots	of	cool	GCN	intrinsics	available	to	op>mize	with.	Grab	a	coffee,	sit	on	a	comfortable	couch	with	your	laptop,	and	read	through	the	en>re	GCN	instruc>on	set	documenta>on.	
You’ll	find	all	sorts	of	crazy	things	you	can	exploit.	Also	be	on	the	lookout	for	AMD	GPUOpen.	Many	of	the	intrinsics	I	covered	today	will	be	exposed	soon	on	PC	for	you	to	u>lize!	

Lastly,	if	you	are	interested	in	implemen>ng	something	similar	to	this	tech,	be	sure	to	check	out	GPUOpen	GeometryFX;	which	is	much	easier	than	reverse	engineering	Frostbite	to	get	at	our	custom	solu>on	
☺

MAKE RASTERIZATION 
GREAT AGAIN!

Lets	work	together	and	make	rasteriza>on	great	again!

Acknowledgements
u Matthäus Chajdas (@NIV_Anteru)
u Ivan Nevraev (@Nevraev)
u Alex Nankervis
u Sébastien Lagarde (@SebLagarde)
u Andrew Goossen
u James Stanard (@JamesStanard)
u Martin Fuller (@MartinJIFuller)
u David Cook
u Tobias “GPU Psychiatrist” Berghoff (@TobiasBerghoff)
u Christina Coffin (@ChristinaCoffin)
u Alex “I Hate Polygons” Evans (@mmalex)
u Rob Krajcarski
u Jaymin “SHUFB 4 LIFE” Kessler (@okonomiyonda)
u Tomasz Stachowiak (@h3r2tic)
u Andrew Lauritzen (@AndrewLauritzen)
u Nicolas Thibieroz (@NThibieroz)
u Johan Andersson (@repi)
u Alex Fry (@TheFryster)

u Jasper Bekkers (@JasperBekkers)
u Graham Sellers (@grahamsellers)
u Cort Stratton (@postgoodism)
u David Simpson
u Jason Scanlin
u Mike Arnold

u Mark Cerny (@cerny)
u Pete Lewis
u Keith Yerex
u Andrew Butcher (@andrewbutcher)
u Matt Peters
u Sebastian Aaltonen (@SebAaltonen)
u Anton Michels
u Louis Bavoil (@LouisBavoil)
u Yury Uralsky
u Sebastien Hillaire (@SebHillaire)

u Daniel Collin (@daniel_collin)

I	want	to	thank	Chris>na	Coffin	and	Mark	Cerny	for	their	mentoring	of	this	presenta>on,	Johan	Andersson	for	allowing	me	to	work	on	this	research,	Ivan	Nevraev	for	fielding	numerous	driver	and	compiler	
requests,	and	I	also	want	to	thank	the	numerous	people	that	offered	guidance,	ideas,	improvements,	support,	and	friendly	conversa>on	over	a	beer.	Your	help	was	much	appreciated!

References
u [1] “The AMD GCN Architecture – A Crash Course” – Layla Mah

u [2] “Clipping Using Homogenous Coordinates” – Jim Blinn, Martin Newell

u [3] "Triangle Scan Conversion using 2D Homogeneous Coordinates“ - Marc Olano, Trey Greer

u [4] “GPU-Driven Rendering Pipelines” – Ulrich Haar, Sebastian Aaltonen

u [5] “Southern Islands Series Instruction Set Architecture” – AMD

u [6] “Radeon Southern Islands Acceleration” – AMD

u [7] “Radeon Evergreen / Northern Islands Acceleration” - AMD

u [8] “GCN Architecture Whitepaper” - AMD

u [9] “Optimizing Parallel Reduction In CUDA” – Mark Harris

u [10] “Hierarchical-Z Map Based Occlusion Culling” – Daniel Rákos

u [11] “Hierarchical Z-Buffer Occlusion Culling” – Nick Darnell

u [12] “Culling the Battlefield: Data Oriented Design in Practice” – Daniel Collin

u [13] “The Rendering Pipeline – Challenges & Next Steps” – Johan Andersson

u [14] “GCN Performance Tweets” – AMD

u [15] “Learning from Failure: … Abandoned Renderers For Dreams PS4 …” – Alex Evans

u [16] “Patch Based Occlusion Culling For Hardware Tessellation” - Matthias Nießner, Charles Loop

u [17] “Tessellation In Call Of Duty: Ghosts” – Wade Brainerd

u [18] “MiniEngine Framework” – Alex Nankervis, James Stanard

u [19] “Optimal Bounding Cones of Vectors in Three Dimensions” – Gill Barequet, Gershon Elber

u [20] “GPUOpen GeometryFX” – AMD

u [21] “Sample Distribution Shadow Maps” – Andrew Lauritzen

u [22] “2D Polyhedral Bounds of a Clipped, Perspective-Projected 3D Sphere” – Mara and McGuire

u [23] “Practical, Dynamic Visibility for Games” - Stephen Hill

http://www.slideshare.net/DevCentralAMD/gs4106-the-amd-gcn-architecture-a-crash-course-by-layla-mah
http://research.microsoft.com/apps/pubs/default.aspx?id=73937
http://www.cs.unc.edu/~olano/papers/2dh-tri/
http://advances.realtimerendering.com/s2015/aaltonenhaar_siggraph2015_combined_final_footer_220dpi.pdf
http://developer.amd.com/wordpress/media/2012/12/AMD_Southern_Islands_Instruction_Set_Architecture.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/10/si_programming_guide_v2.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/10/evergreen_cayman_programming_guide.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/10/evergreen_cayman_programming_guide.pdf
http://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf
http://rastergrid.com/blog/2010/10/hierarchical-z-map-based-occlusion-culling/
http://www.nickdarnell.com/hierarchical-z-buffer-occlusion-culling/
http://www.nickdarnell.com/hierarchical-z-buffer-occlusion-culling/
http://www.frostbite.com/2011/04/culling-the-battlefield-data-oriented-design-in-practice/
http://www.frostbite.com/2011/04/culling-the-battlefield-data-oriented-design-in-practice/
http://www.frostbite.com/2011/04/culling-the-battlefield-data-oriented-design-in-practice/
http://www.frostbite.com/2011/04/culling-the-battlefield-data-oriented-design-in-practice/
http://www.frostbite.com/2015/08/the-rendering-pipeline-challenges-next-steps/
http://www.frostbite.com/2015/08/the-rendering-pipeline-challenges-next-steps/
http://www.frostbite.com/2015/08/the-rendering-pipeline-challenges-next-steps/
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/05/GCNPerformanceTweets.pdf
http://advances.realtimerendering.com/s2015/AlexEvans_SIGGRAPH-2015-sml.pdf
http://www.graphics.stanford.edu/~niessner/papers/2012/2occlusion/niessner2012patch.pdf
http://advances.realtimerendering.com/s2014/wade/siggraph_2014_tessellation_in_call_of_duty_ghosts.pdf
https://github.com/Microsoft/DirectX-Graphics-Samples/
https://github.com/Microsoft/DirectX-Graphics-Samples/
https://github.com/Microsoft/DirectX-Graphics-Samples/
https://github.com/Microsoft/DirectX-Graphics-Samples/
http://www.cs.technion.ac.il/~cggc/files/gallery-pdfs/Barequet-1.pdf
http://gpuopen.com/gaming-product/geometryfx/
https://software.intel.com/en-us/articles/sample-distribution-shadow-maps
http://jcgt.org/published/0002/02/05/paper.pdf
http://jcgt.org/published/0002/02/05/paper.pdf
http://blog.selfshadow.com/publications/practical-visibility/

Thank You!

graham@frostbite.com

Questions?

Twitter - @gwihlidal

“If you’ve been struggling with a
tough ol’ programming problem
all day, maybe go for a walk.
Talk to a tree. Trust me, it helps.“

 - Bob Ross, Game Dev

I’d	also	like	to	thank	GDC	for	having	me	present	today,	MicrosoO	and	AMD	for	allowing	me	to	show	a	lot	of	“secret	sauce”,	and	everyone	here	that	aTended	my	talk.		

As	a	reminder,	please	fill	out	the	electronic	evalua>on	that	was	mailed	to	you.	

And	with	that,	I’d	like	to	open	this	up	to	any	ques>ons	you	may	have.

Instancing Optimizations
u Can do a fast bitonic sort of the instancing buffer for

optimal front-to-back order

u Utilize DS_SWIZZLE_B32

u Swizzles input thread data based on offset mask

u Data sharing within 32 consecutive threads

u Only 32 bit, so can efficiently sort 32 elements

u You could do clustered sorting

u Sort each cluster’s instances (within a thread)

u Sort the 32 clusters

