
Beyond Middleware:
Thinking like a
Programmer 
 
Ben Houge 
Associate Professor
Berklee College of Music

“I’m not a great programmer, but
I can get the computer to do the
job that I ask it to.”
—John Chowning
Inventor of FM Synthesis
Founder of CCRMA, Stanford University

Overview
I. Programming Defined
II. Games and Affordances
III. Programmer Use Cases
IV. Programming the Future

I. Programming Defined
●What Is Programming?
●Programming Concepts in Game Audio

What Is Programming?
●Computer Code Is a List of Instructions
●An Algorithm Is a Set of Rules
●Programming Is Logical, Systematic
Thinking

Programming Concepts in Game
Audio
●Modularity (Functions, Encapsulation)
●Economy (Writing DRY Code)
●Multiplicity (OOP)
●Parameterization (Inheritance)
●Responsiveness (Encapsulation)

II. Games and Affordances
●Game Engines and Middleware
●Things a Programmer Can Do

Game Engines and Middleware
●A Game Is a Specific Kind of Program
●What a Game Engine Does
●A Set of Affordances
●Question Your Materials

Things a Programmer Can Do
●Develop an Engine
●Play Sounds
●Mix Sounds
●Modify Sounds
●Sequence Sounds
●Report/Debug/Optimize Sounds
●Develop Offline Tools

III. Programmer Use Cases
●Throwing Sounds over the Wall
●Data in an External Resource
●Implementing Middleware
●New Deployment Mechanisms
●Be Your Own Programmer

#1: Throwing Sounds over the
Wall
●Leisure Suit Larry 7: Love for Sail! (1996)
●Everything Done in Code
●Programmer Required for all Changes
●Little Control or Iteration

#2: Data in an External Resource
●King’s Quest: Mask of Eternity (1998)
●Data vs. Metadata
●Simple Text Files
●Reboot Required to Test
●Empowerment: No Programmer Required!

#3: Implement Middleware
●Johnny Drama (1999-2001, unreleased)
●Microsoft’s DirectMusic
●Visual Basic Scripting
●Programmer Calls Methods, Passes Data
●Two Sides: Tool vs. Runtime
●Analogous to Wwise/FMOD

#4: New Deployment Mechanisms
●Tom Clancy’s EndWar (2008)
●Prototype Audio Behaviors in Max/MSP
●System Design = A Kind of Composition
●Work w/ Programmer to Integrate and Test
●New Tools to Manage New Data

#5: Be Your Own Programmer
●Responding to Dancers’ Movements
●Manipulating Live Audio Streams
●Sonifying Data
●Real-Time Soundtrack for a 5-Course Meal
●Prototyping Game Music Behaviors

Demo: Please Be Seated
●Dance Collab w/ New Movement Collective
●Performed in Valencia, Winchester, London
●Real-Time Control over Parameters
●Intensity
●Musical Scale (in Just Intonation!)
●Number of Elements
●Position

IV. Programming the Future
●Towards Future Innovation

Towards Future Innovation
●Put Yourself in a Programmer’s Shoes
●Programming Problems Are Compositional
Problems
●Inventing New Paradigms and Platforms
●All Music Is Game Music

Q & A  
 
Ben Houge
Associate Professor
Berklee College of Music  
bhouge@berklee.edu
@AleaBoy

Appendix A:
Programming Terms and Examples

A Variable
// an integer (no fractional component)
coinCount = 56

// a floating-point number (can have a fractional part)
playerHealth = 0.89

// a boolean value (true or false)
// named for 19th c. English mathematician George Boole
hasTalkedToWizard = true

// these are comments, BTW

An Expression
// can be evaluated to result in a single value
3 + 11
(x + y) / 2
playerHealth > 0

A Statement
// describes an action to be carried out
// (i.e., something changes)
playerHealth = 1.0;
meaningOfLifeUniverseEverything = 42;
x = x + 4;
print(“Health is %f”, playerHealth);
c++; // same as c=c+1, good name for a new language

A Conditional Statement
// controls the flow of a program
if (playerHealth <= 0) {
 playDeathAnimation();
 print(“You lose.”);
} else {
 playVictoryDance();
 print(“You win!”);
}

An Iterative Loop
// repeat an action for a certain number of times
int enemyCount = 12;
while (enemyCount > 0) {
 spawnEnemy();
 enemyCount = enemyCount - 1;
}

A Function (or Method)
// a sequence of operations to perform a specific task
int addTwoIntegers(int x, int y) {
 int sum;
 sum = x + y;
 return sum;
}

// later perform the task using the function’s name
int mySum = addTwoIntegers(4, 3);

A Class
// a way of encapsulating values and functionality
// a blueprint for objects (OOP)
class Rectangle {
 int width, height;
public:
 void set_values (int,int);
 int area() {return width*height;}
};

Appendix B:
Overview of Common
Programming Languages

Common Programming Languages
●C++ vs. C (but not C+)
●JavaScript (for web, Unity)
●Java (Processing/Arduino)
●C# (particularly in Unity)
●Python (for scripting)
●Swift or Objective C (for iOS/OSX development)
●PHP or Ruby on Rails (for web servers)

Music-Specific Languages
●Csound
●Max/MSP
●Pure Data
●SuperCollider
●Common Lisp Music

