
Practical DirectX 12
- Programming Model and Hardware Capabilities

Gareth Thomas & Alex Dunn
AMD & NVIDIA

2

Agenda

 DX12 Best Practices

 DX12 Hardware Capabilities

 Questions

3

Expectations

Who is DX12 for?
● Aiming to achieve maximum GPU & CPU performance

● Capable of investing engineering time

● Not for everyone!

4

Engine Considerations

Need IHV specific paths
● Use DX11 if you can’t do this

Application replaces portion of driver and
runtime

● Can’t expect the same code to run well on
all consoles, PC is no different

● Consider architecture specific paths

Look out for NVIDIA and AMD specifics

DX11 DX12

Driver Application

5

Work Submission

 Multi Threading

 Command Lists

 Bundles

 Command Queues

6

Multi-Threading

DX11 Driver:
● Render thread (producer)

● Driver thread (consumer)

DX12 Driver:
● Doesn't spin up worker threads.

● Build command buffers directly via the CommandList interface

Make sure your engine scales across all the cores
● Task graph architecture works best

● One render thread which submits the command lists

● Multiple worker threads that build the command lists in parallel

7

Command Lists

Command Lists can be built while others are being submitted
● Don’t idle during submission or Present

● Command list reuse is allowed, but the app is responsible for
stopping concurrent-use

Don’t split your work into too many Command Lists

Aim for (per-frame):
● 15-30 Command Lists

● 5-10 ‘ExecuteCommandLists’ calls

8

Command Lists #2

Each ‘ ExecuteCommandLists’ has a fixed CPU overhead
● Underneath this call triggers a flush

● So batch up command lists

Try to put at least 200μs of GPU work in each
‘ExecuteCommandLists’, preferably 500μs

Submit enough work to hide OS scheduling latency
● Small calls to ‘ExecuteCommandLists’ complete faster than the OS

scheduler can submit new ones

9

Command Lists #3

● Highlighted ECL takes ~20μs to execute

● OS takes ~60μs to schedule upcoming work

● == 40μs of idle time

IDLE

Example:

 What happens if not enough work is submitted?

10

Bundles

Nice way to submit work early in the frame

Nothing inherently faster about bundles on the GPU
● Use them wisely!

Inherits state from calling Command List – use to your
advantage

● But reconciling inherited state may have CPU or GPU cost

Can give you a nice CPU boost

● NVIDIA: repeat the same 5+ draw/dispatches? Use a bundle

● AMD: only use bundles if you are struggling CPU-side.

11

Multi-Engine

 3D Queue

 Compute Queue

 Copy Queue

3D

COMPUTE

COPY

12

Compute Queue #1
 Use with great care!

● Seeing up to a 10% win currently, if done correctly

Always check this is a performance win
● Maintain a non-async compute path

● Poorly scheduled compute tasks can be a net loss

Remember hyperthreading? Similar rules apply
● Two data heavy techniques can throttle resources, e.g. caches

If a technique suitable for pairing is due to poor utilization of
the GPU, first ask “why does utilization suck?”

● Optimize the compute job first before moving it to async compute

13

Compute Queue #2

(Technique pairing doesn’t have to be 1-to-1)

Good Pairing

Graphics Compute

Shadow Render
(I/O limited)

Light culling
(ALU heavy)

Poor Pairing

Graphics Compute

G-Buffer
(Bandwidth

limited)

SSAO
(Bandwidth

limited)

14

Compute Queue #3

Unrestricted scheduling creates
opportunities for poor technique
pairing

● Benefits are;
●Simple to implement

● Downsides are;
●Non-determinism frame-to-frame

●Lack of pairing control

Command
List

•Z-Prepass

•G-Buffer Fill

Command
List

•Shadow Maps
(depth only)

Fence

•Wait GPU: 2

Command List

•Light Culling

Fence

•Signal GPU: 2

3D COMPUTE

15

Compute Queue #4

Prefer explicit scheduling of
async compute tasks through
smart use of fences

● Benefits are;
● Frame-to-frame determinism

● App control over technique pairing!

● Downsides are;
●It takes a little longer to implement

Command
List

•Z-Prepass

•Fill G-Buffer

Fence

•Signal GPU: 1

Command
List

•Shadow Maps
(Depth Only)

Fence

•Wait GPU: 2

Fence

•Wait GPU: 1

Command
List

•Light Culling

Fence

•Signal GPU: 2

3D COMPUTE

16

Copy Queue

Use the copy queue for background tasks

● Leaves the Graphics queue free to do graphics

Use copy queue for transferring resources over PCIE
● Essential for asynchronous transfers with multi-GPU

Avoid spinning on copy queue completion

● Plan your transfers in advance

NVIDIA: Take care when copying depth+stencil resources –
copying only depth may hit slow path

17

Hardware State

 Pipeline State Objects (PSOs)

 Root Signature Tables (RSTs)

18

Pipeline State Objects #1

Use sensible and consistent
defaults for the unused fields

The driver is not allowed to
thread PSO compilation

● Use your worker threads to
generate the PSOs

● Compilation may take a few
hundred milliseconds

19

Pipeline State Objects #2

Compile similar PSOs on the same thread
● e.g. same VS/PS with different blend states

● Will reuse shader compilation if state doesn’t affect shader

● Simultaneous worker threads compiling the same shaders will wait
on the results of the first compile.

20

Root Signature Tables #1
Keep the RST small

● Use multiple RSTs

● There isn’t one RST to rule them all…

Put frequently changed slots first

Aim to change one slot per draw call

Limit resource visibility to the minimum set of stages
● Don’t use D3D12_SHADER_VISIBILITY_ALL if not required.

● Use the DENY_*_SHADER_ROOT_ACCESS flags

Beware, no bounds checking is done on the RST!

Don’t leave resource bindings undefined after a change of Root
Signature

21

Root Signature Tables #2

AMD: Only constants and CBVs changing per draw should be
in the RST

AMD: If changing more than one CBVs per draw, then it is
probably better putting the CBVs in a table

NVIDIA: Place all constants and CBVs in RST
● Constants and CBVs in the RST do speed up shaders

● Root constants don’t require creating a CBV == less CPU work

22

Memory Management

 Command Allocators

 Resources

 Residency

23

Command Allocators

Aim for number of recording threads * number of buffered
frames + extra pool for bundles

● If you have hundreds of allocators, you are doing it wrong

Allocators only grow
● Can never reclaim memory from an allocator

● Prefer to keep them assigned to the command lists

Pool allocators by size where possible

24

Resources – Options?

Type Physical Page Virtual Address

Committed

Heap

Placed

Reserved

25

Committed Resources
Allocates the minimum size heap
required to fit the resource

App has to call MakeResident/Evict on
each resource

App is at the mercy of OS paging logic
● On ‘MakeResident’, the OS decides where

to place resource

● You're stuck until it returns

V
id

e
o
 M

e
m

o
ry

Texture2D

Buffer

26

Heaps & Placed Resources

Creating larger heaps

● In the order of 10-100 MB

● Sub-allocate using placed resources

Call MakeResident/Evict per heap
● Not per resource 

This requires the app to keep track of
allocations

● Likewise, the app needs to keep track of
free/used ranges of memory in each heap

V
id

e
o
 M

e
m

o
ry

H
e
a
p
 Texture2D

Buffer

27

Residency
MakeResident/Evict memory to/from GPU

● CPU + GPU cost is significant so batch MakeResident and
UpdateTileMappings

● Amortize large work loads over multiple frames if necessary

● Be aware that Evict might not do anything immediately

MakeResident is synchronous
● MakeResident will not return until the resource is resident

● The OS can go off and spend a LOT of time figuring out where to
place resources. You're stuck until it returns

● Be sure to call on a worker thread

28

Residency #2

How much vidmem do I have?

● IDXGIAdapter3::QueryVideoMemoryInfo(…)

● Foreground app is guaranteed a subset of total vidmem

● The rest is variable, app should respond to budget changes from OS

App must handle MakeResident fail.
● Usually means there’s not enough memory available

● But can happen even if there is enough memory (fragmentation)

Non-resident read is a page fault! Likely resulting in a fatal crash

What to do when there isn’t enough memory?

29

Vidmem Over-commitment

Create overflow heaps in sysmem, and move some resources over from
vidmem heaps.

● The app has an advantage over any driver/OS here, arguably it knows what’s most
important to keep in vidmem

Idea: Test your application with 2 instances running

Video Memory

Heap Texture2D Heap

Texture3D

Vertex
Buffer

System Memory

Overflow
Heap

Vertex
Buffer

30

Resources: Practical Tips

Aliasing targets can be a significant memory saving
● Remember to use aliasing barriers!

Committed RTV/DSV resources are preferred by the driver

NVIDIA: Use a constant buffer instead of a structured buffer
when reads are coherent. e.g. tiled lighting

31

Synchronization

 Barriers

 Fences

32

Barriers #1

Don’t let resource barriers become a performance barrier!

Batch barriers together

Use the minimum set of usage flags
● Avoiding redundant flushing

Avoid read-to-read barriers
● Get the resource in the right state for all subsequent reads

Use “split-barriers” when possible

33

Barriers #2

COPY_SOURCE will probably be significantly more expensive
than SHADER_RESOURCE

• Enables access on the copy queue

Barrier count should be roughly double the number of
surfaces written to

34

Fences

GPU Semaphore
• e.g. Make sure GPU is done with resource before evict

Each fence is about the same CPU and GPU cost as
ExecuteCommandLists

Don’t expect fences to trigger signals/advance at a finer
granularity than once per ExecuteCommandLists call

35

Miscellaneous

 Multi-GPU

 Swap Chains

 Set Stable Power State

 Pixel vs Compute

36

Multi GPU

Functionality now embedded in DirectX 12 API

Trade-offs for cross-adapter vs. linked-node
● See Juha Sjöholm’s talk later today for more on this

Explicitly sync resources across devices
● Use proper CreationNodeMask

Be mindful of PCIe bandwidth

● PCI 3.0 (8x) – 8GB/s (expect ~6GB/s)

● PCI 2.0 (8x) – 4GB/s (expect ~3GB/s)  Still common…
● e.g. transferring a 4k HDR buffer will limit you to ~50/100 FPS right away

37

Swap Chains

App must do explicit buffer rotation!

● IDXGISwapChain3::GetCurrentBackBufferIndex()

To replicate VSYNC-OFF
● SetFullScreenState(TRUE)

● Use a borderless fullscreen window

● Flip model swap-chain mode

Very rich, new API!

Screen

38

Set Stable Power State

● This reduces performance

● Alters performance ratio of GPU components within chip

Don’t do it! (Please)

HRESULT ID3D12Device::SetStablePowerState(BOOL Enable);

39

Pixel vs Compute - Performance
NVIDIA

 No shared memory?
 Threads complete at

same time?
 High frequency cbuffer

accesses?
 2D buffer stores?

 Using group shared
memory?

 Expect out-of-order
thread completion?

 Using high # regs?
 1D/3D buffer stores

Pixel Shader Compute Shader

AMD

 Benefit from
depth/stencil rejection?

 Requires graphics
pipeline?

 Want to leverage color
compression?

 Everything else 

Pixel Shader Compute Shader

Best performance gained from following these guidelines

(Consider the perf benefit of using async compute)

40

Hardware Features

 Conservative Rasterization

 Volume Tiled Resources

 Raster Ordered Views

 Typed UAV Loads

 Stencil Output

41

Hardware Features Stats
AMD Radeon NVIDIA GeForce Intel HD Graphics

GCN 1.1 GCN 1.2 Kepler Maxwell 2 Skylake

Feature Level 12_0 11_0 12_1 12_1

Resource Binding Tier 3 Tier 2 Tier 3

Tiled Resources Tier 2 Tier 1 Tier 3 Tier 3

Typed UAV Loads Yes No Yes Yes

Conservative
Rasterization

No No Tier 1 Tier 3

Rasterizer-Ordered
Views

No No Yes Yes

Stencil Reference
Output

Yes No Yes

UAV Slots full heap 64 full heap

Resource Heap Tier 2 Tier 1 Tier 2

42

Conservative Rasterization
 Draws all pixels a primitive touches

● Different Tiers – See spec

Possible before through GS trick but
relatively slow

● See; J. Hasselgren et. Al, “Conservative
Rasterization“, GPU Gems 2

Now we can use rasterization do
implement some nice techniques!

● See; Jon Story, “Hybrid Raytraced
Shadows”, D3D day - GDC 2015

43 Ray traced shadows in, ‘Tom Clancy’s The Division’, using conservative rasterization

44

Volume Tiled Resources
 Tiled resources from DX11.2, now
available for volume/3D resources

● Tier 3 tiled resources

Tiles are still 64kb
● And tile mapping still needs to be

updated from the CPU

Extreme memory/performance
benefits

● Latency Resistant Sparse Fluid
Simulation [Alex Dunn, D3D Day – GDC
2015]

45

Raster Ordered Views
 Ordered writes

● Classic use case is OIT

● See K+ Buffer OIT [Andreas A. Vasilakis,

SIGGRAPH, 2014]

● Programmable blending
● Completely custom blending, not bound by
fixed HW

Use with care! Not free
● Watch the # conflicts

46

Typed UAV Loads
 Finally, no more 32-bit restriction
from the API

May allow you to remove console
specific paths in engine

Loading from UAV slower than
loading from SRV

● So still use SRV for read-only
access

// Can do this e.g.
RWTexture2D<float4>

// and in conjunction with ROV :)
RasterizerOrderedTexture2D<float4>

47

Stencil Output
 Implementations?

● N-ary algorithm using stencil?

●Previous; clear + N passes

●Now; Single pass

Performance considerations
● Comparable to using depth out

48

Questions?

adunn@nvidia.com

@AlexWDunn

#HappyGPU

gareth.thomas@amd.com

DX12PerfTweet

mailto:adunn@nvidia.com
mailto:gareth.thomas@amd.com

