
Tiled shading: light culling –
reaching the speed of light

Dmitry Zhdan
Developer Technology Engineer, NVIDIA

Agenda

● Über Goal

● Classic deferred vs tiled shading

● How to improve culling in tiled shading?

● New culling method overview

● Cool results!

2

Über Goal

Improve overall lighting

performance in tiled shading

3

Takeaway

You’ll know how to speed up light

culling in 10x times and more!

4

Classic deferred: overview

● For each light:

● Render proxy geometry

to mark pixels inside the
light volume

5

Pixels where light will be
processed

Classic deferred: overview

● For each light:

● Render proxy geometry

to mark pixels inside the
light volume

● Shade only marked

pixels

● Blend to output

6

Classic deferred: pros and cons

● Pros

● Precise per-pixel light culling

● A lot of work is done outside of the shader

● Cons

● Lighting is likely to become bandwidth limited

● Culling is ROP limited

7

What we want to avoid?

● Blending

● G-buffer data reloading

● Per light state switching

8

Tiled shading: overview

● Divide screen into tiles

● For each tile:

● Find min-max z

9

Tiled shading: overview

● Divide screen into tiles

● For each tile:

● Find min-max z

● Cull light sources against
tile frustum

10

Tiles where light will be
processed

Tiled shading: overview

● Divide screen into tiles

● For each tile:

● Find min-max z

● Cull light sources against
tile frustum

● Shade tile using given
light list

11

Tiled shading: pros and cons

● Pros

● Lighting phase takes all visible lights in one go

● Cons

● Less accurate culling with tile granularity

● Frustum-primitive tests are either too coarse

or too slow

12

Why care about culling?

● Culling itself can be a costly operation

● Accurate culling speeds up lighting

13

Adding “false positives” can dramatically

reduce lighting performance!

Culling challenges

● Minimize the number of “false positive”

lights obtained in culling phase

● Improve light culling performance in tiled
shading rendering

14

Sphere vs frustum planes: never ever!

● Most commonly used

test

● In fact, it is a frustum-
box test

● Extremely inaccurate

with large spheres

15

Sphere vs frustum planes: never ever!

● Most commonly used

test

● In fact, it is a frustum-
box test

● Extremely inaccurate

with large spheres

16
False positive

Frustum planes

17

No

Reference

Does “is point inside volume” test

for each pixel in a tile

Rounded AABB isn’t an option too…

● Doesn’t suit for spot

lights!

18

False positives?

Frustum

Light

AABB

Rounded AABB

Rounded AABB isn’t an option too…

19

● Doesn’t suit for spot

lights!

● Works badly for very
long frustums

False positives

Rounded AABB isn’t an option too…

20

False positives!

● Doesn’t suit for spot

lights!

● Works badly for very
long frustums

● Problematic for wide FOV

Can we get away from frustums?

● Average tile frustum angle is small:
FOV = 100⁰, Tile size = 16x16 pixels

Angle = FOV • (tile_size / screen_height) = 0.8⁰ (at 1080p)

21

This one is only 2.5⁰

Can we get away from frustums?

● Frustum can be represented as a single

ray at tile center

● Or 4 rays at tile corners

22

How to improve culling accuracy?

● Replace frustum test with ray intersection

test:

● Ray-sphere, ray-cone, …

23

How to improve culling accuracy?

● Compare tile min-max z with min-max

among all intersections

24

How to improve culling accuracy?

● Compare tile min-max z with min-max

among all intersections

● 4 rays work better

25

Ray-primitive

26

Reference

Yes

But culling on compute sucks

● It is a straightforward enumeration

 total operations = X • Y • N

 X – tile grid width

 Y – tile grid height

 N – number of lights

27

How to improve culling performance?

● Reduce the order of enumeration

● Subdivide screen into 4-8 sub-screens

● Coarsely cull lights against sub-screen

frustums

● Select corresponding sub-screen during
culling phase

● Up to 2x boost with small lights, but we

want more!

28

How to improve culling performance?

● We are limited by the compute power

● Let’s try to offload some work from

shader to special HW units!

29

How to improve culling performance?

● Let’s switch from compute to graphics
pipeline! Like in the good old times!

30

Take the best from classic and tiled!

● Migrate from compute idiom:

● “one tile - many lights”

31

Take the best from classic and tiled!

● To classic deferred idiom:

● “one light - many pixels” (1 pixel = 1 tile)

32

Light culling using graphics

● Use rasterizer to generate light fragments

● Empty tiles will be natively skipped

● Use depth test to account for occlusion

● Useless work for occluded tiles will be skipped

● Use primitive-ray intersection in PS for

fine culling and light list updating

33

The Idea: overview

● Culling phase tile → 1 pixel

● Light volume → proxy geometry

● Coarse XY-culling → rasterization

● Coarse Z-culling → depth test

● Precise culling → pixel shader

34

How to integrate?

35

● Don’t use über shaders

● Always break tiled shading into 3 phases:

● Reduction

● Culling

● Lighting

→ new method

New Culling: Bird’s-eye view

● Camera frustum culling

● Depth buffers creation

● Rasterization & classification

36

Step 1: Camera frustum culling

● Cull lights against

camera frustum

37

Step 1: Camera frustum culling

● Cull lights against

camera frustum

38

Step 1: Camera frustum culling

● Cull lights against

camera frustum

● Split visible lights
into “outer” and

“inner”

39

Step 2: Depth buffers creation

● For each tile:

● Find and copy max depth for “outer” lights

● Find and copy min depth for “inner” lights

● Depth test is a key to high performance!

● Use [earlydepthstencil] in shader

40

Step 3: Rasterization & Classification

41

● Render light geometry with depth test

● “outer” – max depth buffer

● Front faces with direct depth test

● “inner” - min depth buffer

● Back faces with inverted depth test

● Use PS for precise culling and per-tile

light list creation

Common light types

42

Point light (omni) Directional light (spot)

Light geometry can be replaced with proxy geometry

Proxy geometry for point lights

43

● Geosphere (2 subdivisions,

octa-based)

● Close enough to sphere

● Low poly works well at low
resolution

● Equilateral triangles can ease

rasterizer’s life

Proxy geometry for spot lights

44

● Why so simple?

● Easy for parametrization

● From a searchlight

● To a hemisphere

● Plane part can be used to
handle area lights

Light culling via rasterization

● Advantages

● No work for tiles without lights and for

occluded lights

● Coarse culling is almost free!

● Incredible speed up with small lights

● Complex proxy models can be used!

● Mathematically it is a branch-and-bound
procedure!

45

?

Culling perf: long-ranged lights

46

GPU CS, ms Raster, ms Boost

GTX 970 - 19x12 0.55 0.15 x4

R9 390 - 19x12 0.60 0.25 x3

GTX 970 - 4K 2.00 0.35 x6

R9 390 - 4K 2.15 0.65 x3

400 lights (200 omnis, 200 spots)

20 lights per tile on average
CS: ray-primitive based (same culling precision as using raster)

?

Culling perf: medium-ranged lights

47

GPU CS, ms Raster, ms Boost

GTX 970 - 19x12 7.30 0.45 x17

R9 390 - 19x12 6.90 0.45 x15

GTX 970 - 4K 25.35 1.10 x23

R9 390 - 4K 23.75 1.30 x18

10000 lights (5000 omnis, 5000 spots)

70 lights per tile on average
CS: ray-primitive based (same culling precision as using raster)

?

Culling perf: fast CS vs Raster

48

GPU CS fast, ms Raster, ms Boost

GTX 970 - 19x12 1.60 0.45 x3.5

R9 390 - 19x12 1.30 0.45 x3.0

GTX 970 - 4K 5.45 1.10 x5.0

R9 390 - 4K 4.55 1.30 x3.5

10000 lights (5000 omnis, 5000 spots)

70 lights per tile on average
CS fast: rounded AABB, sub-screens partitioning (less accurate

culling)

?

Lighting perf: accurate vs fast culling

49

GPU Fast, ms Accurate, ms Boost

GTX 970 - 19x12 6.50 4.85 25%

R9 390 - 19x12 3.55 2.75 22%

GTX 970 - 4K 22.20 16.45 26%

R9 390 - 4K 12.00 9.25 23%

10000 lights (5000 omnis, 5000 spots)

70 lights per tile on average
Fast: CS with rounded AABB, sub-screens partitioning

Accurate: fine CS or raster

Culling perf: HD vs 4K

50

GPU HD (ms) 4K (ms) 4K / HD

GTX 970 – CSopt 1.45 5.45 3.8

GTX 970 - Raster 0.40 1.10 2.7

R9 390 - CSopt 1.15 4.55 4.0

R9 390 - Raster 0.40 1.30 3.2

Raster leads to less performance drop compared with optimized CS
version at 4K

Culling via rasterization: conclusion

 3x-20x times faster than the same CS version

 Produces less “false-positives” at a small cost

 Has better resolution scaling

 Raster allows us to use complex light volumes

51

References

52

● “Advancements in Tiled-Based Compute Rendering” – GDC
2015, Gareth Thomas

● “Parallel Graphics in Frostbite –Current & Future” -
SIGGRAPH 2009, Johan Andersson

● Jim Arvo, “A simple method for box-sphere intersection
testing”, Graphics Gems 1990

Thanks!
dzhdan@nvidia.com

53

Bonus slides

But the devil is in the details…

54

BONUS SLIDES!

● Suits well for CPU

● It is always better to not only compute

index list of visible lights but tightly pack
light data too!

● Better cache locality

● Boosts culling and lighting phases

Camera frustum culling

55

● We can integrate clip planes into proxy

models to avoid light leaking

Proxy geometry ideas

56

Walls

● We can use even coarse shadow volumes
to avoid lighting in shadows!

Proxy geometry ideas

57

● Conservative raster is not applicable here!
● Fragments on shared edges will be added
twice, thus light will be added twice at some
tiles

● Enlarge geometry in VS instead!

Rasterization tips

58

● Reproject half tile size back to view space

● Use closest to the camera value for

reprojection:

● z = light_view.z – light_range

● Add it to light range

Omni rasterization tips

59

● Reproject half tile size back to view space

● Use closest to the camera z value for

reprojection

● Enlarge geometry in all directions!

● This is why plane part in the spot proxy is
important

Spot rasterization tips

60

Explicit Multi GPU Programming
with DirectX 12

Juha Sjöholm
Developer Technology Engineer

NVIDIA

●What is explicit Multi GPU

●API Introduction

●Engine Requirements

●Frame Pipelining – Case Study

Agenda

Problem With Implicit Multi GPU

● Driver needs lots of hints
● Clears, discards

● Vendor specific APIs

● Developer needs to
understand what driver is
trying to do

● It still doesn’t always fly

● Driver does its magic

● Developer doesn‘t have
to care

● It just works

Ideal situation Reality

What is Explicit Multi-GPU?

● Control cross GPU transfers

● No unintended implicit transfers

● Control what work is done on each GPU

● Not just Alternate Frame Rendering (AFR)

DX12 Explicit Multi GPU

●No more driver magic

●There is no driver level support for AFR

●Now you can do it better yourself, and
much more!

●No vendor specific APIs needed

Adapters – Linked Node Adapter

ID3D12Device*

Node 0

Node 1

Node 2

GPU 0

GPU 1

GPU 2

Adapters – Multiple Adapters

ID3D12Device*

ID3D12Device*

ID3D12Device*

Cross Adapter

Resource Heap
(ID3D12Heap*)

GPU 0

GPU 1

GPU 2

Linked Node Adapter

●When user has enabled use of multiple GPUs in
display driver, linked node mode is enabled

●IDXGIFactory::EnumAdapters1() sees one adapter

●ID3D12Device::GetNodeCount() tells node count

●Nodes (GPUs) are referenced with affinity masks

●Node 0 = 0x1

●Node 1 = 0x2

●Node 1 and 2 = 0x3

0000 0001

0000 0010

0000 0011

GPU 0

GPU 1

Linked Node Features

●Resource copies directly from discrete GPU to discrete
GPU – not through system memory

● Special support for AFR

IDXGISwapChain3::ResizeBuffers1() allows utilization

of other connections than PCIe when presenting frames

●Good for multiple discrete GPUs!
GPU 0 GPU 1

PCI Express

Multi GPU link

Linked Node Load Balancing

●It’s safe to assume that nodes are balanced for
foreseeable future

●Life is easy

GPU 0 GPU 1

Linked Node Load Balancing

●It’s safe to assume that nodes are balanced for
foreseeable future

●Life is easy

●Heterogeneous nodes may be available some day

 GPU 0 GPU 1 ?

Infrastructure For Explicit M-GPU
●Renderer has to be aware of multiple GPUs

●Expose multiple GPUs at right level

●Wrap command queues, resources, descriptors, gpu
virtual addresses etc. for multiple GPUs

●This can actually be the part that requires
most effort

●Once infrastructure exists, it’s easier to experiment

Multi Node APIs

●With linked nodes, some things are very easy

●Some interfaces are omni node (no node mask)

●Starting with ID3D12Device

●Some interfaces are multi node

●Affinity mask can have more than one bit set

●Root signatures, pipeline states and command signatures
can be often just shared for all nodes

ID3D12PipelineState*
 NodeMask 0x3

ID3D12RootSignature*
 NodeMask 0x3

ID3D12CommandSignature*
 NodeMask 0x3

Command Queues And Lists

●Each node has its own

ID3D12CommandQueue, i.e. “engine”

●ID3D12CommandLists are also exclusive
to single node

●Command list pooling for each node is needed

ID3D12CommandQueue*
 NodeMask 0x1
 D3D12_COMMAND_LIST_TYPE_DIRECT

Command List Pooling

ID3D12CommandQueue*
NodeMask 0x1
D3D12_COMMAND_LIST_TYPE_DIRECT

ID3D12CommandQueue*
NodeMask 0x2
D3D12_COMMAND_LIST_TYPE_DIRECT

ID3D12CommandList*

NodeMask 0x1
D3D12_COMMAND_LIST_TYPE_DIRECT

ID3D12CommandList*

NodeMask 0x1
D3D12_COMMAND_LIST_TYPE_DIRECT

ID3D12CommandList*
NodeMask 0x1
D3D12_COMMAND_LIST_TYPE_DIRECT

ID3D12CommandList*

NodeMask 0x2
D3D12_COMMAND_LIST_TYPE_DIRECT

ID3D12CommandList*

NodeMask 0x2
D3D12_COMMAND_LIST_TYPE_DIRECT

ID3D12CommandList*
NodeMask 0x2
D3D12_COMMAND_LIST_TYPE_DIRECT

Command List Pooling

ID3D12CommandQueue*
NodeMask 0x1
D3D12_COMMAND_LIST_TYPE_DIRECT

ID3D12CommandQueue*
NodeMask 0x2
D3D12_COMMAND_LIST_TYPE_DIRECT

ID3D12CommandList*

NodeMask 0x1
D3D12_COMMAND_LIST_TYPE_DIRECT

ID3D12CommandList*

NodeMask 0x1
D3D12_COMMAND_LIST_TYPE_DIRECT

ID3D12CommandList*
NodeMask 0x1
D3D12_COMMAND_LIST_TYPE_DIRECT

ID3D12CommandList*

NodeMask 0x2
D3D12_COMMAND_LIST_TYPE_DIRECT

ID3D12CommandList*

NodeMask 0x2
D3D12_COMMAND_LIST_TYPE_DIRECT

ID3D12CommandList*
NodeMask 0x2
D3D12_COMMAND_LIST_TYPE_DIRECT

Synchronization - Fences

●Different command queues need to be

synchronized when sharing resources

●ID3D12Fence is the synchronization tool

Fences

●Application must avoid access conflicts

●Application must ensure that all engines see

shared resources in same state

ID3D12CommandQueue* Write Signal Do something

ID3D12CommandQueue* Wait Read

ID3D12Resource* ID3D12Fence*

Copy Engine(s)

● ID3D12CommandQueue with
D3D12_COMMAND_LIST_TYPE_COPY

● Cross GPU copies parallel to other processing

● Remember to double buffer the resources

GPU 1 Graphics Frame 0 Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Copy Idle F0 Idle F1 Idle F2 Idle F3 Idle F4

GPU 0 Graphics (F-2) (F-1) F0 F1 F2 F3 F4

Cross Node Sharing Tiers

● ID3D12Device has tiers for cross node sharing

● Tier 1 supports only cross node copy operations

● ID3D12GraphicsCommandList::CopyResource() etc

● Tier 2 supports cross node SRV/CBV/UAV access

● While SRV/CBV/UAV access may seem

convenient, try whether using parallel copy
engines would be more efficient

Resources

●Resources and descriptors need most

attention

●Resources/heaps have two separate node
masks

●CreationNodeMask is single node mask

●VisibleNodeMask is multi node mask

●Descriptor heap is exclusive to single node

Node 0x2 memory

Node 0x1 memory

Resources - Visibility

ID3D12Heap*

CreationNodeMask 0x2
VisibleNodeMask 0x2

ID3D12Heap*

CreationNodeMask 0x1
VisibleNodeMask 0x1

ID3D12DescriptorHeap*

NodeMask 0x1

ID3D12DescriptorHeap*

NodeMask 0x2

Node 0x2 memory

Node 0x1 memory

Resources - Visibility

ID3D12Heap*

CreationNodeMask 0x2
VisibleNodeMask 0x2

ID3D12Heap*

CreationNodeMask 0x1
VisibleNodeMask 0x1

ID3D12DescriptorHeap*

NodeMask 0x1

ID3D12DescriptorHeap*

NodeMask 0x2

Node 0x2 memory

Node 0x1 memory

Resources - Visibility

ID3D12Heap*

CreationNodeMask 0x2
VisibleNodeMask 0x2

ID3D12Heap*

CreationNodeMask 0x1
VisibleNodeMask 0x1

ID3D12DescriptorHeap*

NodeMask 0x1

ID3D12DescriptorHeap*

NodeMask 0x2

ID3D12Heap*

CreationNodeMask 0x1
VisibleNodeMask 0x3

Resources - Assets

●Upload art assets (vertex data, textures

etc.) to nodes that need them

●It’s often convenient to upload your assets to
all nodes for easy experimentation

●AFR needs assets on all nodes

●Create a unique resource for each node,

not just one that would be visible to others

(with proper VisibleNodeMask)

Resources - AFR Targets

●AFR requires all render targets be

duplicated for each node

●Need robust cycling mechanism

●Again, a unique resource for each node,

not one resource visible to all nodes

AFR Isn’t For Everyone…

●Temporal techniques make AFR difficult

●Too many inter-frame dependencies can kill the

performance

●Explicit or implicit

AFR Workflow Problem
 Ideal

GPU 1 Frame 0 Frame 2 Frame 4 Frame 6 Frame 8

GPU 0 Frame 1 Frame 3 Frame 5 Frame 7 Frame 9

Screen (F-2) (F-1) F0 F1 F2 F3 F4 F5 F6 F7 F8

AFR Workflow Problem
 Ideal

Dependencies between frames

GPU 1 Frame 0 Frame 2 Frame 4 Frame 6 Frame 8

GPU 0 Frame 1 Frame 3 Frame 5 Frame 7 Frame 9

Screen (F-2) (F-1) F0 F1 F2 F3 F4 F5 F6 F7 F8

GPU 1 Graphics Frame 0 Idle Frame 2 Idle Frame 4 Idle Frame 6

Copy F0->F1 Idle F2->F3 Idle F4->F5 Idle F6->F7

GPU 0 Graphics Idle Frame 1 Idle Frame 3 Idle Frame 5 Idle

Copy Idle F1->F2 Idle F3->F4 Idle F5->F6 Idle

Screen (F-1) F0 F1 F2 F3 F4 F5

AFR Workflow Problem
 Ideal

Dependencies between frames

GPU 1 Frame 0 Frame 2 Frame 4 Frame 6 Frame 8

GPU 0 Frame 1 Frame 3 Frame 5 Frame 7 Frame 9

Screen (F-2) (F-1) F0 F1 F2 F3 F4 F5 F6 F7 F8

GPU 1 Graphics Frame 0 Idle Frame 2 Idle Frame 4 Idle Frame 6

Copy F0->F1 Idle F2->F3 Idle F4->F5 Idle F6->F7

GPU 0 Graphics Idle Frame 1 Idle Frame 3 Idle Frame 5 Idle

Copy Idle F1->F2 Idle F3->F4 Idle F5->F6 Idle

Screen (F-1) F0 F1 F2 F3 F4 F5

New Possibility - Frame Pipelining

●Pipeline rendering of frames

●Begin frame on one GPU

●Transfer work to next GPU to finish rendering

and present

●The GPUs and copy engines form a pipeline

 GPU 1 Graphics Frame 0 Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Copy Idle F0 Idle F1 Idle F2 Idle F3 Idle F4

GPU 0 Graphics (F-2) (F-1) F0 F1 F2 F3 F4

Screen (F-2) (F-1) F0 F1 F2 F3

New Possibility - Frame Pipelining

●Pipeline rendering of frames

●Begin frame on one GPU

●Transfer work to next GPU to finish rendering

and present

●The GPUs and copy engines form a pipeline

 GPU 1 Graphics Frame 0 Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Copy Idle F0 Idle F1 Idle F2 Idle F3 Idle F4

GPU 0 Graphics (F-2) (F-1) F0 F1 F2 F3 F4

Screen (F-2) (F-1) F0 F1 F2 F3

Pipelining – Simple Dependencies

●No back and forth dependencies between

GPUs

●Helps to minimize waits

●Easier to do large cross GPU data transfers

without reducing frame rate

●Unless copying takes longer than actual work,
it affects only latency, not frame rate

Pipelining – Temporal techniques

●Temporal techniques allowed without penalties

GPU 1 Graphics Frame 0 Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Copy Idle F0 Idle F1 Idle F2 Idle F3 Idle F4

GPU 0 Graphics (F-2) (F-1) F0 F1 F2 F3 F4

Screen (F-2) (F-1) F0 F1 F2 F3

Pipelining – Temporal techniques

●Temporal techniques allowed without penalties

●Limitation: GPUs at beginning of pipeline cannot
use resources produced further down the pipeline

GPU 1 Graphics Frame 0 Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Copy Idle F0 Idle F1 Idle F2 Idle F3 Idle F4

GPU 0 Graphics (F-2) (F-1) F0 F1 F2 F3 F4

Screen (F-2) (F-1) F0 F1 F2 F3

Pipelining – Something More

● Instead doing the same faster, do

something more

● GI

● Ray tracing

● Physics

● Etc.

Pipelining – Workload Distribution

●Needs a good point to split the frame

●Cross GPU copies are slow regardless of

parallel copy engines

●<8 GB/s on 8xPCIe3, 64 MB consumes at least 8 ms

● Doing some passes on both GPUs instead

of transferring the results can be an option

Frame Pipelining Workflow

GPU 1 Graphics Frame 0 Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Copy Idle F0 Idle F1 Idle F2 Idle F3 Idle F4

GPU 0 Graphics (F-2) (F-1) F0 F1 F2 F3 F4

Screen (F-2) (F-1) F0 F1 F2 F3

GPU 1 Graphics Frame 0 Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Copy (F-1) IdleF0 Idle F1 Idle F2 Idle F3 Idle F4 Idle

GPU 0 Graphics Idle (F-1) Idle F0 Idle F1 Idle F2 Idle F3 Idle F4

Screen (F-2) (F-1) F0 F1 F2 F3

Ideal

Unbalanced work

Frame Pipelining Workflow

GPU 1 Graphics Frame 0 Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Copy Idle F0 Idle F1 Idle F2 Idle F3 Idle F4

GPU 0 Graphics (F-2) (F-1) F0 F1 F2 F3 F4

Screen (F-2) (F-1) F0 F1 F2 F3

GPU 1 Graphics Frame 0 Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Copy (F-1) IdleF0 Idle F1 Idle F2 Idle F3 Idle F4 Idle

GPU 0 Graphics Idle (F-1) Idle F0 Idle F1 Idle F2 Idle F3 Idle F4

Screen (F-2) (F-1) F0 F1 F2 F3

Ideal

Unbalanced work

Pipelining – Possible Problems

●Workload balance between GPUs depends

also on scene content

●It’s never perfect, but can be reasonable

●Latency can be a problem like in AFR

●Scaling for 3 or 4 GPUs requires separate

solutions

Frame Pipelining Case Study

●Microsoft DX12 miniengine
● Pre-depth

● SSAO

● Sun shadow map

● Primary pass

● Particles

● Motion blur

● Bloom

● FXAA

Frame Pipelining Case Study
● As a stress test, 3840x2160 screen and 4k by 4k
sun shadow map resolutions were used

● Generated on first GPU:

Predepth D32_FLOAT 31.6 MB 5.3 ms

Linear Depth R16_FLOAT 15.8 MB 2.6 ms

SSAO R8_UNORM 7.9 MB 1.3 ms

Sun Shadow Map D16_UNORM 32 MB 5.3 ms

Total 87.3 MB 14.6 ms

Frame Pipelining Case Study - Performance

22

31

37

FPS

Single GPU

Two GPUs

Two GPUs using Copy Engine

Pipelining Case Study - GPUView

Original single GPU workflow

Two GPUs pipelined without copy engine

Node 0x1

Node 0x2

Node 0x1

Pipelining Case Study - GPUView

Two GPUs pipelined with copy engine

Node 0x1

Node 0x2

Node 0x2

Frame Pipelining Case Study

●1.7x framerate from single to dual GPU

●Pretty even workload distribution, but it’s

content dependent

●Cost of copying step would limit frame

rate to about 60 fps on 8xPCIe 3.0 system

Pipelining – Hiding Copy Latency

●Break up copy work into smaller chuncks

●Overlap with other work for the same frame

●More and smaller command lists

●Remember guidelines from the “Practical

DirectX 12”

● In the case study, the ~15 ms extra

latency from copies can be almost entirely

hidden

Hiding Copy Latency - GPUView

Predeth Sun Shadow

SSAO

Primary pass Particles, Motion Blur etc.

Predeth Sun Shadow
Linear Depth

SSAO

One frame

Node 0x1

Node 0x2

Node 0x2

Summary

● No more driver magic

● You‘re in control of AFR

● Try pipelining with temporal techniques!

● Remember copy engines!

● You can do anything you want with that

extra GPU - Surprise us!

Questions?

● jsjoholm@nvidia.com

