
Advanced VR Rendering
Performance

Alex Vlachos, Valve
Alex@ValveSoftware.com

My Presentation Last Year
● This is part 2 of my presentation from last year “Advanced

VR Rendering”, GDC 2015

● Video and slides from last year are free online:
http://www.gdcvault.com/play/1021771/Advanced-VR

● This year’s talk focuses on performance, but increased
visual quality is the goal of what I’m presenting today

2

http://www.gdcvault.com/play/1021771/Advanced-VR

Outline
● Multi-GPU for VR

● Fixed Foveated Rendering & Radial Density Masking

● Reprojection

● Adaptive Quality

3

Recap: Hidden Area Mesh

(From “Advanced VR Rendering” GDC 2015)

4

Recap: Hidden Area Mesh

(From “Advanced VR Rendering” GDC 2015)

5

Recap: Hidden Area Mesh

(From “Advanced VR Rendering” GDC 2015)

6

Single GPU
● Single GPU does all the work
● Stereo rendering can be accomplished

a number of ways (this example uses
sequential rendering)

● Shadow buffer is shared by both eyes

7

GPU 0

Multi-GPU Affinity APIs
● AMD and NVIDIA have multi-GPU affinity APIs

● Broadcast draw calls across GPUs using affinity mask

● Set different shader constant buffers per-GPU

● Transfer subrects of render targets across GPUs

● Use transfer fences to asynchronously transfer while the
destination GPU is still rendering

8

Multi-GPU – 2 GPUs
● Each GPU renders a single eye
● Both GPUs render shadow buffer
● “Submit Left” and “App Window”

executes in the transfer bubble
● 30-35% performance increase

9

GPU 0 GPU 1

Multi-GPU – 4 GPUs
● Each GPU renders half of one eye

● All GPUs render shadow buffer

● PS cost scales, VS cost does not

● Might have high CPU cost in the driver

10

GPU 0
GPU 1

GPU 2
GPU 3

4-GPU Transfer Options
11

Multi-GPU Performance Summary
12

Multi-GPU Resolution Scaling
13

Outline
● Multi-GPU for VR

● Fixed Foveated Rendering & Radial Density Masking

● Reprojection

● Adaptive Quality

14

Projection Matrix vs VR Optics
● Pixel density distribution from the projection matrix is the

opposite of what we want

● Projection matrix: Pixel density per degree increases at the
periphery

● VR optics: Pixel density increases at the center

● We end up over rendering pixels at the periphery

15

Recap: Over Rendering

(From “Advanced VR Rendering” GDC 2015)

16

Recap: Over Rendering

(From “Advanced VR Rendering” GDC 2015)

17

Fixed Foveated Rendering

● Multi-GPU opportunities for 2 and 4 GPUs
● Using NVIDIA’s “Multi-Resolution Shading” we gain an additional ~5-10% GPU perf with

less CPU overhead (See “GameWorks VR”, Nathan Reed, SIGGRAPH 2015)

18

Fixed Foveated Rendering

● Multi-GPU opportunities for 2 and 4 GPUs
● Using NVIDIA’s “Multi-Resolution Shading” we gain an additional ~5-10% GPU perf with

less CPU overhead (See “GameWorks VR”, Nathan Reed, SIGGRAPH 2015)

19

Fixed Foveated Rendering

● Multi-GPU opportunities for 2 and 4 GPUs
● Using NVIDIA’s “Multi-Resolution Shading” we gain an additional ~5-10% GPU perf with

less CPU overhead (See “GameWorks VR”, Nathan Reed, SIGGRAPH 2015)

20

I’m Bad at Words
Me: “I have this idea to reduce fill rate at the periphery”

Jeep Barnett: “That’s interesting”

<Next day I show a demo>

Jeep: “That’s not even close to what I thought you meant”

Me: “What did you think I meant?”

Jeep: “I thought you would skip rendering every other pixel on the outside”

Me: (Laughing) “That’s not how GPUs work”

<Later that night>

Me: “Wait a minute…that’s a great idea!”

21

Radial Density Masking
Skip rending a checker pattern of 2x2 pixel quads to match current GPU architectures

22

Reconstruction Filter
23

+ =

* =

(Average 2 neighbors) (Average across diagonals)

Optimized Bilinear Samples

Weights near to far:
0.375, 0.375, 0.125, 0.125

Weights near to far:
0.5, 0.28125, 0.09375, 0.09375, 0.03125

Radial Density Masking
1. Clip() 2x2 pixel quads as you render, or fill stencil or depth with a

2x2 checker pattern and render
2. Reconstruction filter

● Saves 5-15% performance in Aperture Robot Repair. You can get
higher gains with different content and different shaders. If the
overhead of reconstruction and skipping pixels doesn’t beat the pixel
shader savings of skipped pixel quads, then it’s a wash.

● Almost always a big savings on low-end GPUs

24

Outline
● Multi-GPU for VR

● Fixed Foveated Rendering & Radial Density Masking

● Reprojection

● Adaptive Quality

25

Dealing With Missed Frames
● If your engine is not hitting framerate, the VR system can

reuse last frame’s rendered images and reproject:
● Rotation-only reprojection
● Position & rotation reprojection

● Reprojection to fill in missed frames should be thought of
as a last-resort safety net. Please DO NOT rely on
reprojection to maintain framerate unless your customer
is using a GPU below your application’s min spec.

26

Rotation-Only Reprojection
● Judder is caused by camera translation, animation, and objects

moved by tracked controllers. Judder appears as two distinct
images averaged together.

27

Rotation-Only Reprojection
● Rotation reprojection is eye-centered, not head-

centered, so reprojecting from wrong location

● ICD (inter-camera distance) artificially narrows
during reprojection depending on amount of
rotation

● “A leisurely head turn is in the ballpark of 100
degrees/second” – Michael Abrash, Valve blog, 2013

28

Rotation-Only Reprojection
● The good:

● Well-understood algorithm for decades and might improve with
modern research

● It works reasonably well for a single missed frame even with the
known side effects

● So…there’s a non-trivial set of tradeoffs, but I think it’s
“good enough” to use as a last-resort safety net for missed
frames. It’s better than dropping frames.

29

Positional Reprojection
● Still an unsolved problem that we are very interested in

● You only get one depth in a traditional renderer, so representing
translucency is a challenge (Particle systems)

● Depth might be stored in an MSAA depth buffer with color already
resolved. This can result in color bleeding.

● Hole-filling algorithms for pixels that aren’t represented can cause
retinal rivalry. Even with many frames worth of valid stereo pairs, if
the user moves vertically by crouching down or standing up, there
are gaps that need to be filled.

30

Asynchronous Reprojection
● Ideal safety net
● Requires preemption granularity as good as or better than current

generation GPUs
● Current GPUs can generally preempt at draw call boundaries,

depending on the GPU
● Not yet a guarantee to always reproject in time for vsync
● Applications need to be aware of preemption granularity:

● “You can split up the screen into tiles and run the post processing on each tile in a
separate draw call. That way, you provide the opportunity for async timewarp to come
in and preempt in between those draws if it needs to.” – “VRDirect”, Nathan Reed,
GDC 2015

31

Interleaved Reprojection Hint
● Older GPUs can’t support asynchronous reprojection, so we need an alternative

● OpenVR API has an interleaved reprojection hint where the app can request
every-other-frame rotation-only reprojection if the underlying system doesn’t
support always-on, asynchronous reprojection. App gets ~18ms/frame to render.

● Underlying VR system can also use interleaved reprojection as an auto-enabled
safety net when application is below target framerate

● Every-other-frame reprojection is a good tradeoff:
● “In our experience, ATW should run at a fixed fraction of the game frame rate. For example, at

90Hz refresh rate, we should either hit 90Hz or fall down to the half-rate of 45Hz with ATW. This
will result in image doubling, but the relative positions of the double images on the retina will be
stable. Rendering at an intermediate rate, such as 65Hz, will result in a constantly changing
number and position of the images on the retina, which is a worse artifact.” – “Asynchronous
Timewarp Examined”, Michael Antonov, Oculus blog, March, 2015

32

Outline
● Multi-GPU for VR

● Fixed Foveated Rendering & Radial Density Masking

● Reprojection

● Adaptive Quality

33

Maintaining Framerate is Hard
● VR is more challenging than traditional games because:

● The user has fine control over the camera

● Many interaction models allow users to reconfigure the world

● I gave up on tuning rendering and content to hit 90 fps since users
can reconfigure content so easily

● Last year at GDC, we got Robot Repair to hit framerate by tuning the
worst 20% of the experience

34

Adaptive Quality
● Stated simply: “Adaptive Quality dynamically changes rendering

settings to maintain framerate while maximizing GPU utilization”
● Goal #1: Reduce the chances of dropping frames and reprojecting
● Goal #2: Increase quality when there are idle GPU cycles

● Example is the Aperture Robot Repair VR demo running at target
framerate on an NVIDIA 680 using two different methods

35

Adaptive Quality - Benefits
● Lower GPU min spec for your application

● Increased art asset limits – Artists can now make the tradeoff
between slightly lower fidelity rendering for higher poly assets or
more complex materials

● Don’t need to rely on reprojection to maintain framerate

● Unexpected Benefit: Our apps look better on all hardware

36

What Settings Are Changed?
● What you can’t adjust:

● Can’t toggle visual features like specular
● Can’t toggle shadows

● What you can adjust:
● Rendering resolution/viewport (aka Dynamic Resolution)
● MSAA level or anti-aliasing algorithm
● Fixed Foveated Rendering
● Radial Density Masking
● etc.

37

Adaptive Quality Example
Quality
Level

MSAA Resolution
Scale

Radial
Density
Masking

Render
Resolution

+6 8x 1.4 - 2116x2352

+5 8x 1.3 - 1965x2184

+4 8x 1.2 - 1814x2016

+3 8x 1.1 - 1663x1848

+2 8x 1.0 - 1512x1680

+1 4x 1.1 - 1663x1848

0 4x 1.0 - 1512x1680

-1 4x 0.9 - 1360x1512

-2 4x 0.81 - 1224x1360

-3 4x 0.73 - 1102x1224

-4 4x 0.65 On 992x1102

38

Default

Video of Adaptive Quality Visualization
39

Measuring GPU Workload
● You GPU workload isn’t always solid, might have bubbles
● VR system GPU workload is variable: lens distortion, chromatic

aberration, chaperone bounds, overlays, etc.
● Get timings from the VR system, not your application. OpenVR, for

example, provides a total GPU timer that accounts for all GPU work

40

GPU Timers - Latency
● Your GPU queries are 1 frame old
● You also have 1 or 2 frames in the queue that can’t be modified

41

Implementation Details – 3 Rules
● Goal: Maintain 70%-90% GPU utilization
● High = 90% of frame (10.0ms)

● Decrease aggressively: If the last frame finished rendering after the 90%
threshold of the GPU frame, drop 2 levels, wait 2 frames

● Low = 70% of frame (7.8ms)
● Increase conservatively: If the last 3 frames finished below the 70% threshold

of the GPU frame, increase 1 level, wait 2 frames

● Prediction = 85% of frame (9.4ms)
● Use linear extrapolation from last two frames to predict rapid increases
● If last frame is above the 85% threshold and the linearly extrapolated next

frame is above the high threshold (90%), drop 2 levels, wait 2 frames

42

10% Idle Rule
● The high threshold of 90% leaves 10% of the GPU idle for other

processes almost every frame. This is a good thing.

● You need to share the GPU with other processes, even Windows
desktop needs a slice of the GPU every few VR frames.

● My mental model of GPU budget changed from last year’s 11.11ms
to now 10.0ms per frame, so you almost never starve other
processes of GPU cycles.

43

Adaptive Quality in Aperture Robot Repair
Option A
+6: 8xMSAA, 1.4x res (NVIDIA 980Ti renders here for 95% of the experience)
+5: 8xMSAA, 1.3x res
+4: 8xMSAA, 1.2x res
+3: 8xMSAA, 1.1x res
+2: 8xMSAA, 1.0x res
+1: 4xMSAA, 1.1x res
0: 4xMSAA, 1.0x resolution (Default) (NVIDIA 970 stays at or above this level)
-1: 4xMSAA, 0.9x res
-2: 4xMSAA, 0.81x res
-3: 4xMSAA, 0.73x res
-4: 4xMSAA, 0.65x res, Radial Density Masking (NVIDIA 680 stays at or above this level)

44

What About Text?
● You don’t actually want to go down to that low resolution scalar of

0.65, because in-game text will be very difficult to read

● Instead:
● Raise the low end up to about 0.8 resolution scalar

● If GPU can’t maintain framerate at lowest resolution, enable Interleaved
Reprojection Hint (in case asynchronous reprojection isn’t supported)

● For Adaptive Quality, we enable the interleaved reprojection hint
when we want to drop below the lowest quality level as the last-
resort safety net with rotation-only reprojection

45

Adaptive Quality in Aperture Robot Repair
Option A
+6: 8xMSAA, 1.4x res
+5: 8xMSAA, 1.3x res
+4: 8xMSAA, 1.2x res
+3: 8xMSAA, 1.1x res
+2: 8xMSAA, 1.0x res
+1: 4xMSAA, 1.1x res
0: 4xMSAA, 1.0x resolution (Default)
-1: 4xMSAA, 0.9x res
-2: 4xMSAA, 0.81x res
-3: 4xMSAA, 0.73x res
-4: 4xMSAA, 0.65x res, Radial Density Masking

46

Option B – Text-friendly
+6: 8xMSAA, 1.4x res
+5: 8xMSAA, 1.3x res
+4: 8xMSAA, 1.2x res
+3: 8xMSAA, 1.1x res
+2: 8xMSAA, 1.0x res
+1: 4xMSAA, 1.1x res
0: 4xMSAA, 1.0x resolution (Default)
-1: 4xMSAA, 0.9x res
-2: 4xMSAA, 0.81x res
-3: 4xMSAA, 0.81x res, Interleaved Reprojection Hint

Why Max Out at 1.4x Resolution?

Aperture allocates both a 1.4 8xMSAA and a 1.1 4xMSAA render target per eye for a
total of 342 MB + 117 MB = 459 MB per eye (918 MB 2 eyes)! So we use sequential
rendering to share the render target and limit resolution to 1.4x for 4 GB GPUs.

47

Scalar MSAA Resolution GPU Memory
1 Eye = Color +
Depth + Resolve

GPU Memory
2 Eyes = Color +
Depth + Resolve

2.0 8x 3024x3360 698 MB 1,396 MB

2.0 4x 3024x3360 388 MB 776 MB

1.4 8x 2116x2352 342 MB 684 MB

1.2 8x 1814x2016 251 MB 502 MB

1.0 8x 1512x1680 174 MB 348 MB

1.1 4x 1663x1848 117 MB 234 MB

1.0 4x 1512x1680 97 MB 194 MB

0.81 4x 1224x1360 64 MB 128 MB

Aperture

Aperture

What About 2.0 Resolution Scalar?

For a 2.0 resolution scalar, we require 698 MB + 117 MB = 815 MB per eye.

48

Scalar MSAA Resolution GPU Memory
1 Eye = Color +
Depth + Resolve

GPU Memory
2 Eyes = Color +
Depth + Resolve

2.0 8x 3024x3360 698 MB 1,396 MB

2.0 4x 3024x3360 388 MB 776 MB

1.4 8x 2116x2352 342 MB 684 MB

1.2 8x 1814x2016 251 MB 502 MB

1.0 8x 1512x1680 174 MB 348 MB

1.1 4x 1663x1848 117 MB 234 MB

1.0 4x 1512x1680 97 MB 194 MB

0.81 4x 1224x1360 64 MB 128 MB

Aperture

Aperture

Valve’s Unity Rendering Plugin
● Valve is using a custom rendering plugin in Unity for The Lab

● The Valve VR Rendering Plugin will be free on the Unity Asset Store
soon with full source code

● The plugin is a single-pass forward renderer (because we want
4xMSAA and 8xMSAA) supporting up to 18 dynamic shadowing lights
and Adaptive Quality

● Special thanks to Unity devs Peter Kuhn, Scott Flynn, Joachim Ante,
and Rich Geldreich for adding Adaptive Quality hooks to Unity
5.4.0b9 that shipped one week ago!

49

Decoupling CPU and GPU Performance
● Make your render thread autonomous

● If CPU isn’t ready with a new frame, don’t reproject! Instead, render
thread resubmits last frame’s GPU workload with updated HMD
poses and minimal Adaptive Quality support of dynamic resolution

● To solve animation judder, feed your render thread two animation
frames you can interpolate between to keep animation updating

● But, non-trivial animation prediction is a hard problem

● Then you can plan to run your CPU at 1/2 or 1/3 GPU framerate to
do more complex simulation or run on lower end CPUs

50

Summary
● Multi-GPU support should be in all VR engines (at least 2-GPUs)

● Fixed Foveated Rendering and Radial Density Masking are solutions
that help counteract the optics vs projection matrix battle

● Adaptive Quality scales fidelity up and down while leaving 10% of
the GPU available for other processes. Do not rely on reprojection to
hit framerate on your min spec!

● Valve VR Rendering Plugin for Unity will ship free soon

● Think about how your engine can decouple CPU and GPU
performance with resubmission on your render thread

51

Thank You!

Alex Vlachos, Valve
Alex@ValveSoftware.com

52

	Advanced VR Rendering Performance��Alex Vlachos, Valve�Alex@ValveSoftware.com
	My Presentation Last Year
	Outline
	Recap: Hidden Area Mesh
	Recap: Hidden Area Mesh
	Recap: Hidden Area Mesh
	Single GPU
	Multi-GPU Affinity APIs
	Multi-GPU – 2 GPUs
	Multi-GPU – 4 GPUs
	4-GPU Transfer Options
	Multi-GPU Performance Summary
	Multi-GPU Resolution Scaling
	Outline
	Projection Matrix vs VR Optics
	Recap: Over Rendering
	Recap: Over Rendering
	Fixed Foveated Rendering
	Fixed Foveated Rendering
	Fixed Foveated Rendering
	I’m Bad at Words
	Radial Density Masking
	Reconstruction Filter
	Radial Density Masking
	Outline
	Dealing With Missed Frames
	Rotation-Only Reprojection
	Rotation-Only Reprojection
	Rotation-Only Reprojection
	Positional Reprojection
	Asynchronous Reprojection
	Interleaved Reprojection Hint
	Outline
	Maintaining Framerate is Hard
	Adaptive Quality
	Adaptive Quality - Benefits
	What Settings Are Changed?
	Adaptive Quality Example
	Video of Adaptive Quality Visualization
	Measuring GPU Workload
	GPU Timers - Latency
	Implementation Details – 3 Rules
	10% Idle Rule
	Adaptive Quality in Aperture Robot Repair
	What About Text?
	Adaptive Quality in Aperture Robot Repair
	Why Max Out at 1.4x Resolution?
	What About 2.0 Resolution Scalar?
	Valve’s Unity Rendering Plugin
	Decoupling CPU and GPU Performance
	Summary
	Slide Number 52

