
Quick and Dirty:
2 Lightweight AI Architectures

Kevin Dill

Rez Graham

The Mars Game

• A team of rovers crash-

landed on Mars…

• Level-based puzzle game

(think Cut the Rope or

Where's My Water)

• Each level is "solved" with

math or programming

• "Indy-sized" project

AI Design

• We don't need much AI

• We do need a way to trigger events

o Level success / failure

o Sound effects & dialog

o UI manipulation

o Special effects

o …

• Rapid development & iteration is essential!

o Short time scale

o Experimental game design

Aside: Vocabulary

• Level, Scenario, Task, Mission => all the same thing

Anatomy of a Trigger

• Triggers contain:

o A single Boolean trigger condition

• Can be multiple clauses and-ed or or-ed together

o A list of actions

• When the Boolean clause becomes true, the trigger fires

• When the trigger fires, we execute each action (in order)

• Event based

o (unlike most architectures)

o no polling or update cycle

• (mostly)

A Simple Trigger

Play a hint after 20 seconds, but only once
playHint_1_8_moveCamera:
 triggerCondition:
 - and:
 - delay:
 - 20
 - doOnce:
 actions:
 - playSound:
 - ALVO36_Rover

Gotchas, Bells, & Whistles

• Modular design

o Deep dive tomorrow!

• Clauses are event handlers

• Event persistence

o Tunable timing threshold (default: 667 ms)

o Resets if the trigger fires or the scenario resets (succeeds or fails)

• Trigger groups

o Say you have 3 different reasons that you failed… and one you succeeded

o Carefully craft the trigger condition

o Give each a (fixed) priority, take the highest

• Global triggers (e.g. fail on collision, fail on program completion)

• Level initialization => just a bunch of actions

<= too brittle!!

A Complex Trigger

Trigger success when the program
finishes if they drew the correct
triangle and are at the correct
position.
succeedOnTriangle_4_5:
 group: successOrFailure
 priority: 1
 triggerCondition:
 - and:
 - onBlocklyStopped:
 - Perry
 - onBlocklyPolygon:
 - Perry
 - [[0, 0], [0, 2], [-2, 0]]
 - isAtPosition:
 - Perry
 - [-27, 19]

 actions:
 - buildBaseComponent:
 - solarPanel2
 - delay:
 - 4
 - playSound:
 - musicSuccessShort
 - clearBlockly:
 - scenarioSuccess:

Parting Thoughts

• Trigger systems are really useful & not hard to build

o But there are a few tricky bits – hopefully this helped

• Modular AI is awesome!

o Just do it!

o Come to the talk tomorrow to find out how

• All of the code & assets are open source

o Apache 2 license

o On Github: https://github.com/virtual-world-framework/mars-game

• (or just Google “github mars game”)

o We would love to find a partner looking to take the game farther!

https://github.com/virtual-world-framework/mars-game
https://github.com/virtual-world-framework/mars-game
https://github.com/virtual-world-framework/mars-game
https://github.com/virtual-world-framework/mars-game
https://github.com/virtual-world-framework/mars-game
https://github.com/virtual-world-framework/mars-game
https://github.com/virtual-world-framework/mars-game
https://github.com/virtual-world-framework/mars-game

Quick and Dirty:
2 Lightweight AI Architectures

Kevin Dill

Rez Graham

The Mars Game

• Research project

o Hypothesis: a "true" game will be

more engaging, and also more

effective, than "traditional" online
learning software

o The game needed to be both

educational & fun

• Small team, short time span

o ~1.5 years, ~4 people

o Built from scratch, in JavaScript

