Study the nature of things to imaging

-An overview of physics-based rendering

Wu Minjie

Art Technical Director, Ubisoft Montreal Studio

游戏开发者大会•中国 GAME DEVELOPERS CONFERENCE CHINA SHANGHAI INTERNATIONAL CONVENTION CENTER SHANGHAI, CHINA OCTOBER 25-27, 2015

The origin of PBR In the game industry

Physically-Based Reflectance for Games

Siggraph 2006 Course

Maly Hollinson Dan Babor Jan Kautz

Course Description

This came document to practical implementation of physically-principled reflectance models in biometry ageptics and video general, in current practice as well as specaring inclusions. The cames lengths with the visual phenomena important to the parception of reflectance in a specarity inclusion. The cames lengths with the visual phenomena important to the parception of reflectance in a specarity inclusion. The cames lengths with the visual phenomena important to the parception of reflectance inclusion. After introducing the current general and avoid present particle in the visual phenomena important to the parception of reflectance inclusion. After introducing the current general avoid present priority and the important of the presentation of the presentation of the present of the presentation o

• 8:30 - 8:40 Intreduction (Nety) [1937]

- Mativation
 Problem Statement
- 0:40 9:16 Reflectence (Nety) [PDF]
- Types of Reflectance
- Reflectance Theory
- Reflectance Medal Foundations
 8:16 10:16 Game Development (Naty and Dan) (FDF)
- Geme Platform
- Computation and Storage Constraints
- Production Considerations
- The Gene Rendering Environment
- 10:16 10:30 Break
- 10:30 11:16 Reflectance Randading with Point Lights (Naty and Dan) [F32]
- Analytical ERDFs
- Other Types of BRDFs
- Anti-Aliasing and Lavel-Of-Dated
- 11:16 12:00 Reflectance Rendering with Environment Map Lighting (Jan) [[<u>PDF]</u>
- Environment Maps
- Theory of Filtered Environment Maps
- Diffuse Filtered Environment Maps
- Glosey Filtered Environment Maps
- Anti-Allasing for Environment Map Rendering
- Precomputed Redience Transfer
- 12:00 12:16 Conclusions/Burnmary (All) [PDF]
- Summery
 - Q8A
 - References [PDF]
 Glassery [PDF]

Status of PBR

POWERED BY

Content

1. What is PBR

2. The influence of PBR

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Background knowledge

Seeing is believing?

Seeing is believing?

What is PBR

Differences between PBR and traditional rendering

Essence: subjective and objective

PBR: Based on the physical properties of the things in the objective world

Traditional rendering: Based on the viewer's subjective image

Style: "process-oriented" vs "result-oriented"

PBR: Decompose a complex phenomenon into a series of formulas and parameters associated

Traditional rendering: focus on final result

Function: "all-weather" vs "single angle"

PBR: it can always adapt to the environment.

Traditional rendering: from a certain perspective, unable to take the overall situation into account

Details of PBR

- 1. Physically Based Lighting
- 2. Physically Based Shading
- 3. Physically Based Sensitising

Physically Based Lighting

Three elements of lighting (to discuss PBL from the perspective of artist):

- 1. Intensity
- 2. Color
- 3. Type

Lighting intensity

Three common physical units

1.Candela

2. Lumen

3. Lux

Steradian, symbol: sr

- 1. Unit of solid angle
- 2. Any closed sphere's solid angle is $4\,\pi$

Candela, symbol: cd

- 1. Unit of visible light intensity (1/683W/sr)
- 2. A common candle emits light with a luminous intensity of roughly one candela.

Lumen, symbol: 1m

- 1. Unit of luminous flux
- 2. 1 lumen (1m)= 1 cd sr
- 3. The luminous flux of a common candle is about lumens (220v)

Lux, symbol: 1x

- 1. Unit of luminous flux (Illuminance)
- 2. 1 lux= 1 lumen/square meter

Attenuation

Inverse-square law: Light intensity is inversely proportional to the square of distance and attenuates (energy conservation)

Scattering

Light is forced to deviate from a straight trajectory by one or more paths due to localized non-uniformities in the medium through which it passes.

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Mie scattering

Condition o: particle radius >= wavelength of the incident light

空气中的微粒

Mie scattering is as follows:

- 1. Most of the incident lights will scatter along the forward direction
- 2. particle radius will change the model of Mie scattering

Impact on outdoor natural light intensity

weather	Transmissivity	Sky light
Sunny	About 0.85	10000 lux
Cloudy	About 0.55	1000 lux

IES LIGHT

Photometric profile

IES : illuminating engineering society

IES Light = Maximum intensity (candela) X IES Photometric profile

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Lighting color

color temperature symbol:K

睛朗藍天	10000 ~ 12000 ° K
多雲有雨	8000 ~ 10000 ° K
薄雲	6500 ~ 8000 * K
日光型螢光燈	6500 ° K
正午日光	5500 ° K
電子閃光燈	5500 ° K
早晨或下午腸光	4000 ~ 5000 ° K
攝影棚燈光	3000 ~ 4000 * K
石英燈	3500 ° K
錫絲燈泡	2700 ~ 3200 ° K
黎明、黃昏	2000 ~ 3000 * K
燭光	1800 ~ 2000 ° K

▲ 常見的環境色濃

۴ĸ	-	
۴K	-	
۴ĸ	-	
۶ĸ	-	
۴K	-	
es.		in the second

Rayleigh scattering

Condition: Particle radius <= One tenth of the wavelength of incident light

Rayleigh scattering

Scattering intensity: inversely proportional to the fourth power of the wavelength

瑞利散射发生时,阳光中各波长的光所占比例

Lighting type

1. directional light

2. Punctual light

3.area light

Punctual light VS Area light

	Specular	shadow	instance
Punctual light		Source Occluder	
Area light		Area Source Occluder	

brief summary of PBL

Physically Based Shading

Shading: material response to lighting Function: BRDF

BRDF 是什么

\underline{B} idirectional \underline{R} eflectance \underline{D} is tribution \underline{F} unction

- 1. Bidirectional
- 2. Reflectance
- **3.** Distribution Function

\underline{B} idirectional (双向)

- **1.** The direction from sampling point to camera (eyes)
- 2. The direction from sampling point to point light source

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

<u>R</u>eflectance (反射率)

Reflectance = Radiance / irradiance

Irradiance (power/area) : the power of the light received by current point

Radiance (power/(area x solid angle)) : the power of the light emitted by current point

\underline{D} istribution \underline{F} unction

Picture from : Naty Hoffman, Background: Physics and Math of Shading

Three different types of BRDF

Basic principles of physics-based model

1. Reciprocal

- 2. Conservation of energy
- 3. Constant positive (Positivity)
Generic Shader

Ci = Ka*ambient() + Kd*diffusion() + Ks*specular()

Picture from : Naty Hoffman, Background: Physics and Math of Shading

Diffusion

The process of diffusion:

- 1. Refracting into a material
- 2. Scattering in the material
- 3. Scattering out from the material

Picture from : Naty Hoffman, Background: Physics and Math of Shading

Diffusion model

1. Lambert : Based on smooth material surface.

Lambert model characteristics: :

2. Oren-Nayar

derived from Lambert model
extended to the rough surface
controlled by roughness(0-1.0)

http://www.cs.columbia.edu/CAVE/software/curet/html/sample.html (Pictures of the 61 samples)

1. Felt 0.414686	2. Polyester 0.576862	3. Terrycloth 0.458514
4. Rough Plastic 0.278057	5. Leather 0.179776	6. Sandpaper 0.513084
7. Velvet 0.751002	8. Pebbles 0.443289	9. Frosted Glass 0.416384
10. Plaster_a 0.362825	11. Plastic_b 0.543788	12. Rough Paper 0.311376
13. Artificial Grass 1.378872 (Red. More than 1?)	14. Roof Shingle 0.819147	15. Aluminum Foil 0.252702
16. Cork 0.659956	17. Rough Tile 0.204088	18. Rug_a 0.566478
19. Rug_b 0.613889	20. Styrofoam 0.509725	21. Sponge 0.872413
22. Lambswool 0.978133	23. Lettuce Leaf 0.241785	24. Rabbit Fur 0.933632
25. Quarry Tile 0.360574	26. Loofa 0.300436	27. Insulation 0.136013
28. Crumpled Paper 0.274957	29. Polyester (Zoomed) 0.522950	30. Plaster_b (Zoomed) 0.520868
31. Rough Paper (Zoomed) 0.318498	32. Roof Shingle (Zoomed) 0.950521	33. Slate_a 0.356822
34. Slate_b 0.309590	35. Painted Spheres 1.211948	36. Limestone 0.413544
37. Brick_a 0.893379	38. Ribbed Paper 0.215297	39. Human Skin 0.579386
40. Straw 0.717587	41. Brick_b 0.275990	42. Corduroy 0.699112
43. Salt Crystals 0.481594	44. Linen 0.514593	45. Concrete_a 0.600672
46. Cotton 0.482679	47. Stones 1.107168 (Red. More than 1?)	48. Brown Bread 0.784827
49. Concrete_b 0.308956	50. Concrete_c 0.461930	51. Corn Husk 0.387725
52. White Bread 0.507820	53. Soleirolia Plant 0.758465	54. Wood_a 0.598438
55. Orangle Peel 0.235808	56. Wood_b 0.351271	57. Peacock Feather 0.308792
58. Tree Bark 0.293226	59. Cracker_a 0.505978	60. Cracker_b 0.722678
61. Moss 0.542447		

Theoretical basis of Oren-Nayar model

Based on microfacet model theory

Composed of many microfacets

Every facet can be seen as a Lambertreflection plane

Surface

Oren-Nayar formula

$$F_{Oran-Nayar} = \frac{\rho}{\pi} \cdot E_o \cdot \cos \theta_i (A + (B \cdot \max[0, \cos(\phi i - \phi r)] \cdot \sin \alpha \cdot \tan \beta))$$

$$egin{aligned} A &= rac{1}{\pi} igg(1 - 0.5 rac{\sigma^2}{\sigma^2 + 0.33} + 0.17
ho rac{\sigma^2}{\sigma^2 + 0.13} igg) \ B &= rac{1}{\pi} igg(0.45 rac{\sigma^2}{\sigma^2 + 0.09} igg) & m{\sigma: roughness} \end{aligned}$$

Lambertian

Oren-Nayar

Images by Pharr and Humphreys [Physically Based Rendering, Morgan Kaufmann/Elsevier, 2004]

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

what is ${f ho}$

$\mathbf{\rho}$ = Albedo

$$F_{Oran-Nayar} = \frac{\rho}{\pi} \cdot E_o \cdot \cos \theta_i (A + (B \cdot \max[0, \cos(\phi i - \phi r)] \cdot \sin \alpha \cdot \tan \beta)) \quad F_{Lambert} = \frac{\rho}{\pi} \cdot E_o \cdot \cos \theta_i$$

Physical mea	aning of Albedo:	Albedo definition by rendering engine:
A ration of solar the object to sol Samp	radiation reflected by ar radiation received ble albedos	1. Not affected by additional information of lighting (specular, ambient light, shadow)
Surface	Typical albedo	Ambient occusion
Fresh asphalt	0.04 ^[2]	shadow
Worn asphalt	0.12 ^[2]	2. Not affected by exposure blas
Conifer forest (Summer)	0.08, ^[3] 0.09 to 0.15 ^[4]	
Deciduous trees	0.15 to 0.18 ^[4]	
Bare soil	0.17 ^[5]	3 Not affected by color temperature deviation
Green grass	0.25 ^[5]	
Desert sand	0.40 ^[6]	
New concrete	0.55 ^[5]	
Ocean ice	0.5-0.7 ^[5]	
Fresh snow	0.80-0.90 ^[5]	* 🔺 👫 🕂

Two kinds of Albedo texture acquisition

Specular:

Cook - Torrance reflection model:

microfacet theory:

2.

1. The surface is composed microfacets, every facet only does specular reflection

2. Based on microfacetnormal M, every facet only reflects the light of single direction

数学公式:

$$F_{Cook-Torrance} = \frac{D() \cdot G() \cdot F()}{4(1 \cdot n)(v \cdot n)}$$

Molecule:

D() : Distribution function

G () : Geometry attenuation

function

F() : Fresnel function

Denominator:

4 (n.1) (v.n): Correction factor for conversion between micro mirror surface and the overall surface

Influences from microstructure of the material surface:

Roughness:

Value range between 0-1

Square root of slope of facet

Half Vector:

The angle between the hvector bisecting the incident light I and observation direction v.

Only when h coincides with the facet's normal M, the microfacetwill be "activated."

Picture from : Naty Hoffman, Background: Physics and Math of Shading

Distribution functionD ():

Normal distribution probability of activated facets

0

The performance of distribution function with different roughness (GGX)

Geometry attenuation function G ():

Distribution probability of facet blocking incident light and reflected light

Picture from : Naty Hoffman, Background: Physics and Math of Shading

The performance of geometry attenuation function with different roughness (GGX)

Distribution function(D)	Geometry attenuation function(G)
Blinn-Phong	Implicit
Beckmann	Neumann
GGX	Cook-Torrance
GGX (Anisotropic)	Kelemen
	Smith
	Beckmann
	GGX
	Schlick-
	Beckmann
	Schlick-GGX

GGX (Trowbridge-Reitz) : $D_{GGX}(\mathbf{m}) = rac{lpha^2}{\pi((\mathbf{n}\cdot\mathbf{m})^2(lpha^2-1)+1)^2}$

Beckmann:

$$D_{Beckmann}(\mathbf{m}) = rac{1}{\pi lpha^2 (\mathbf{n} \cdot \mathbf{m})^4} \exp{\left(rac{(\mathbf{n} \cdot \mathbf{m})^2 - 1}{lpha^2 (\mathbf{n} \cdot \mathbf{m})^2}
ight)}$$

Blinn-Phong : $D_{Blinn}(\mathbf{m}) = rac{1}{\pi lpha^2} (\mathbf{n} \cdot \mathbf{m})^{\left(rac{2}{lpha^2} - 2
ight)}$

Cook-Torrance:

$$G_{Cook-Torrance}\left(\mathbf{l},\mathbf{v},\mathbf{h}
ight)=\min\left(1,rac{2(\mathbf{n}\cdot\mathbf{h})(\mathbf{n}\cdot\mathbf{v})}{\mathbf{v}\cdot\mathbf{h}},rac{2(\mathbf{n}\cdot\mathbf{h})(\mathbf{n}\cdot\mathbf{l})}{\mathbf{v}\cdot\mathbf{h}}
ight)$$

Kelemen: $G_{Kelemen}(\mathbf{l},\mathbf{v},\mathbf{h}) = rac{(\mathbf{n}\cdot\mathbf{l})(\mathbf{n}\cdot\mathbf{v})}{(\mathbf{v}\cdot\mathbf{h})^2}$

Schlick-Beckmann:
$$k=lpha\sqrt{rac{2}{\pi}}$$

$$G_{Schlick}(\mathbf{v}) = rac{\mathbf{n}\cdot\mathbf{v}}{(\mathbf{n}\cdot\mathbf{v})(1-k)+k}$$

Intuitive performance of probability distribution model

Blinn with glossiness 0.4

Ggx with glossiness 0.4

Integration of distribution function and geometry attenuation function:

 $D() \times G()$

Obtain roughness measured data

Anisotropic

Anisotropic	Isotropic
Real World:	Real World:
The Microstructure of material surface shows a directional arrangement, more common in artifacts	The Microstructure of material surface is irregular, more common in natural things
Mathematical model:	Mathematical model:
The distribution of microfacet normal is regular	The distribution of microfacet normal is random
Appearance:	Appearance:
The performance of specular is different at different directions, spot shape is stretched	The performance of specular is same at different directions, spot shape is circular

Anisotropie

Specular Occlusion & Cavity

Specular Occlusion

1. To solve the "leakage" problem 2. Non-PBR

Specular Occlusion realization

1. realization with AO map

2. Camera, normal direction associated

3. Controlled by Roughness

```
float computeSpecOcclusion(float NdotV, float AO, float roughness)
{
    return saturate(pow(NdotV + AO, roughness) - 1 + AO);
}
```

Listing 26: Function for computing specular occlusion for a given roughness.

When the roughness is minimum, the intensity is 50% of AO intensity $% \left({{\left[{{{\rm{AO}}} \right]}_{\rm{AO}}} \right)$

When the roughness is maximum and the viewing angle coincides with the normal, the intensity is 100% of AO intensity

When the viewing angle is at 90 degrees to the normal, the intensity is zero

Picture and code from "Moving Frostbite to PBR"

Cavity

Cavity's role

Simulation of recessed hole formed by microstructure $\operatorname{Non-PBR}$

Differences between CavityandSpecular Occlusion:

Influences from the material :

Metallicity:

nonconductor = 0 , conductor= 1:

When Metallicity = 1 :

- 1. No Diffusion, Only Specular
- 2. albedo = specular color

Reflectance and Fresnel:

Reflectance:

what is Fo:

the percentage of specular from the incident light the viewing direction(V) coincides with the normal(N) and incident light(L)

How to get FO:

Non conduction: based on IOR range:0.02-0.06

Schlick function

conduction:

index of refraction is variation
specular color = index of refraction
range:0.65-0.95

金属高光颜色表

TABLE 18.1 Indices of refraction

Medium	n
Vacuum	1.00 exactl
Air (actual)	1.0003
Air (accepted)	1.00
Water	1.33
Ethyl alcohol	1.36
Oil	1.46
Glass (typical)	1.50
Polystyrene plastic	1.59
Zircon	1.96
Diamond	2.42
Silicon (infrared)	3.50

Fresnel:

the observation that things get more reflective at grazing angles.

Fresnel function F ():

Variable: the angle(R) Initial value : FO Description reflectance Cook-Torrance :

$$\eta=rac{1+\sqrt{F_0}}{1-\sqrt{F_0}}$$

 $c = \mathbf{v} \cdot \mathbf{h}$

 $g=\sqrt{\eta^2+c^2-1}$

Schlick :

$$F_{Schlick}(\mathbf{v},\mathbf{h}) = F_0 + (1-F_0)(1-(\mathbf{v}\cdot\mathbf{h}))^5 \quad _{F_{Cook-Torrance}(\mathbf{v},\mathbf{h}) = rac{1}{2}\left(rac{g-c}{g+c}
ight)^2 \left(1+\left(rac{(g+c)c-1}{(g-c)c+1}
ight)^2
ight)$$

Fresnel Reflectance Table:

X : Angle R Y: Reflectance F_0 : start point Fresnel : trend

Picture from : Naty Hoffman, Background: Physics and Math of Shading

Porosity:

The ratio of the pore's volume to the total volume

Porosity 's role:

to descript the influrence from the water

- 1. Darken Albedo
- 2. Change Glossiness
- 3. Boost reflectence

范围在0到1之间,即为0到100%之间。

Physically Based Sensitising

Two types of sensor :

1. CMOS, CCD

2. Eye

Difference:

- 1. Angle of view
- 2. Dynamic range
- 3. Resolution

Angle of view

CMOS/CCD EYE Multiple factors: the focal length of the lens 1. a focal length of approximately 22 mm 2. The overlapping region of both eyes is around $130\,^\circ$ 3. central angle of view — around $40-60^{\circ}$ 4. close to a 50 mm focal length lens ANGLE OF VIEW AND FOCAL LENGTH FISHEYE 180° 8mm 103.7° 17mm 122° 12mm XX. 94.5° 20mm $\sim 130^{\circ}$ 75.4° 28mm . 46.8° 50mm . 34.3° 70mm . 23.3° 105mm 84.1° 24mm **Dual Eye Overlap Right Eye** 12.3° 200mm 8.2° 300mm 5° 500mm 1 A 18.2° 135mm 3.1° 800mm

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Dynamic range :

the ratio between the largest to smallest possible values of a changeable quantity.

Eye \gg CMOS/CCD

RESOLUTION & DETAIL

CCD/CMOS: Symmetrical

Eye: Prioritized based on interest, and asymmetrical

CCD/CMOS	Eye - interest	Eye-asymmetrical
Symmetrical	contrast, sharpness, uniqueness, motion(red part)	the central part of eyes' resolution is much higher than at the edges

Physically Based Sensitising --->> CMOS/CCD

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Two procedures to simulate the imaging

1. Exposure

现实世界中亮度范围

Exposure

The conversion between luminance/illuminance

EV -->> luminance

 $L = 2^{EV-3}$

EV --> illuminance

 $E = 2.5 * \overline{2^{EV}}$

EV	亮度, cd/m ²	照度, lx	EV	亮度, cd/m ²	照度, lx	
-4	0.008	0.156	7	16	320	
-3	0.016	0.313	8	32	640	
-2	0.031	0.625	9	64	1280	
-1	0.063	1.25	10	128	2560	
0	0.125	2.5	11	256	5120	
1	0.25	5	12	512	10,240	
2	0.5	10	13	1024	20,480	
3	1	20	14	2048	40,960	
4	2	40	15	4096	81,920	
5	4	80	16	8192	163,840	
6	8	160				

EV as an indicator of camera settings

户外,自然光		室外 , 人工光源		日光		
彩虹		霓虹灯或其他明亮标志	9-10	强烈阳光下的明亮沙滩和雪景(阴影锐利清晰) ^a	16	
晴朗的天空背景	15	夜间体育运动	9	强烈阳光下的一般场景(阴影很清晰) ^{a,b}	15	
多云的天空背景	14	火焰和起火的建筑	9	朦胧日光下的一般场景(阴影柔和)	14	
日落和天际线		明亮的街景	8	明亮阴天下的一般场景(没有阴影或勉强可见)	13	
日落前一刻	12-14	街道夜景和橱窗	7–8	非常阴沉的一般场景(完全没有阴影)	12	
日落时	12	夜晚车流	5	强烈阳光下四周无遮挡的阴影区	12	
日落后一刻	9–11	夜市和游乐场	7			
月亮, ^c 高度 > 40°		圣诞树	4–5			
满月	15	泛光灯照明的建筑、纪念碑和喷泉	3–5			
凸月	14	亮灯建筑的远景	2			
四分之一月	13	室内 , 人工光源				
新月	12		8-11			
月光,月亮在高度40°以上		体育赛事,舞台表演等等	8–9			
满月	-3 to -2		8			
凸月	-4	泛光灯照明的冰雕 9				
四分之一月	-6	办公室及工作场所	7–8			
北极光和南极光			5–7			
明亮的	-4 to -3	圣诞树	4-5			
	-6 to -5					

The benefit

- 1. convenient, intuitive
- 2. Ready for the post processing(i.e. DOF, motion blur.)

EV	1.0	1.4	2.0	2.8	4.0	5.6	8.0	11	16	22	32	45	64
-6	60	2 m	4 m	8 m	16 m	32 m	64 m	128 m	256 m	512 m	1024 m	2048 m	4096 m
-5	30	60	2 m	4 m	8 m	16 m	32 m	64 m	128 m	256 m	512 m	1024 m	2048 m
-4	15	30	60	2 m	4 m	8 m	16 m	32 m	64 m	128 m	256 m	512 m	1024 m
-3	8	15	30	60	2 m	4 m	8 m	16 m	32 m	64 m	128 m	256 m	512 m
-2	4	8	15	30	60	2 m	4 m	8 m	16 m	32 m	64 m	128 m	256 m
-1	2	4	8	15	30	60	2 m	4 m	8 m	16 m	32 m	64 m	128 m
0	1	2	4	8	15	30	60	2 m	4 m	8 m	16 m	32 m	64 m
1	1/2	1	2	4	8	15	30	60	2 m	4 m	8 m	16 m	32 m
2	1/4	1/2	1	2	4	8	15	30	60	2 m	4 m	8 m	16 m
3	1/8	1/4	1/2	1	2	4	8	15	30	60	2 m	4 m	8 m
4	1/15	1/8	1/4	1/2	1	2	4	8	15	30	60	2 m	4 m
5	1/30	1/15	1/8	1/4	1/2	1	2	4	8	15	30	60	2 m
6	1/60	1/30	1/15	1/8	1/4	1/2	1	2	4	8	15	30	60
7	1/125	1/60	1/30	1/15	1/8	1/4	1/2	1	2	4	8	15	30
8	1/250	1/125	1/60	1/30	1/15	1/8	1/4	1/2	1	2	4	8	15
9	1/500	1/250	1/125	1/60	1/30	1/15	1/8	1/4	1/2	1	2	4	8
10	1/1000	1/500	1/250	1/125	1/60	1/30	1/15	1/8	1/4	1/2	1	2	4
11	1/2000	1/1000	1/500	1/250	1/125	1/60	1/30	1/15	1/8	1/4	1/2	1	2
12	1/4000	1/2000	1/1000	1/500	1/250	1/125	1/60	1/30	1/15	1/8	1/4	1/2	1
13	1/8000	1/4000	1/2000	1/1000	1/500	1/250	1/125	1/60	1/30	1/15	1/8	1/4	1/2
14		1/8000	1/4000	1/2000	1/1000	1/500	1/250	1/125	1/60	1/30	1/15	1/8	1/4
15			1/8000	1/4000	1/2000	1/1000	1/500	1/250	1/125	1/60	1/30	1/15	1/8
16				1/8000	1/4000	1/2000	1/1000	1/500	1/250	1/125	1/60	1/30	1/15

表1. 曝光时间	(単位秒)	,*在不同的曝光值和 <i>f</i> 值下
----------	-------	------------------------

EV & post processing

Aperture --> Vignetting

Aperture \longrightarrow DOF

 $speed \rightarrow motion blur$

HDR Tone Mapping

- 1. Display image in 8 bit low dynamic range (0-1,0)
- 2. Choose the discarded part in high dynamic range
- 3. Keep the original gradient , contrast, detail as much as possible

Two Tone Mapping Curves

- 1. Reinhard
- 2. Filmic

$$L_{\text{Reinhard}} = \frac{x}{x+1}$$

 $L_{\text{Filmic}} = \frac{((x * (A * x + C * B) + D * E))}{(x * (A * x + B) + D * F))} - E/F$

Reinhard

Filmic

Reinhard vs Filmic

Reinhard vs Filmic

Different method:

Tri-ace's film simulation:

Color Enhancement and Rendering in Film and Game Production:

Film Simulation for Video Games

Yoshiharu Gotanda

tri-Ace, Inc.

The influence of PBR:

- 1. Essence of PBR
- 2. Purpose of PBR
- 3. Significance of PBR

Essence of PBR

Standardization

Purpose of PBR

Automation

Purpose of PBR

Assembly line

Significance of PBR

Mass production, reduce costs, improve efficiency, quality assurance

References

Laurence MEYLAN, tone mapping for high dynamic range images, 2006

Chris Wynn, An Introduction to BRDF-Based Lighting, nvidia, 2006

Bruce Walter, Stephen R. Marschner, Hongsong Li, Kenneth E. Torrance, Microfacet Models for Refraction through Rough Surfaces Eurographics Symposium on Rendering (2007)

Naty Hoffman, Yoshiharu Gotanda, Adam Martinez, Ben Snow, Physically-Based Shading Models in Film and Game Production, SIGGRAPH 2010

joshua pines, color enhancement and rendering in film and game production, SIGGRAPH 2010

sebastien lagarde, Adopting a physically based shading model, 2011

Dimitar Lazarov. Physically based lighting in call of duty: Black ops. SIGGRAPH 2011 Course: Advances in Real-Time Rendering in 3D Graphics and Games, 2011.

Stephen McAuley. Calibrating lighting and materials in far cry 3. SIGGRAPH 2012 Course: Practical Physically Based Shading in Film and Game Production, 2012.

Dan Baker and Stephen Hill. Rock-solid shading - image stability without sacricing detail. SIGGRAPH 2012 Course: Practical Physically Based Shading in Film and Game Production, 2012.

Brent Burley. Physically-based shading at disney. part of Practical Physically-Based Shading in Film and Game Production, SIGGRAPH, 2012.

sebastien lagarde, laurent harduin, The art and rendering of remember Me GDC2013

David Neubelt and Matt Pettineo, Crafting a Next-Gen Material Pipeline for The Order: 1886 GDC2013

Brian Karis, Specular BRDF Reference, EPIC 2013

References

- Marco Alamia , Physically Based Rendering Cook Torrance
- Lazanyi, Szirmay-Kalos, Fresnel term approximations for Metals
- Eric Heitz, Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs, SIG2014
- Naty Hoffman, Background: Physics and Math of Shading, SIG2014
- Danny Chan, Real-World Measurements for Call of Duty: Advanced Warfare, SIG2015