Study the nature of things to imaging
 －An overview of physics－based rendering

Wu Minjie

Art Technical Director，Ubisoft Montreal Studio

The origin of PBR In the game industry

Status of PBR

CZyNNNN: ヨ ACHIEVE YOUR VISION

POWERED BY

EJunity 5

ENGINE

Content

1. What is PBR

2. The influence of PBR

Background knowledge

Seeing is believing?

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Seeing is believing?

Visible light range: $400 \mathrm{~nm}-700 \mathrm{~nm}$

What is PBR

Differences between PBR and traditional rendering

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Essence: subjective and objective

PBR: Based on the physical properties of the things in the objective world Traditional rendering: Based on the viewer's subjective image

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Style: "process-oriented" vs "result-oriented"

PBR: Decompose a complex phenomenon into a series of formulas and parameters associated Traditional rendering: focus on final result

PBR
(Domino effect)

GAME DEVELOPERS CONFERENCE CHINA

Function: "all-weather" vs "single angle"
PBR: it can always adapt to the environment.
Traditional rendering: from a certain perspective, unable to take the overall situation into account

Details of PBR

1. Physically Based Lighting
2. Physically Based Shading
3. Physically Based Sensitising

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Physically Based Lighting

Three elements of lighting (to discuss PBL from the perspective of artist):

1. Intensity
2. Color
3. Type

game developers conference china

Lighting intensity

Three common physical units

1. Candela
2. Lumen
3. Lux

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Steradian, symbol: sr

1. Unit of solid angle
2. Any closed sphere' s solid angle is 4π

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Candela, symbol: cd

1. Unit of visible light intensity (1/683W/sr)
2. A common candle emits light with a luminous intensity of roughly one candela.

GAME DEVELOPERS CONFERENCE CHINA

Lumen, symbol: 1m

1. Unit of luminous flux
2. 1 lumen $(1 \mathrm{~m})=1 \mathrm{~cd} \cdot \mathrm{sr}$
3. The luminous flux of a common candle is about lumens (220v)

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Lux, symbol: 1x

1. Unit of luminous flux (Illuminance)
2. 1 lux= 1 lumen/square meter

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Attenuation

Inverse-square law: Light intensity is inversely proportional to the square of distance and attenuates (energy conservation)

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Scattering

Light is forced to deviate from a straight trajectory by one or more paths due to localized non-uniformities in the medium through which it passes.

GAME DEVELOPERS CONFERENCE CHINA October 25－27， 2015 www．GDCChina．com www．GDCChina．cn

Mie scattering

Condition o：particle radius＞＝wavelength of the incident light

空气中的微粒

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Mie scattering is as follows:

1. Most of the incident lights will scatter along the forward direction
2. particle radius will change the model of Mie scattering

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Impact on outdoor natural light intensity

weather	Transmissivity	Sky light
Sunny	About 0.85	10000 lux
Cloudy	About 0.55	1000 lux

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

IES LIGHT

Photometric profile
IES : illuminating engineering society
IES Light $=$ Maximum intensity (candela) X IES Photometric profile

GAME DEVELOPERS CONFERENCE CHINA October 25－27， 2015 www．GDCChina．com www．GDCChina．cn

Lighting color

color temperature symbol：K

喵明违天	$10000-12000{ }^{\circ} \mathrm{K}$
	8000－10000 ${ }^{\circ} \mathrm{K}$
	$6500 \sim 8000^{\circ} \mathrm{K}$
日光栔運光湦	$6500{ }^{\circ} \mathrm{K}$
正午日光	$5500{ }^{\circ} \mathrm{K}$
電子閔兟陣	$5500{ }^{\circ} \mathrm{K}$
早睘或下午䁜光	$4000 \sim 5000{ }^{\circ} \mathrm{K}$
	$3000 \sim 4000^{\circ} \mathrm{K}$
石難	$3500{ }^{\circ} \mathrm{K}$
第美祖退	$2700-3200{ }^{\circ} \mathrm{K}$
掣明•黄昏	$2000-3000^{\circ} \mathrm{K}$
㩆光	1800～ $2000{ }^{\circ} \mathrm{K}$

～2700 K
60 W Incandescent

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Rayleigh scattering

Condition: Particle radius <= One tenth of the wavelength of incident light

GAME DEVELOPERS CONFERENCE CHINA October 25－27， 2015 www．GDCChina．com www．GDCChina．cn

Rayleigh scattering

Scattering intensity：inversely proportional to the fourth power of the wavelength
SUNRISE／SUNSET

DURING THE DAY

[^0]
GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Lighting type

1. directional light
2. Punctual light
3. area light

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Punctual light VS Area light

| | Specular | shadow | instance |
| :--- | :--- | :--- | :--- | :--- |

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

brief summary of PBL

Physically Based Shading
Shading: material response to lighting
Function: BRDF

GAME DEVELOPERS CONFERENCE CHINA October 25－27， 2015 www．GDCChina．com www．GDCChina．cn

BRDF 是什么

Bidirectional Reflectance $\underline{D i s t r i b u t i o n ~}$ Function
1．Bidirectional
2．Reflectance
3．Distribution Function

GAME DEVELOPERS CONFERENCE CHINA

Bidirectional (双向)

1. The direction from sampling point to camera (eyes)
2. The direction from sampling point to point light source

GAME DEVELOPERS CONFERENCE CHINA October 25－27， 2015 www．GDCChina．com www．GDCChina．cn

Reflectance（反射率）

Reflectance＝Radiance／irradiance

Irradiance（power／area）：the power of the light received by current point
Radiance（power／（area x solid angle））：the power of the light emitted by current point

GAME DEVELOPERS CONFERENCE CHINA October 25－27， 2015 www．GDCChina．com www．GDCChina．cn

Distribution Function

Three different types of BRDF

Empirical model	Physically based model	Data-driven mode
Phong Model		

Basic principles of physics-based model

1. Reciprocal

2. Conservation of energy
3. Constant positive (Positivity)

GAME DEVELOPERS CONFERENCE CHINA

Generic Shader

1. Ambient
2. Diffusion
3. Specular

www.renderstory.com

Picture from : Naty Hoffman, Background: Physics and Math of Shading

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Diffusion

The process of diffusion:

1. Refracting into a material
2. Scattering in the material
3. Scattering out from the material

Picture from : Naty Hoffman, Background: Physics and Math of Shading

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Diffusion model

1. Lambert : Based on smooth material surface.

Lambert model characteristics: :

2. Oren-Nayar

derived from Lambert mode1
extended to the rough surface
controlled by roughness ($0-1.0$)

http://www.cs.columbia.edu/CAVE/software/curet/html/sample.html (Pictures of the 61 samples)

1. Felt 0.414686	2. Polyester 0.576862	3. Terrycloth 0.458514
4. Rough Plastic 0.278057	5. Leather 0.179776	6. Sandpaper 0.513084
7. Velvet 0.751002	8. Pebbles 0.443289	9. Frosted Glass 0.416384
10. Plaster_a 0.362825	11. Plastic_b 0.543788	12. Rough Paper 0.311376
13. Artificial Grass 1.378872 (Red. More than 17)	14. Roof Shingle 0.819147	15. Aluminum Foil 0.252702
16. Cork 0.659956	17. Rough Tile 0.204088	18. Rug_a 0.566478
19. Rug_b 0.613889	20. Styrofoam 0.509725	21. Sponge 0.872413
22. Lambswool 0.978133	23. Lettuce Leaf 0.241785	24. Rabbit Fur 0.933632
25. Quarry Tile 0.360574	26. Loofa 0.300436	27. Insulation 0.136013
28. Crumpled Paper 0.274957	29. Polyester (Zoomed) 0.522950	30. Plaster_b (Zoomed) 0.520868
31. Rough Paper (Zoomed) 0.318498	32. Roof Shingle (Zoomed) 0.950521	33. Slate_a 0.356822
34. Slate_b 0.309590	35. Painted Spheres 1.211948	36. Limestone 0.413544
37. Brick_a 0.893379	38. Ribbed Paper 0.215297	39. Human Skin 0.579386
40. Straw 0.717587	41. Brick_b 0.275990	42. Corduroy 0.699112
43. Salt Crystals 0.481594	44. Linen 0.514593	45. Concrete_a 0.600672
46. Cotton 0.482679	47. Stones 1.107168 (Red. More than 1?)	48. Brown Bread 0.784827
49. Concrete_b 0.308956	50. Concrete_c 0.461930	51. Corn Husk 0.387725
52. White Bread 0.507820	53. Soleirolia Plant 0.758465	54. Wood_a 0.598438
55. Orangle Peel 0.235808	56. Wood_b 0.351271	57. Peacock Feather 0.308792
58. Tree Bark 0.293226	59. Cracker_a 0.505978	60. Cracker_b 0.722678
61. Moss 0.542447		

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Theoretical basis of Oren-Nayar model

Based on microfacet model theory
Composed of many microfacets
Every facet can be seen as a Lambertreflection plane

Surface

Oren－Nayar formula

$$
\begin{aligned}
& F_{\text {Oran-Nayar }}=\frac{\rho}{\pi} \cdot E_{o} \cdot \cos \theta_{i}\left(A+\left(B \cdot \max \left[0, \cos \left(\phi i-\phi r^{r}\right)\right] \cdot \sin \alpha \cdot \tan \beta\right)\right) \\
& \begin{array}{l}
A=\frac{1}{\pi}\left(1-0.5 \frac{\sigma^{2}}{\sigma^{2}+0.33}+0.17 \rho \frac{\sigma^{2}}{\sigma^{2}+0.13}\right) \\
B=\frac{1}{\pi}\left(0.45 \frac{\sigma^{2}}{\sigma^{2}+0.09}\right) \quad \sigma: \text { roughness }
\end{array} \\
& F_{\text {Lambert }}=\frac{\rho}{\pi} \cdot E_{o} \cdot \cos \theta_{i} \\
& F_{\text {oran -Nearar }}=\frac{\rho}{\pi} \cdot E_{o} \cdot \cos \theta_{i} \cdot \text { 粗燥因子 } \\
& F_{\text {Oran-Nayar }}=F_{\text {Lambert }} \text { •粗燥因子 } \\
& \text { 当 } \sigma=0 \text { : } \\
& A=1, B=0 \text {, 粗燥因子 }=1 \\
& \text { Lambertian } \\
& \text { Oren-Nayar } \\
& \text { Images by Pharr and Humphreys [Physically Based Rendering, Morgan Kaufmann/Elsevier, 2004] }
\end{aligned}
$$

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

what is ρ
$\rho=$ Albedo

$$
F_{\text {oran-Navar }}=\frac{\rho}{\pi} \cdot E_{o} \cdot \cos \theta_{i}\left(A+\left(B \cdot \max \left[0, \cos \left(\phi i-\phi r^{r}\right)\right] \cdot \sin \alpha \cdot \tan \beta\right)\right) \quad F_{\text {Lambert }}=\frac{\rho}{\pi} \cdot E_{o} \cdot \cos \theta_{i}
$$

Physical meaning of Albedo: \mid Albedo definition by rendering engine:
A ration of solar radiation reflected by
the object to solar radiation received

1. Not affected by additional information of lighting

Sample albedos

Surface	Typical albedo
Fresh asphalt	$0.04^{[2]}$
Worn asphalt	$0.12^{[2]}$
Conifer forest (Summer)	$0.08,^{[3]} 0.09$ to $0.15^{[4]}$
Deciduous trees	0.15 to $0.18^{[4]}$
Bare soil	$0.17^{[5]}$
Green grass	$0.25^{[5]}$
Desert sand	$0.40^{[6]}$
New concrete	$0.55^{[5]}$
Ocean ice	$0.5-0.7^{[5]}$
Fresh snow	$0.80-0.90^{[5]}$

(specular, ambient light, shadow)

2. Not affected by exposure bias

3. Not affected by color temperature deviation

Two kinds of Albedo texture acquisition

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Specular:

Cook - Torrance reflection model:

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

microfacet theory:

2.
3. The surface is composed microfacets, every facet only does specular reflection

4. Based on microfacetnormal M, every facet only reflects the light of single direction

GAME DEVELOPERS CONFERENCE CHINA October 25－27， 2015 www．GDCChina．com www．GDCChina．cn

数学公式：

Molecule：
D（）：Distribution function
G（）：Geometry attenuation
function
F（）：Fresnel function

Denominator：
4 （n．1）（v．n）：Correction factor for conversion between micro mirror surface and the overall surface

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Influences from microstructure of the material surface:

Roughness:

Value range between $0-1$
Square root of slope of facet

Half Vector:

The angle between the hvector bisecting the incident light I and observation direction v . Only when h coincides with the facet' s normal M , the microfacetwill be "activated."

Picture from : Naty Hoffman, Background: Physics and Math of Shading

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Distribution functionD () :

Normal distribution probability of activated facets

The performance of distribution function with different roughness (GGX)

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Geometry attenuation function G () :

Distribution probability of facet blocking incident light and reflected light

Incident light blocked	Reflected light blocked	Multiple bounce not be considered

Picture from : Naty Hoffman, Background: Physics and Math of Shading
Physical meaning

The performance of geometry attenuation function with different roughness (GGX)

GGX (Trowbridge-Reitz) :

$$
D_{G G X}(\mathbf{m})=\frac{\alpha^{2}}{\pi\left((\mathbf{n} \cdot \mathbf{m})^{2}\left(\alpha^{2}-1\right)+1\right)^{2}}
$$

Beckmann :

$$
D_{\text {Beckmann }}(\mathbf{m})=\frac{1}{\pi \alpha^{2}(\mathbf{n} \cdot \mathbf{m})^{4}} \exp \left(\frac{(\mathbf{n} \cdot \mathbf{m})^{2}-1}{\alpha^{2}(\mathbf{n} \cdot \mathbf{m})^{2}}\right)
$$

$$
\begin{aligned}
& \text { Blinn-Phong : } \\
& D_{B l i n n}(\mathbf{m})=\frac{1}{\pi \alpha^{2}}(\mathbf{n} \cdot \mathbf{m})^{\left(\frac{2}{a^{2}}-2\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Cook-Torrance: } \\
& G_{\text {Cook-Torrance }}(\mathbf{l}, \mathbf{v}, \mathbf{h})=\min \left(1, \frac{2(\mathbf{n} \cdot \mathbf{h})(\mathbf{n} \cdot \mathbf{v})}{\mathbf{v} \cdot \mathbf{h}}, \frac{2(\mathbf{n} \cdot \mathbf{h})(\mathbf{n} \cdot \mathbf{l})}{\mathbf{v} \cdot \mathbf{h}}\right)
\end{aligned}
$$

Kelemen:
Kelemen:
$G_{\text {Kelemen }}(\mathbf{l}, \mathbf{v}, \mathbf{h})=\frac{(\mathbf{n} \cdot \mathbf{l})(\mathbf{n} \cdot \mathbf{v})}{(\mathbf{v} \cdot \mathbf{h})^{2}}$

$$
\begin{aligned}
& \text { Schlick-Beckmann: } \sqrt{\frac{2}{\pi}} \\
& \qquad \begin{array}{l}
k=\alpha \sqrt{\frac{1}{\pi}} \\
G_{\text {Schlick }}(\mathbf{v})=\frac{\mathbf{n} \cdot \mathbf{v}}{(\mathbf{n} \cdot \mathbf{v})(1-k)+k}
\end{array} .
\end{aligned}
$$

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Intuitive performance of probability distribution model

Ggx with glossiness 0.4

game developers conference china

Integration of distribution function and geometry attenuation function:

D () $\times \mathrm{G}()$

Obtain roughness measured data

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Anisotropic

Anisotropic	Isotropic
Real World:	Real World:
The Microstructure of material surface shows a directional arrangement, more common in artifacts	The Microstructure of material surface is irregular, more common in natural things
Mathematical model:	Mathematical model:
The distribution of microfacet normal is regular	The distribution of microfacet normal is random
Appearance:	Appearance:
The performance of specular is different at different directions, spot shape is stretched	The performance of specular is same at different directions, spot shape is circular
Anisotropic	Isotropic

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Specular Occlusion \& Cavity

Specular Occlusion

1. To solve the "leakage" problem
2. Non-PBR

"leakage"	specular occlusion (off)	specular occlusion (on)

Specular Occlusion realization

1. realization with A0 map
```
float computeSpecOcclusion(float NdotV, float AO, float roughness)
{
    return saturate(pow(NdotV + AO, roughness) - 1 + AO)
}
```

2. Camera, normal direction associated

Listing 26: Function for computing specular occlusion for a given roughness.
3. Controlled by Roughness

When the roughness is minimum, the intensity is 50% of A0 intensity

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Cavity

Cavity' s role
Simulation of recessed hole formed by microstructure
 Non-PBR

Differences between CavityandSpecular Occlusion:

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Influences from the material :

Metallicity:

nonconductor $=0$, conductor= 1 :

When Metallicity = 1 :

1. No Diffusion, Only Specular
2. albedo $=$ specular color

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Reflectance and Fresnel:

Reflectance:
what is F_{0} :
the percentage of specular from the incident light
the viewing direction(V) coincides with the normal (N) and incident light (L)

GAME DEVELOPERS CONFERENCE CHINA October 25－27， 2015 www．GDCChina．com www．GDCChina．cn

How to get F0：

Non conduction：
based on IOR
range：0．02－0． 06
$F_{0}=\frac{(1-I O R)^{2}}{(1+I O R)^{2}}$
Schlick function

conduction：
index of refraction is variation specular color $=$ index of refraction range：0．65－0．95

金属高光颜色表

TABLE 18．1 Indices of refraction

Medium	n
Vacuum	1.00 exactly
Air（actual）	1.0003
Air（accepted）	1.00
Water	1.33
Ethyl alcohol	1.36
Oil	1.46
Glass（typical）	1.50
Polystyrene plastic	1.59
Zircon	1.96
Diamond	2.42
Silicon（infrared）	3.50

GAME DEVELOPERS CONFERENCE CHINA

Fresnel:

the observation that things get more reflective at grazing angles.

Fresnel function F () :
Variable: the angle(R)
Initial value : F0
Description reflectance

Schlick:
Cook-Torrance :

$$
\begin{gathered}
\eta=\frac{1+\sqrt{F_{0}}}{1-\sqrt{F_{0}}} \\
c=\mathbf{v} \cdot \mathbf{h} \\
g=\sqrt{\eta^{2}+c^{2}-1}
\end{gathered}
$$

$$
F_{S c h l i c k}(\mathbf{v}, \mathbf{h})=F_{0}+\left(1-F_{0}\right)(1-(\mathbf{v} \cdot \mathbf{h}))^{5} \quad F_{\text {Cook-Torrance }}(\mathbf{v}, \mathbf{h})=\frac{1}{2}\left(\frac{g-c}{g+c}\right)^{2}\left(1+\left(\frac{(g+c) c-1}{(g-c) c+1}\right)^{2}\right)
$$

Fresnel Reflectance Table:

X : Angle R
F_{0} : start point
Fresnel : trend

Picture from : Naty Hoffman, Background: Physics and Math of Shading

GAME DEVELOPERS CONFERENCE CHINA October 25－27， 2015 www．GDCChina．com www．GDCChina．cn

Porosity：

The ratio of the pore＇s volume to the total volume
范围在 0 到 1 之间，即为 0 到 100% 之间。

Porosity＇s role：
to descript the influrence from the water
1．Darken Albedo
2．Change Glossiness
3．Boost reflectence

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Physically Based Sensitising

Two types of sensor :

1. CMOS, CCD
2. Eye

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Difference:

1. Angle of view
2. Dynamic range
3. Resolution

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Angle of view

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Dynamic range :

the ratio between the largest to smallest possible values of a changeable quantity.
Eye 》CMOS/CCD

GAME DEVELOPERS CONFERENCE CHINA

RESOLUTION \& DETAIL

CCD/CMOS: Symmetrical
Eye: Prioritized based on interest, and asymmetrical

Physically Based Sensitising --》CMOS/CCD

GAME DEVELOPERS CONFERENCE CHINA October 25－27， 2015 www．GDCChina．com www．GDCChina．cn

Two procedures to simulate the imaging
1．Exposure

现实世界中亮度范围

2．HDR TONE MAPPING

Exposure

Exposure value (unit : EV)
the photometric quantity of luminous exposure

GAME DEVELOPERS CONFERENCE CHINA October 25－27， 2015 www．GDCChina．com www．GDCChina．cn

The conversion between luminance／illuminance

EV－－》luminance
 \square

EV－－》illuminance
$E=2.5 * 2^{E V}$

EV	亮度， $\mathbf{c d} / \mathbf{m}^{2}$	照度， $\mathbf{l x}$	$\mathbf{E V}$	亮度， $\mathbf{c d} / \mathbf{m}^{2}$	照度， $\mathbf{l x}$
-4	0.008	0.156	7	16	320
-3	0.016	0.313	8	32	640
-2	0.031	0.625	9	64	1280
-1	0.063	1.25	10	128	2560
0	0.125	2.5	11	256	5120
1	0.25	5	12	512	10,240
2	0.5	10	13	1024	20,480
3	1	20	14	2048	40,960
4	2	40	15	4096	81,920
5	4	80	16	8192	163,840
6	8	160			

GAME DEVELOPERS CONFERENCE CHINA October 25－27， 2015 www．GDCChina．com www．GDCChina．cn

EV as an indicator of camera settings

户外，自然光	
彩虹	
晴朗的天空背景	15
多云的天空背景	14
日落和天际线	
日落前一刻	12－14
日落时	12
日䓂后一刻	9－11
月亮，${ }^{\text {c }}$ 高度 $>40^{\circ}$	
满月	15
凸月	14
四分之一月	13
新月	12
月光，月亮在高度 40° 以上	
满月	－3 to－2
凸月	－4
四分之一月	－6
北极光和南极光	
明亮的	－4 to－3
一般的	－6 to－5

空外，人工光源	
霓虹灯或其他明亮标志	9－10
夜间体育运动	9
火绉和起火的建筑	9
明亮的街景	8
街道夜景和榞窗	7－8
夜晩车流	5
夜市和游乐场	7
圣诞树	4－5
泛光灯照明的建筑，纪念䧽和喷泉	3－5
亮灯建筑的远景	2
室内，人工光源	
画廊	8－11
体育赛事，舞台表寅等等	8－9
马戏团表演	8
泛光灯照明的冰雕	9
办公室及工作场所	7－8
住房内	5－7
圣诞树	4－5

日光	
强烈阳光下的明亮沙滩和雪景（阴影锐利清哳）${ }^{\text {a }}$	16
强烈阳光下的一般场景（阴影很清哳）${ }^{\text {a }}$ ，${ }^{\text {b }}$	15
洜胧日光下的一般场景（阴影桑和）	14
明亮阴天下的一般场景（没有阴影或勉强可见）	13
非常阴沉的一般场景（完全没有阴影）	12
强烈阳光下四周无遮挡的阴影区	12

GAME DEVELOPERS CONFERENCE CHINA

The benefit

1．convenient，intuitive

2．Ready for the post processing（i．e．DOF，motion blur。。。。。。）

表1．嚗光时间（单位秒），＊在不同的璟光值和 f 直下													
EV	f直												
	1.0	1.4	2.0	2.8	4.0	5.6	8.0	11	16	22	32	45	64
－6	60	2 m	4 m	8 m	16 m	32 m	64 m	128 m	256 m	512 m	1024 m	2048 m	4096 m
－5	30	60	2 m	4 m	8 m	16 m	32 m	64 m	128 m	256 m	512 m	1024 m	2048 m
－4	15	30	60	2 m	4 m	8 m	16 m	32 m	64 m	128 m	256 m	512 m	1024 m
－3	8	15	30	60	2 m	4 m	8 m	16 m	32 m	64 m	128 m	256 m	512 m
－2	4	8	15	30	60	2 m	4 m	8 m	16 m	32 m	64 m	128 m	256 m
－1	2	4	8	15	30	60	2 m	4 m	8 m	16 m	32 m	64 m	128 m
0	1	2	4	8	15	30	60	2 m	4 m	8 m	16 m	32 m	64 m
1	1／2	1	2	4	8	15	30	60	2 m	4 m	8 m	16 m	32 m
2	1／4	1／2	1	2	4	8	15	30	60	2 m	4 m	8 m	16 m
3	1／8	1／4	1／2	1	2	4	8	15	30	60	2 m	4 m	8 m
4	1／15	1／8	1／4	1／2	1	2	4	8	15	30	60	2 m	4 m
5	1／30	1／15	1／8	1／4	1／2	1	2	4	8	15	30	60	2 m
6	1／60	1／30	1／15	1／8	1／4	1／2	1	2	4	8	15	30	60
7	1／125	1／60	1／30	1／15	1／8	1／4	1／2	1	2	4	8	15	30
8	1／250	1／125	1／60	1／30	1／15	1／8	1／4	1／2	1	2	4	8	15
9	1／500	1／250	1／125	1／60	1／30	1／15	1／8	1／4	1／2	1	2	4	8
10	1／1000	1／500	1／250	1／125	1／60	1／30	1／15	1／8	1／4	1／2	1	2	4
11	1／2000	1／1000	1／500	1／250	1／125	1／60	1／30	1／15	1／8	1／4	1／2	1	2
12	1／4000	1／2000	1／1000	1／500	1／250	1／125	1／60	1／30	1／15	1／8	1／4	1／2	1
13	1／8000	1／4000	1／2000	1／1000	1／500	1／250	1／125	1／60	1／30	1／15	1／8	1／4	1／2
14		1／8000	1／4000	1／2000	1／1000	1／500	1／250	1／125	1／60	1／30	1／15	1／8	1／4
15			1／8000	1／4000	1／2000	1／1000	1／500	1／250	1／125	1／60	1／30	1／15	1／8
16				1／8000	1／4000	1／2000	1／1000	1／500	1／250	1／125	1／60	1／30	1／15

GAME DEVELOPERS CONFERENCE CHINA

EV \& post processing

Aperture --> D0F

speed--> motion blur

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

HDR Tone Mapping

1. Display image in 8 bit low dynamic range ($0-1.0$)
2. Choose the discarded part in high dynamic range
3. Keep the original gradient , contrast, detail as much as possible

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Two Tone Mapping Curves

1. Reinhard
2. Filmic

$$
L_{\text {Reinhard }}=\frac{x}{x+1}
$$

$$
\mathrm{L}_{\text {rilimic }}=\frac{((\mathrm{x} *(\mathrm{~A} * \mathrm{x}+\mathrm{C} * \mathrm{~B})+\mathrm{D} * \mathrm{E})}{(\mathrm{x} *(\mathrm{~A} * \mathrm{x}+\mathrm{B})+\mathrm{D} * \mathrm{~F}))}-\mathrm{E} / \mathrm{F}
$$

Reinhard
Filmic

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Reinhard vs Filmic

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

Reinhard vs Filmic

Different method:

Tri-ace's film simulation:

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

The influence of PBR:

1. Essence of PBR
2. Purpose of PBR
3. Significance of PBR

Essence of PBR

Standardization

Purpose of PBR
Automation

Purpose of PBR

Assembly line

Significance of PBR

Mass production, reduce costs, improve efficiency, quality assurance

GAME DEVELOPERS CONFERENCE CHINA

References

Laurence MEYLAN, tone mapping for high dynamic range images, 2006
Chris Wynn, An Introduction to BRDF-Based Lighting, nvidia, 2006
Bruce Walter, Stephen R. Marschner, Hongsong Li, Kenneth E. Torrance, Microfacet Models for Refraction through Rough Surfaces Eurographics Symposium on Rendering (2007)

Naty Hoffman, Yoshiharu Gotanda, Adam Martinez, Ben Snow, Physically-Based Shading Models in Film and Game Production, SIGGRAPH 2010
joshua pines, color enhancement and rendering in film and game production, SIGGRAPH 2010
sebastien lagarde, Adopting a physically based shading model, 2011
Dimitar Lazarov. Physically based lighting in call of duty: Black ops. SIGGRAPH 2011 Course: Advances in Real-Time Rendering in 3D Graphics and Games, 2011.

Stephen McAuley. Calibrating lighting and materials in far cry 3. SIGGRAPH 2012 Course: Practical Physically Based Shading in Film and Game Production, 2012.

Dan Baker and Stephen Hill. Rock-solid shading - image stability without sacricing detail. SIGGRAPH 2012 Course: Practical Physically Based Shading in Film and Game Production, 2012.

Brent Burley. Physically-based shading at disney. part of Practical Physically-Based Shading in Film and Game Production, SIGGRAPH, 2012.
sebastien lagarde, laurent harduin, The art and rendering of remember Me GDC2013
David Neubelt and Matt Pettineo, Crafting a Next-Gen Material Pipeline for The Order: 1886 GDC2013
Brian Karis, Specular BRDF Reference, EPIC 2013

GAME DEVELOPERS CONFERENCE CHINA October 25-27, 2015 www.GDCChina.com www.GDCChina.cn

References

Marco Alamia , Physically Based Rendering - Cook - Torrance
Lazanyi, Szirmay-Kalos, Fresnel term approximations for Metals
Eric Heitz, Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs, SIG2014
Naty Hoffman, Background: Physics and Math of Shading, SIG2014
Danny Chan, Real-World Measurements for Call of Duty: Advanced Warfare, SIG2015

[^0]: 瑞利散射发生时，阳光中各波长的光所占比例

