
Before we get started, I’d like to point out that I’ll take
questions during the talk via this URL. You can go on there
and ask a question, and you can even upvote questions. I’ll
check periodically throughout the talk and answer the most
voted questions. In fact, there’s one here right now:

(Who is here because they couldn’t get into Romero’s talk?)

(Yeah, totally. I mean, I released a Doom mapset last year
that was a Cacoward runner up, and which itself was a
follow-up to a Cacoward winning map I released in 2003. But
instead of watching his talk, I’m here presenting mine.
Sacrifices have been made.)

[FORWARD]

D: Using an Emerging
Language in Quantum
Break
Ethan Watson
Senior Engine Programmer
Remedy Entertainment

Ethan Watson

14 Years
11 Platforms

So a bit about myself to begin with. As the title slide gave
away, I’m Ethan Watson.

[FORWARD] And I come from the fictional land of Australia.

[FORWARD] I’ve been in the industry for almost 14 years,
during which time I’ve shipped games on 11 different
platforms. I’ve shipped a number of titles as both an engine
programmer and a game programmer, some of which include
the TY the Tasmanian Tiger games; Star Wars: The Force
Unleashed; Game Room; and, most recently, Quantum Break.

[FORWARD]

2

As you may have gathered, I work for an independent studio
known as Remedy where I am currently a senior engine
programmer.

[FORWARD] Over our 21 year history we’ve released games
like Max Payne and Alan Wake.

[FORWARD]

3

Of course, the reason we’re all here today is because of our
most recent release - Quantum Break.

Also known to my girlfriend as the reason she didn’t see me
for a few months… and the reason why I missed her 40th
birthday (it’s cool, I’m sure she’ll have another one).

BUT it’s done, it’s out, it got a good reception. And it means I
can talk about our usage of the programming language D in
the game, which made us the first studio to ship a AAA game
using the language.

A bunch of the work I’m presenting here today was started
before I got to Remedy by another programmer, Manu Evans.
I’ve known him since 2002, back before we started in the
industry, so when he decided to go back to Australia a month
after I joined Remedy I was the natural choice to take over his
work. Which lead to very quickly needing to learn some
in-depth concepts with little more than an explanation of the
code from Manu and the code itself as an example. Today, I
aim to present everything in a human-understandable format
throughout this talk.

4

But before we get into that, we need to talk about why we decided
to try D in the first place.

[FORWARD]

Rapid prototyping
●Programmers wanted a “scripting”
system
●Settled on compiling native code in
a DLL
●“Why not D?”
●Yeah, why not D?

Our usage came about because of a desire to have rapid
prototyping capabilities.

[FORWARD] Before I joined Remedy, the programmers
decided that they wanted a system that enabled rapid
prototyping. Compiling and linking C++ code is slow and
painful, so something needed to be done

[FORWARD] Various scripting solutions and things like Mono
were discussed before the idea of compiling native code into a
DLL was settled on. One of the programmers at the time,
Tristan Williams, had previously worked at Splash Damage and
would talk often about how nice rapid prototyping in idTech 4
was, which compiled C code to DLLs.

[FORWARD] Rather than being stuck with C in a DLL, Manu,
who is a D enthusiast, said “Why not D?”

And to his surprise, the response from everyone was…

[FORWARD] yeah, why not?

Well, that’s a lie. Not everyone said that. There was another

6

common response:

[FORWARD]

(Image source:
http://medicalstate.tumblr.com/post/81104919425/why-not-zoidber
g-by-barry-doyon-march-28th-was)

http://medicalstate.tumblr.com/post/81104919425/why-not-zoidberg-by-barry-doyon-march-28th-was
http://medicalstate.tumblr.com/post/81104919425/why-not-zoidberg-by-barry-doyon-march-28th-was
http://medicalstate.tumblr.com/post/81104919425/why-not-zoidberg-by-barry-doyon-march-28th-was

What is D?
●Statically typed, compiled language
●Designed to succeed C++
●Interoperates with C and C++
●Modern language features
●Fast compile times
●Ridiculously powerful compile-time features

What is D? That’s a good question.

[FORWARD] It started life as a statically typed, compiled
language…

[FORWARD] that was designed to succeed C++.

[FORWARD] To that end, it interoperates with C seamlessly,
and C++ to varying degrees thanks to C++ not having a
single unified application binary interface.

[FORWARD] The big winning factor is that it is a completely
modern language with all the modern bells and whistles like
lambdas and properties and all that jazz, so it’s appealing to
programmers.

[FORWARD] And appealing to everyone is its fast compile
times.

[FORWARD] But, of particular interest, is its ridiculously
powerful compile time features that sets it in a league of its
own.

8

Googling for D is tricky though. Interestingly, it wasn’t originally
called D. It was originally called Mars, which led to the D standard
library receiving the name “Phobos”. It was the community which
demanded it be called D.

[FORWARD]

He LOVES
the D

the dlang

http://www.dlang.org

This leads to some rather unfortunate jokes.

[FORWARD]

But there is something of a solution for it.

[FORWARD] The official way to google for the language is to
use “dlang”.

[FORWARD] The homepage for D is in fact dlang.org, and I
find limiting google search results to that domain usually gets
you what you’re after thanks to some very active newsgroups.

[FORWARD]

10

D was started by Walter Bright, who writes and maintains the
reference compiler for the language called DMD.

[FORWARD] Now, this guy is actually an OG vidya game
developer. Back in the 70s, he wrote a game for mainframes
called Empire, which eventually made its way to every major
home computer with a keyboard in the mid-to-late 80s. My
father played the bejesus out of the Amiga version.

But by that point in time, Walter had already found his calling.

[FORWARD] He had written and released the first native C++
compiler, Zortech C++. Anyone that’s been around long
enough may be familiar with it. D started as a re-engineering
of C++ but has become something much more than just that.

[FORWARD]

11

A few years later, he was joined by a guy called Andrei
Alexandrescu.

[FORWARD] Andrei has the distinction of having made C++
relevant in this century thanks to a little book he released in
1999 called Modern C++ Design, which popularised template
metaprogramming. If you’ve ever done more with templates
than just changing the storage type inside a class, then
chances are you’ve done something popularised by this book.

[FORWARD] He has also written the seminal book on D. If you
want to learn the language, this book is generally the first
stop.

So that’s two big names in C++ powering the language. But
why are they off making a new language instead of trying to
improve C++? I can’t speak for them, but I can give you my
own take on C++.

[FORWARD]

12

Die C++, Die: Part One

(That’s not German for “The C++, The”)

Can I have a show of hands here of people that like C++?

Okay, now those with your hands up, lower them if you like
another language better than C++ and would rather program
in that.

Now, those of you remaining: Are you familiar with the term
“Stockholm Syndrome?”

Sure, C++ has been paying my bills for about 14 years now.
But you know what? Maybe it’s time to move on.

[FORWARD] I mean, if you look at this timeline of the
universe, look at what role C++ plays in the grand scheme of
things. New languages and programming paradigms have
evolved since C++ was new and fancy, and honestly, the
additions to the language in C++11/14/17 just aren’t enough
or are far more obtuse than they need to be.

[FORWARD]

13

Die C++, Die: Part One

Let’s just take a really simple example - an interpolation
function. Here’s one we’ve written in a generic manner. And
using a fairly standard interpolation formula. from plus
brackets to minus from close brackets times ratio. Templated
means that anything that can add, subtract, and multiply will
Just Work™ with this code.

[FORWARD]

14

Die C++, Die: Part One

And for for something like interpolating between two floats, it
will work just fine. The result from that example will be 0.525.

[FORWARD] But then we have a problem here. That lerp
function, when interpolating from a higher to a lower value on
unsigned values, will trigger the integer wraparound. Which
results in incorrect values. The result when trying to
interpolate half way from 230 and 110 when both values are
8-bit unsigned integers is in fact...

[FORWARD] 42, not the expected 170.

[FORWARD] But don’t panic. We can fix this.

[FORWARD]

15

Die C++, Die: Part One

There’s another form of an interpolation function that we can
use.

[FORWARD] The second one has an additional multiply with
one minus the desired ratio, and both raw values are
multiplied with. The result is that it handles unsigned values
correctly. Hooray! And with a bit of template specialisation…

[FORWARD]

16

Die C++, Die: Part One

...we can rewrite our lerp to call a specialised container based
on the result of std::is_signed to get us the correct lerp
function.

So we’re done, right? Well, no.

This solution solves lerping for basic types. But what about
aggregate types, like a three-dimensional vector or a RGBA
colour?

We need to know if our complex type has signed values, and
with this code…

[FORWARD] the solution is to specialise std::is_signed for
every single object passed into the function. And as this can
be quite easy to forget, that results in making something as
simple as a lerp function a buggy, unmaintainable mess.

[FORWARD]

17

Die C++, Die: Part One

So, fine. To keep the generic function generic and
maintenance free, the solution here is to use the sub-optimal
two-multiply version for the generic version.

But that doesn’t mean things have to be the same in D code.

[FORWARD]

18

Die C++, Die: Part One

Here’s the exact same function written in D.

The auto return type should be familiar to C++11
programmers.

[FORWARD] But notice how templates are defined - a first set
of bracketed parameters. Instantiating a template, to avoid
confusion, requires you to use the exclamation mark followed
by those parameters. You don’t get the double angular bracket
problem you get in C++ templates as a result.

[FORWARD] But there’s two extra very important concepts
here. The first one is template constraining. You can constrain
the template parameters inside their declaration, but far more
useful in this case is to use an if constraint after the
declaration. This will check if F is any kind of a floating type -
D has built in support for several types of floating point types,
so rather than writing several specialisations to handle each
type constraint we simply use the if constraint to get it all in
one.

[FORWARD] The next one there is static if. The preprocessor
in C is like baby’s first compile time branching compared to

19

static if. Static if will resolve every unique time it is encountered.
Such as in this template, it will resolve for every template
instantiation. Using static if, we can check if type T has unsigned
members. If it does, then it will compile the unsigned form of the
function. If it doesn’t, then it will compile the signed form.

[FORWARD]

Die C++, Die: Part One

And that’s it. We’ve written the function once, constrained it to
correct parameter types, and inspected types using built-in
language features. It’ll now handle any type we can throw at
it, generate optimal code in each case, allow you to specialise
for micro-optimisations if you so desire, and assuming your
linker is reasonable and can do identical function folding your
template code won’t blow out when used on very similar
types.

[FORWARD]

21

Die C++, Die: Part One

Template
parameter
constraints

Template if
constraints static if

Swift Yes where No

Rust Yes where No

C# where where No

Of course, there are other, trendier modern languages out
there. And they’re all nice enough replacements for C++ in
many use cases. Swift and C# are immediately relevant to
gamedev. And if D wasn’t a thing, I might even be aboard the
Rust bandwagon (and to be clear, I’m comparing core Rust
functionality, not Rust plus your favourite compiler plugin).

But sometimes, certain features are either lacking or are
incomplete to do it as elegantly and as effortlessly as you can
do it in D.

In this case, many languages will have “where” constraints
that allow you to check types only and require you to either
specify complex chains or to change the makeup of your type
to fit it. Rust can get away with a lot thanks to traits, but it’s
still hasn’t gone as far as it should go.

An if constraint is far more powerful in that it works just like
an if statement, so if the declaration inside it resolves to true
then you’re good to go. I’ll get into why this is very powerful
later.

And when it comes to static if? None of these languages are

22

doing it. (Rust can kinda do some very limited things with its config
macros). Walter, Andrei, and Herb Sutter actually submitted a
proposal for static_if to the C++ standards boards. To put it politely,
Bjarne Stroustrup is not a fan (look up the papers online). So if it
does come to C++, chances are it’ll be a pain to use like lambdas
are.

(No, seriously, who decided the lambda syntax was a good idea???)

[FORWARD]

Problem: C++ is a pain.

Solution: Use a different language.

Die C++, Die: Part One

There will be other examples in this talk, but in each case the
moral of the story is simple: If C++ is a pain, then it’s time to
use a different language.

[15 MINUTE MARK?]

[CHECK QUESTIONS HERE]

[FORWARD]

24

D on Our Target Platform
●Situation wasn’t great a few years back

● LDC
● GDC
● DMD

So, let’s get back to integrating D.

Back when we started with D, there was a very good question
of whether we could ship it on Xbox One. At that point, the
Xbox One hadn’t even been announced yet, and information
surrounding it was under a very heavy lock with a very sharp
key. But we knew it would be a 64-bit Windows OS, so we
should be able to get it generating reasonable code.

[FORWARD] Compilers, though, weren’t quite there a few
years back.

[FORWARD] LDC was in a dire state for Windows. So it was
out of the question. It is very nearly 100% usable these days,
debugging symbols are still an issue on Windows at least.

[FORWARD] GDC had working 64-bit output, but it lagged
behind mainline features and bugs found had a two-or-more
week turnaround from report to fix. This wasn’t really good
enough for our needs.

[FORWARD] DMD was always up to date. Only problem? It
only generated 32-bit binaries. That made it, at that point

25

unsuitable for our use. But being up to date on the bleeding edge
was going to be highly advantageous.

[FORWARD]

Go with DMD
●Get 64-bit binary support

● Output to mslink compatible formats
●Got it! It works!
●And Xbox One works!

So we made the decision to go with DMD.

[FORWARD] Of course, we’re in the future now. 32 bit is so
passe. We needed 64 bit support, and DMD did not have it.

[FORWARD] So we asked Walter for 64 bit support that we
could link with Visual Studio’s linker. This required Walter to
write output in the Common Object File Format.

[FORWARD] With the correctly formatted object files, we could
then link with the XDK’s tools. End result, Walter provided us
with Windows 64-bit support for the compiler frontend. We
could now compile and link and load our D DLLs in our 64-bit
codebase on our work machines, all running Windows 7 64-bit
at that point in time.

[FORWARD] And since we got 64-bit support via Microsoft’s
Visual C linker backend, all we needed to do was plug in the
XDK’s linker to our toolchain and the end result was that we
got Xbox One support basically for free, and Walter was
none-the-wiser that we were able to do this.

[FORWARD to trollface]

27

[FORWARD]

Development Environment

Visual D

Visual Studio 2005-2015 support

http://rainers.github.io/visuald/

Having a good development environment is essential for game
programming these days. Specifically, on Windows, if it
doesn’t have Visual Studio support then it’s basically not
usable.

[FORWARD] Thankfully, a man called Rainer Schütze was
there with a package for Visual Studio called Visual D, which
provides integration of D into Visual Studio with all the bells
and whistles you’d normally expect.

It’s safe to say, and I’ve told him this in person, that Remedy
would not have used D had this not been a Thing™. It still has
some flaws in it, but one of the results of the annual D
Conference this year in Berlin was that the D Foundation has
decided to put money into Visual D. So it’s going to be getting
even better in the future.

[FORWARD]

29

Code as Data
●Exports to DLL in global block

● Back door for programmers
●Implementation was sssllllllooooowwwwww

● No platform distinction for data sets
● Debug + Release for Win7 + XBO + UWP

●Being improved right now

Alright, so we’ve got a compiler and we’ve got a development
environment. Sweet. But while that’s enough to get us writing
Windows applications, we need to do more work to support
rapid prototyping. Which meant that we treat D code as data.
This is essentially the same idea that powers Unity and Unreal
Engine 4, but as we shipped it in Quantum Break it was a fair
bit clunkier.

[FORWARD] We compiled our D code in our global export
block.

[FORWARD] Programmers had a back door via a plugin for
Visual Studio that would kick off an export for a single module,
printing the output to Visual Studio so that you could do all the
normal things like go straight to the problem lines.

[FORWARD] The implementation, however, ended up being
slow by the end of the project. The major reason?

[FORWARD] A decision was made very early on that we would
just use a single set of data for all platforms. It’s not
something I ever agreed with and it did bite us towards the
end of the project in other areas, such as pre-tiling textures

30

and using XMA audio for Xbox while still having a dataset we could
use on our work PCs.

[FORWARD] But specifically for our D plugins, it meant that
exporting your D code required compiling both debug and release for
our work platform, Windows 7, and our release platforms, Xbox One
and UWP, at the same time. This was a minute long process for
modules, whereas just compiling release OR debug for the work
platform was down in the two or three second mark.

[FORWARD] This system is currently being significantly improved, so
that it is quite a lot more like a Unity-style workflow and not what
we had. But I’ll get to that later on.

[FORWARD]

Die C++, Die: Part Two

We’ll take a slight detour now, so that I can explain in greater
depth some code I introduced earlier. Specifically, the
template isFloating. This is a template in the standard library
that would look a little something like this.

It makes use of a feature known as “eponymous templates”,
where naming a symbol inside of a template the same as the
template’s name means that the template resolves to this new
symbol. In this case, a boolean.

[FORWARD] It calculates that boolean with the is operator.
The is operator is a handy little thing that checks types. It has
far more uses than what is on display here, but this is the bare
basic use case for it.

[FORWARD]

32

Die C++, Die: Part Two

HasUnsignedMembers is a custom template, and does a
similar thing- wait, hold on...

[FORWARD] That looks like it’s assigning the results of a
function call to the enumeration.

This is another one of D’s killer features - Compile Time
Function Evaluation. If you can write your function to follow
functional programming rules (ie pure, no exceptions, memory
safe), then you can call and evaluate it at compile time. One of
D’s philosophies is that the more you can do at compile time,
the faster your runtime code will be.

[FORWARD]

33

Die C++, Die: Part Two

So let’s take a look at the implementation of
hasUnsignedMembers.

Before I explain all this, I must point out that while this code is
correct, it will only work on simple types and aggregate types
with no private members. This is cut down for brevity.

[FORWARD] So we see a static if to begin with. Pretty simple
security, if you’re already a basic type then you only care if it
is signed or unsigned - isUnsigned there is another standard
library template. But what if it’s an aggregate type? Well,
that’s where D has another little magic trick.

[FORWARD] It’s the compile time traits system! allMembers of
T gives us a tuple of strings, which we can then foreach over.
Now, this will give you ALL members of your object. Variables,
functions, sub-objects, uninstantiated templates, constants,
everything. So we need to go in and check whether the
symbol we’re parsing is actually a variable.

[FORWARD] So we static-if based on whether we can get the
type of the member. But to do that, we need to get the
member first. What good is a string, after all? So we use the

34

getMember functionality of the traits system, which does the symbol
resolution for us. We then simply get the type of it and do an is
check as mentioned.

[FORWARD] From there, we simply recursively call the
hasUnsignedMembers function and merge the result with our current
cached one. If anything is unsigned, that will be true and we can
continue on as normal.

Of course, as I’ve pointed out, this only works for very simple
structs. If you were to write this in a truly generic fashion…

[FORWARD]

Die C++, Die: Part Two

You’d go ahead and wrap that up in a little template, which I’ll
call VariableTypesOf, that goes through and parses the symbol
and sticks them in a type tuple for you to iterate over at your
leisure. Any errors in logic can be fixed in your template, and
now you can just get the variable types of any given
aggregate type whenever you want.

[FORWARD]

36

Die C++, Die: Part Two

Handy.

[FORWARD]

37

Die C++, Die: Part Two

Eponymous
templates

Compile
time

reflection
CTFE

Swift No No No

Rust No No Macros

C# No No No

Now, this table looks a lot more interesting than the last one.
The other languages here have similar features in some cases.
C# and Swift have runtime reflection capabilities, not compile
time. Rust doesn’t have anything built in to the base language,
you need a compiler plugin to get that working (which in itself
gets silly, it results in endless dialects of Rust).

Eponymous templates are a nice-to-have, but CTFE and
compile time reflection are critically important features for our
purposes. The realistic alternatives are not comparable.

[FORWARD]

38

What is the one thing you can do in D that you
can’t do in C++?

Die C++, Die: Part Two

Save time.

But you know, tables comparing features is one thing. You can
list features out, and people will come up with ways to do
something similar in C++ (or, to be fair, their favourite
language, it’s not solely a C++ phenomenon). Either way,
when someone asks me, “Alright, so what can you do in D that
you can’t do in C++?” I always have a very simple answer for
them:

[FORWARD] Save time. Everything you can do in C++, I can
do quicker and more elegantly in D. Saving time in your work
shouldn’t just be about better pipelines, or hot reloading.
Programmers spend a lot of their time writing code, so why
not speed that part of the process up by using a different
language?

[30 MINUTE MARK?]

[CHECK QUESTIONS HERE]

[FORWARD]

39

Code as Data - Binding DLLs
●Functions

● Any namespace
● Static member functions

●Classes
● Member functions
● Virtual tables

So now we get down to the meat of things. Our D code will
export to DLLs which we can load in and interact with at
runtime. Now, there’s two ways to work with DLLs. The
simpler way these days is to statically link a little lib generated
by the compiler that will automatically load up and bind
functions for you on program start. We can’t use that. We
need to be able to unload and reload new DLLs on the fly. So
we’ll need to roll our own binding solution.

[FORWARD] The bare basics of what the binding system will
need is to bind functions, both functions in any namespace
and static class members.

Entire classes themselves also needed binding including all
member functions and any virtual tables necessary.

Back when we started, D had support for these things. But the
support is not really the kind you need for making a rapid
prototyping system. It works out for the best to roll your own
solution.

40

Match vtables

One of the built in mechanisms D provides for C++
interoperation is virtual function table matching. We used that
in a few places. The mechanics we settled on were basically to
define an abstract interface that a given class would inherit.
And to ensure the system knows about it, you also have to use
the BIND_INTERFACE macro.

So this is all well and dandy. We’ve got our normal methods,
we’ve got overloads..

[FORWARD] Both the C++ and D compilers will do all the
work for us and we can just get on with life.

[LOOK AT SCREEN]

Uh, Visual Studio? What are you doing there? And why have
you got those angry eyebrows?

[FORWARD]

41

Match vtables

Your vtable is wrong!
It needs fixing!

My vtable is wrong? You what, mate?

[FORWARD]

42

Match vtables

Wait, hold on. Did you just reverse my virtual function order
for overloaded functions?

[FORWARD]

43

Match vtables

Much better! Is good now!
kthxbai!

What? Better? How? Wait, get back here, Visual Studio!

[FORWARD]

So it turns out that visual studio, when it generates its
vtables, reverses the order of any overloaded functions it
finds. And since D compilers will generate vtables in the order
it encounters those functions, you have a problem of the
wrong function being called at the wrong time.

[FORWARD]

44

Match vtables

To avoid this being a poorly-understood problem, I put out a
blanket ban on overloading functions. Far from an elegant
solution, but it meant that I could ensure consistent results
across compilers.

[FORWARD]

45

Match vtables

This is how the same declaration would look in our D code.
Nice and neat.

[FORWARD] And, importantly, we need to declare the class as
extern(C++) or else it will generate the virtual function table
in a D manner, which is not compatible with the C++ manner.

[FORWARD] Making it visible to the binding system is also
done not with a macro, but by tagging the class with the
BindExport user defined attribute.

User defined attributes are something I haven’t really talked
about yet. Sounds like a great time to do so.

46

Die C++, Die: Part Three

…

User defined attributes are actually something that Manu
requested and got added to the language. Everyone is using
them extensively now. So there’s a good point - if you need
something added to D and can make a good case to Walter
and Andrei, then there’s a chance you’ll get it. There’s a
proper process for these things today - D Improvement
Proposals - but speaking to them face-to-face is still very
much worthwhile.

But back to the business at hand. A user defined attribute is a
pretty simple thing. How simple?

[FORWARD] It’s literally just a struct definition. If you know
how to write a struct, you know how to make a user defined
attribute.

[FORWARD] There’s no restriction on struct complexity. You
can have default values and everything in it.

[FORWARD] Applying it to your type is simply a matter of
pre-pending the declaration with an at sign followed by the
name of your UDA.

47

[FORWARD] You can also apply UDAs to variables. This is quite
handy.

[FORWARD] And also, you can apply it to functions. Also quite
handy.

[FORWARD] Especially if you start tagging up function declarations
with the intention of providing a definition later. Why is this useful?
Well, let’s get down to business.

[FORWARD]

Die C++, Die: Part Three

Remember in the last example how I illustrated going through
the variable types of an object, and how it was possible to
wrap that all up in a template? Well that’s not all!

[FORWARD] We can also get all the actual variables!

[FORWARD] And all the declared functions!

And you can get carried away and collect subtypes of a given
type, but that’s going too far for our illustrative purposes.

[FORWARD]

49

Die C++, Die: Part Three

What we’re interested in here is getting all the declared
functions of an object.

[FORWARD] And once we have them, we can iterate over
them and check if the function has a FunctionStub user
defined attribute.

The hasUDA template lives inside the standard library’s traits
module, and works on any symbol or type. If our function has
the FunctionStub UDA attached with it, then sweet, our if
check passes and we continue on.

[FORWARD] So here’s an interesting one. generateStubFor is a
templated function. And by assigning it to an enum, we’re
forcing it to run at compile time.

50

Die C++, Die: Part Three

So let’s have a quick look at the generateStubFor function. Its
template parameter is an alias. Alias is a pretty powerful
keyword in D. It can be used in a simple manner just like
you’d use typedef in C or C++. In this case, we’re using it to
take a direct reference to a symbol.

The only other weird thing here is the FunctionDeclaration
template we’re invoking. The purpose of it will be to generate
a string representation of the function as you’d see it in source
code, and to do that it uses a few things from the standard
library.

The end result will look just like a plain old ordinary function,
but represented by a string. Cool. But now what do we do with
it?

51

Die C++, Die: Part Three

Back over here, we’ll have our function string calculated at
compile time. And now, here’s one of D’s greatest magic
tricks. Nothing up my sleeve, aaaaand:

[FORWARD] Ta-da! The mixin keyword. Now, everyone knows
how to write C macros. And when you use them, you know
that the preprocessor replaces the invokation of the macro
with the expanded form. This mixin keyword? It’s essentially
the same functionality. Except it takes in a string. Any string.
It can be a string literal. Or, in this case, it’s a string we’re
generating at compile time to fill out a function stub. Let that
sink in for a moment. Because there’s more to mixins than
just code generation.

52

Die C++, Die: Part Three

There’s another kind of template in D that you can write called
a mixin template. Unlike a normal template, because it is a
mixin it will act in a simiilar manner the C preprocessor and
replace the invocation of the mixin with the contents.

In this case, our function iteration and generation code has in
fact been sitting inside a mixin template this entire time.

[FORWARD] And yes, notice that you can go all Inception in
here and have mixins within mixins.

But how is it all used? Well, that’s quite simple really.

[FORWARD]

53

Die C++, Die: Part Three

Here’s an incomplete struct…

[FORWARD] And here’s the invokation of our mixin.

The compiler will mixin the contents of the GenerateStubsFor
template, which itself is mixing in compile-time generated
code definitions for each function it finds marked with the
FunctionStub user defined attribute.

[FORWARD]

54

Die C++, Die: Part Three

[FORWARD] And once the compiler has expanded everything,
this is how your struct will look to the compiler. Everyting is
expanded, and your stub functions will gladly print out to the
screen that they’re function stubs when invoked. How nice of
them!

[FORWARD]

55

User
defined

attributes

Deep
function

inspection
Mixins

Swift Runtime Obj-C No*

Rust Not yet Maybe? Macros

C# Yes Runtime No

Die C++, Die: Part 3

The other, trendier languages have similar features for UDAs,
but none of them are accessible at compile time in the same
way as D. Rust allows you to define attributes from a
pre-defined list.

Swift has mixins via traits and protocol extensions. While it’s
the same name, it’s a different end result.

I’m certain I’ve seen how to inspect function types in Rust, but
I can’t find that info any more. Might have been in a plugin.

Anyone one of these features alone that I’ve shown over the
course of this talk is a powerful thing for your language to
have. In fact, if D wasn’t a thing, maybe I’d be here talking
about Rust now instead. D has all the features I’ve talked
about out of the box, there’s no need to install an additional
library or build step or compiler plugin or anything to get
access to these features. And having them all there,
combined, waiting for you to use it? It’s some next level shit.

56

Programmers are lazy. It’s literally our job
description to tell a computer what to do so

that we don’t have to.

So let’s write less code to do the same work.

Die C++, Die: Part Three

Now, someone might be able to bang their head up against
the C++ wall long enough and persistently enough to get
something that might do what we’ve done here at compile
time. But honestly: Why go to all that effort? Programmers are
lazy by definition. If you can write less code to do the same
job and have it still perform better than C++ compile times
and not incur a runtime cost, and have it be readable to
ordinary humans, then do that.

[45 MINUTE MARK?]

[CHECK QUESTIONS HERE]

[FORWARD]

57

Export C++ functions

Alright, so getting back to the binding system.

Another critical thing D provides for C++ interoperations is
function calling conventions. It knows all about standard
calling conventions used in C, C++, Windows, and even
Pascal. We can actually use this to give greater flexibility than
built-in virtual function table matching.

[FORWARD] The first thing we needed to do was expose our
C++ functions.

This was the method that we shipped Quantum Break with for
the C++ code. Every time you wanted functionality, you’d go
in and make these declarations yourself.

[FORWARD] And it’s a bit of a Sisyphean Task.

Especially when it comes to exposing new functions and
classes that you need. Getting non-polymorphic functions is
easy enough, but then when you do encounter an overloaded
function you need to specify the return types and all
parameter types for the compiler to pick up the correct
function you need.

58

[FORWARD]

Import C++ Functions

Now we get to the fun part.

D has the same distinction between struct and class that C#
has - struct is a value type, class is a reference type. So if we
want to replicate a C++ class as close as possible, we define a
struct.

The struct, we mark up with some UDAs.

[FORWARD] The BindClass UDA is a lot like the C++ macro.

[FORWARD] The interesting one is the CTypeName UDA - we
declare the fully qualified C++ name inside it. The why of this
will come later.

[FORWARD] Now, if you remember the example with the
FunctionStub UDA, you’ll see I’ve done something very similar
here. We’re declaring functions and parameters, and marking
them up with UDAs. It’s then up to this mixin down here to do
all the heavy lifting we’re interested in.

[FORWARD]

60

Syntactic sugar

Before I continue on the D side, there’s something that needs
highlighting on the C++ side. We have been exposing class
methods to the binding system. The fully qualified name for
the DoSomething method looks something like this. It looks
just like a member function with no parameters, right?

Wrong.

[FORWARD] There’s a secret parameter in that function call.
The compiler, in fact, sees the function a little something like
this.

“this” is actually the first parameter to each and every method
function. So when we take the address of a function in C++, if
we just jam it into a function pointer matching that invisible
signature things will Just Work™.

[FORWARD]

61

Import C++ Functions

Subsequently, when we parse our class and generate bindings
for our functions, that means we need to store the function
pointer in a format that is correct for C++ but allows us to call
it from D.

[FORWARD] The BindAllImports mixin will go and grab every
BindImport tagged function and do thigns with it, and we’ll use
this function here for illustrative purpose.

[FORWARD] The easiest thing it does is to implement the
function. It inlines it since it is doing little more than calling a
function pointer with all parameters and this as the first
parameter.

[FORWARD] The pointer itself is stored as a globally shared
variable. In D, static only has thread-local storage. So if you
want something to be accessable across all threads, it needs
to use gshared storage.

[FORWARD] Notable here is that we have attached a
BindRawImport user defined attribute to our pointer.
Everything up to this point has served to provide a
human-friendly abstraction. When we import function pointers

62

from C++, we import them directly in to function pointers marked
with BindRawImport. And inside each BindRawImport is all the
information it needs to find the correct function with the correct
prototype.

[FORWARD]

Import C++ Functions

Getting the RawMethodPtr template to work is really quite
simple thanks to a couple of things in the standard library.

[FORWARD] The Parameters template there will return a type
tuple of the parameter types of our function, and we can make
a new one by feeding a type tuple another type tuple.

[FORWARD] Getting the return type is also quite easy, and self
explanatory.

[FORWARD] We then make an eponymous template definition
to a function pointer defined with the determined return type
and our newly constructed paramters.

[FORWARD] And finally, for a bit of sanity checking, if we were
to print out the type of our function pointer - each type in D
has a stringof member that you can query for a string
representation of it...

[FORWARD] Our output would look exactly like this in the
compile log.

[FORWARD]

64

Putting the Pieces Together
●Load a D DLL from C++ code
●Call a function with a collection of exported
objects
●Stick all those pointers in D equivalents
●Get on with life

And there’s really not much more to do from this point.

[FORWARD] It really is just as simple as loading a DLL with
LoadLibrary, resolving a function and calling it with a collection
of exported objects, stick all those pointers you now have in to
your D equivalent function pointers, and get on with your life
programming in a nicer language.

65

Instantiate from C++...

And that’s the basics of the system we shipped Quantum
Break with. It meant that in C++ code, we could instantiate an
object in D with a C++ interface and speak to it.

[FORWARD]

66

...And Use D Code

And inside D, because we’d gone to all the trouble of binding
up methods, it meant we can pass instances of C++ classes
straight to D and treat it exactly like it was a D object and
write plain old ordinary D code with it. Sweet. We can write as
much D code as we want, and as long as we’ve exposed our
C++ functionality there’s no technical disadvantage to doing
so.

[FORWARD]

67

What About Hot Reloading?
●VariablesOf!(Type)

● Write to JSON
●Delete, unload, load new code, recreate

● Free choice of debug and release code :-D
●VariablesOf!(Type)

● Locate and read from JSON

But what about hot reloading? You can’t just reload a DLL and
expect the data to be just fine, especially if you change the
layout of your D objects. It has quite a simple solution
actually.

[FORWARD] We already know how to get all the variables of a
given type.

[FORWARD] So doing that, we write the name and a string
representation of the value to JSON. The JSON parser in the
standard library can do this for you, but we need to do things
it doesn’t handle like scanning for pointers so that we only
serialise objects once.

[FORWARD] And then it’s out with the old, in with the new ----
We delete all of our D objects after serialisation, unload the
DLL, load in the new DLL, and recreate all our D objects

[FORWARD] And hey, since we’re going to the trouble of
reloading a DLL, do you want a release or a debug build? Now,
it needs to be said, being able to selectively switch between
debug and release on the fly like this changes the way you
work.

68

[FORWARD] But whichever one you choose to load, the
deserialisation is the same - with your recreated objects, do another
pass over all the variables...

[FORWARD] And read them from JSON if they exist in the JSON
document. Being a JSON representation means we don’t have to
worry one iota about binary matching. If a variable is there, then it
will deserialise. If it is not, then I hope you’ve put in meaningful
default values.

It got use in a rather critical subsystem too. We used D to
communicate between character inputs - be that AI or player
driven character inputs - and our animation middleware,
Morpheme. It was originally all C++ code, but that was
terrible for workflow purposes as code and data needed to be
heavily in sync for everything to just work. I ported all that
code to D, and now if you try to use a character without that D
code it just stands there in its idle loop.

Of course, there were issues with the binding system. Some of
these, I’ve highlighted and said we’re improving. In fact, what
started as a simple clean up so that humans could read the
code has turned into a full on reengineering of the system.

[FORWARD]

70

We’re open sourcing!

Binderoo

C++ binding layer
Rapid iteration development

And we’re open sourcing it. We’re calling it binderoo. It’s on
github. It’s currently a work-in-progress, but it’s going to
improve. Now that it’s open, Manu will be working on it once
again so there’ll be two of us constantly updating and
improving it.

[FORWARD]

71

Binderoo current/planned features
●Code edit and continue
●Code object binary layout modification
●Switch between debug/release on the fly
●Function versioning, mismatch mitigation
●Dynamic virtual function tables
●Unity-style code updating
●Auto-bind a C++ codebase

Some of these features are already in the code. Others still
need varying degrees of work to get there. But I’ve already
got some interesting stuff.

For example, did anyone wonder throughout the talk what all
those numbers were doing in the binding declarations? They
were actually version numbers. Quantum Break shipped with
hard version checking, which solved DLL hell but also meant
we had to follow a rather convoluted process to submit C++
changes that D code relied on. The new system requires you
to define the version that the function was introduced in - and
if necessary, the version the function was removed in. The
binding system can then make decisions on what to import,
and you can write branching code to handle it based on what
version was imported.

The really fun part with the new way I’m handling versioning is
that I also completely sidestep the compiler and rebuild virtual
function tables for any given object based on the version that’s
being imported. This itself solves a very big problem we had
with matching interfaces - the restriction on overloaded
functions no longer exists, but it also means that since the
vtable is provided by software and not the compiler that I can

72

build one up for the version you’ve actually loaded in.

The rapid iteration functionality will have quite a bit of attention
focused on it. I’m currently working on showing that we can replace
our level scripting language with D. That scripting language has
served several games, but it lacks certain modern features that our
scripters want these days. Like loops, for example. Our level builders
are highly skilled these days - one of them releases
award-nominated indie games in his spare time, another one was on
the Oscar-winning visual effects team for the movie Gravity. They
can handle and want a real language, so it’s just a matter of making
the workflow quick enough and easy enough for them (the goal is
sub-second iteration times). And this will have knock-on effects for
the core programmers too as their D code will be handled by the
same backend system.

[FORWARD]

Binderoo

https://github.com/Remedy-Entertainment
/binderoo

You can go get the in-progress work now. It’s not really
documented, but it’s there. As it gets more feature complete,
the documentation will be worked on so that anyone can use it
in as close to a drag-and-drop deployment as I can possibly
get it.

[QUESTIONS?]

74

Learning D
●The D Programming Language by Andrei
Alexandrescu
●Learning D by Michael Parker
●Programming in D by Ali Çehreli
●The D Cookbook by Adam D Ruppe
●Ask on https://forum.dlang.org
●irc://irc.freenode.net/#d

Before everyone goes. If you want to learn D there’s some
very solid resources out there. I’ve already mentioned Andrei’s
book. Learning D is aimed at people familiar with C.
Programming in D is aimed at people new to programming in
general. The D Cookbook there has some fairly solid examples
of more advanced stuff you can do in D. And there’s always
the newsgroups which can be accessed via forum.dlang.org.
And if you’re an old timey kind of person, the official IRC
channel is always active.

On a personal note. The first time I programmed in D was for
an internal 48 hour game jam a month after I got to Remedy.
I found it very easy to pick up at a basic level thanks to its
similarities to C#, but there are some key differences that will
bite you if you don’t pay attention. Everything I’ve presented
in this talk about compile-time code, I had to pick up *very*
quickly. One of the programmers I previously mentioned,
Manu Evans, was in charge of the system before I got to
Remedy. But not long after, he decided to leave. And as I’ve
known him since 2002 and could quiz him quite easily if I
needed help, and since I found it interesting, I took over and
finished the prototype he started. All I had to go on was his
explanation of the code, and the code itself. Everything I’ve

75

https://forum.dlang.org

presented here, I had to learn the hard way. But hopefully it’s clear
enough that you were able to follow what was going on.

We’re hiring!

http://www.remedygames.com/careers/

Also, come work with us. We actually have cookies!

77

