

You've got the power: your game running better on portable devices

Antoine Cohade Graphics Application Engineer – Intel

GAME DEVELOPERS CONFERENCE EUROPE COLOGNE, GERMANY · 15–16 AUGUST 2016

Agenda

- Why power matters
- Exploring power efficiency
- How to optimize your game
- Practical case: Lego Minifigures

Why power matters

• User reviews:

"Kills the battery."

"This app is a huge battery drain."

"Can kill your battery in a blink of an eye."

"Will destroy my battery life, though"

"Never seen a game **drain battery** like this. Even my 6s loses 10% in 20 minutes"

"*Kills battery* and limits where one can play."

Why power matters

- Integrated CPU and GPU share the same power envelope:
 - Even if a game is 100% GPU limited, CPU workload can impact performance
- Case study:
 - Synthetic workload
 - GPU limited
 - Running some heavy kernels on the CPU

Impact of CPU utilization/power on

Why power matters

• Varying power behaviors:

ACPI in a nutshell

- Each SoC components has sleep states
 - The deeper the component sleeps, the more power is saved
- When active, components have Performance States
 - Each P-State has a given voltage and frequency
- Package C-State is determined by the higher of the cores
 - Any awake component will keep the package awake

Best practices: Adapt to your platform

- Numerous processors and platforms
 - Differences can impact performance
 - Take these factors into account !

- Profile the platform at install time
 - GPU detect / Run some short game snippet
 - Select the optimal tradeoff performance/settings

2x less work

Best practices: Cap the frame rate

- Easiest way to save power, and also most efficient
 - DirectX HRESULT IDXGISwapChain::Present(SyncInterval, Flags);
 - OpenGL ES EGLBoolean eglSwapInterval(EGLDisplay display, EGLint interval);

	Interval = 2	Interval = 1	
	FPS	FPS	Battery Life increase
Cut The Rope 2	30.2	40.3	111%
Epic Citadel	31.1	50.7	179%
Intel Fast Blur	31.0	63.0	133%
Zombie Tsunami	30.1	60.4	136%

Source : Internal Intel test results on a Intel® Atom™ Processor Z3745 reference design

• Cap frame rates for menus/static scenes even lower

Best practices: Find a reasonable resolution

Best practices: Keep bandwidth under control

- 2560x1600x60 fps => 1GB/sec
- Design points for some of the tablets in the marketplace is 2-3W
- Changing RT format can help save 15-20% power

Best practices: Careful with spin loops

- Widely used:
 - Reduce input latency
 - Thread pools
- Prevents CPU from sleeping!
 - Avoid using them as much as possible
 - If really necessary, use the pause instruction

https://software.intel.com/en-us/articles/benefitting-power-and-performance-sleep-loops

Best practices: A lot more...

- Handle loss of focus
- Color buffer clears
- 2D game optimizations using depth
- Reduce CPU activity
- Use of next gen APIs

Lego Minifigures: Introduction

- Funcom's previous games...
 - Designed for a mature audience
 - Advanced graphics technologies
 - Mainstream was not a target
- Lego Minifigures
 - Targeting kids
 - New renderer:
 - Designed for mainstream ...
 - ... but with high end effects!
 - Scalability is key

Lego Minifigures: Power saving mode

- Cap the framerate to 30FPS
- Simpler lighting and shadows
- No anisotropic filtering
- Post process FXs
- Disable antialiasing

Lego Minifigures: Frame capping

• Vsync vs. Sleep

• Results:

	Before	After	Power Saved (%)
System Power (W)	16.7	12.3	26%
Soc Power (W)	10.1	6.6	35%
Memory Power (W)	1.4	1.1	25%

Lego Minifigures: Shadows Quality

• Optimization:

- Lower resolution shadow-maps
- Simple filtering
- Disabled AVSM

Results:

Results:	Before	After	Power Saved (%)
System Power (W)	12.3	11.8	4%
SoC Power (W)	6.6	6.1	8%
Memory Power (W)	1.1	1.1	1%

Lego Minifigures: Shadows quality

GERMANY · 15–16 AUGUST 2016

Lego Minifigures: Lighting and shadows

• Optimizations performed:

- Still deferred but simplified lighting
- Render only dynamic objects to shadow map
- Disable HBAO

Results:	Before	After	Power Saved (%)
System Power (W)	11.8	10.6	10%
SoC Power (W)	6.1	5.1	16%
Memory Power (W)	1.1	1.0	6%

Lego Minifigures: Lighting and shadows

Lego Minifigures: Disable PP effects

- Disabled depth of field
- Disabled god rays •
- **Disabled CMAA**

.

Results :	Before	After	Power Saved (%)
System Power (W)	10.6	10.3	3%
SoC Power (W)	5.1	4.8	5%
Memory Power (W)	1.0	0.9	9%

Lego Minifigures: Disable pp effects

Lego Minifigures: Final overview

	Power Saving Mode	Battery life	Battery life Increase
Asus TP 300LD	OFF	01:53:01	70%
(NVidia GT820M)	ON	03:22:04	79%0
System with	OFF	01:53:02	1020/
HD Graphics 5300	ON	03:49:04	103%

Source : Internal battery rundown tests

Conclusion

- Being power friendly: as easy as 1,2,3 !
- Users care about battery life: let them choose!
- Power optimization is performance optimization
- Focused optimizations can bring you terrific battery gain

Useful links

- GPU Detect : <u>https://software.intel.com/en-us/vcsource/samples/gpu-detect</u>
- Loops with Pause : https://software.intel.com/en-us/articles/benefitting-power-and-performance-sleep-loops
- Power Explorer: <u>https://software.intel.com/en-us/blogs/2013/10/29/power-explorer</u>
- DX12 Siggraph Demo: <u>http://blogs.msdn.com/b/directx/archive/2014/08/13/directx-12-high-performance-and-high-power-savings.aspxt</u>