
Simple and Powerful
Animation Compression

Nicholas Fréchette
Programming Consultant
for Eidos Montreal

Contributors
● Frédéric Zimmer, co-designer
● Luke Mamacos, consultant

● Thank you Eidos Montreal!

Presentation outline
● A bit of context

Presentation outline
● A bit of context
● The classic solutions

Presentation outline
● A bit of context
● The classic solutions

● Our special blend!

A bit of context
● The game engine used by Rise of the Tomb

Raider (2015)

● Same compression algorithms since ~1996!
● Used in dozens of AAA titles
● Based on linear key reduction

A bit of context
+ Good size

- Slow decompression
- Sub-par accuracy

The problem
● Cinematic clips
● Need high accuracy
● Size matters

The problem
● Cinematic clips
● Need high accuracy
● Size matters

● Ever higher need for accuracy
● 40% clips used weak compression
● Time is the enemy

The problem
● Legacy code not ideal
● Very old, aged poorly
● Not streaming friendly
● Nobody wants to get near it

Design goals
● Solve cinematics first
● Through streaming (if we need to)

● Keep it simple
● Time budget: 20 days

Design goals
● Fast decompression
● High accuracy

Design goals
● Best effort
● Small size
● Nothing to tweak
● Supersede everything

Most common algorithm families
● Signal processing
● Curve fitting
● Linear key reduction
● Simple key quantization

Signal processing
● E.g. wavelets
● Too complex
● See blog!

Curve fitting

Curve fitting
● Pros
● Sensible choice
● Very compact

Curve fitting
● Cons
● Not accessible
● Slower decompression
● Medium complexity
● Not great for mocap

Linear key reduction

Linear key reduction

Linear key reduction
● Pros
● Reasonably simple
● Reasonably compact
● Similar to legacy impl.

Linear key reduction
● Cons
● Similar to legacy impl.
● Slow decompression
● Not great for mocap

Simple quantization

Simple quantization
● Pros
● Dead simple
● Very fast
● Solid foundation

Simple quantization
● Cons
● Not very compact

● Good enough!

Our solution
● Range reduction
● Uniform segmenting
● Constant tracks
● Quantization

Range reduction
● Tracks in terms of ranges
● E.g. my elbow rotates by 120° in a clip
● Theoretical range: 360°
● Effective range: 120°

Range reduction

Range reduction

Range reduction
● Some overhead
● Range Minimum
● Range Extent

● Normalizes our values
● Range expansion is trivial
● (normalized value * extent) + min

Range reduction
● 6 scalar values = full track range
● 3 components * (min, extent)

● Clip metadata
● 6x floats = 24 bytes
● per animated track

Range reduction
● More accuracy => can be more lossy
● Bad for short clips

● Worth it!

Uniform Partitioning
● Split clips in blocks of 16 key frames

Uniform Partitioning
● Split clips in blocks of 16 key frames
● Fast and easy seeking

Uniform Partitioning
● Split clips in blocks of 16 key frames
● Fast and easy seeking
● Easy streaming

Uniform Partitioning
● Split clips in blocks of 16 key frames
● Fast and easy seeking
● Easy streaming
● Range reduction per block

Uniform Partitioning
● Block metadata
● 6x 8 bit = 48 bits = 6 bytes
● per animated track

● Lossy normalization!!

Constant Tracks
● For our main characters (~3500 clips)

Constant Tracks
● For our main characters (~3500 clips)
● Bones: 65% constant, 45% bind pose

Constant Tracks
● For our main characters (~3500 clips)
● Bones: 65% constant, 45% bind pose
● Tracks: 87% constant, 79% bind pose

Constant Tracks
● Per clip, 1 bit per track:
● Is it bind pose?
● Yes? Drop it!

Constant Tracks
● Per clip, 1 bit per track:
● Is it bind pose?
● Yes? Drop it!

● Per clip, 1 bit per track:
● Is it constant?
● Yes? Keep 1 key! (3x floats)

Quantization
● Hard coded, 16 bits

Quantization
● Hard coded, 16 bits
● Best common rate per clip

Quantization
● Hard coded, 16 bits
● Best common rate per clip
● Best rot/trans/scale rate per clip

Quantization
● Hard coded, 16 bits
● Best common rate per clip
● Best rot/trans/scale rate per clip
● Best rot/trans/scale rate per block

Quantization
● Hard coded, 16 bits
● Best common rate per clip
● Best rot/trans/scale rate per clip
● Best rot/trans/scale rate per block
● Best individual track rate per block

Variable bit rate
● Ideal for:
● Hierarchical data
● Exotic tracks
● Temporal coherence
● Everything!

Quantization details
● 16 possible bit rates

● Bit rates: 0, 3, 4, .., 16, 23

Quantization details
● 23 was a bad & naïve choice
● Same as float mantissa minus sign bit

Quantization details
● 23 was a bad & naïve choice
● Same as float mantissa minus sign bit
● De-quantization requires our integer to be

representable as a floating point number

Quantization details
● 23 was a bad & naïve choice
● Same as float mantissa minus sign bit
● De-quantization requires our integer to be

representable as a floating point number
● 32 bit float = 6 significant digits L

Quantization details
● 23 was a bad & naïve choice
● Same as float mantissa minus sign bit
● De-quantization requires our integer to be

representable as a floating point number
● 32 bit float = 6 significant digits L
● 19 might be a better choice, measure!

Quantization details
● 0 => track is constant in block
● We don’t need range information

Quantization details
● 0 => track is constant in block
● We don’t need range information
● Store our constant key instead!

Compression
● Almost everything is fairly trivial
● Only complex step is bit rate selection

Compression
● Almost everything is fairly trivial
● Only complex step is bit rate selection
● Measuring accuracy
● Need a smart heuristic

Measuring accuracy
● Important!
● Our algorithm iterates with it
● We compare our results to others with it

Measuring accuracy
● Important!
● Our algorithm iterates with it
● We compare our results to others with it

● Often overlooked and poorly
implemented!

Measuring accuracy
● Three important criteria:
● Account for hierarchy
● Account for aggregate transform
● Account for visual mesh

Measuring accuracy
● Hierarchy is important!
● Error accumulates down hierarchy
● Don’t use local space metrics!
● Use object space

Measuring accuracy
● Aggregate error is important!
● Don’t measure error with leaf bone position
● It ignores rotation/scale contribution!

Measuring accuracy
● Skeleton error != visual mesh error
● Skeleton is never visible, visual mesh is
● With rotation & scale, error increases with

distance from bone

Measuring accuracy

Measuring accuracy
● Vertex displacement on the visual mesh

is the true measure of accuracy
● Skinning == metric function
● Satisfies all 3 criteria

Measuring accuracy
● But…
● It is way too slow
● Mesh information might not be available
● Some bones have no skinned vertices

Measuring accuracy
● Use virtual vertices instead!
● Approximates skinning
● Satisfies all 3 criteria
● Intuitive tweaking: distance from bone
● Output is object space displacement error

Measuring accuracy
● We use:
● 3 cm for normal bones
● 1 m for high accuracy bones

Bit Rate Selection
● Huge search space!
● Need smart heuristic

Bit Rate Selection
● Huge search space!
● Need smart heuristic

● First pass finds an approximate solution

Bit Rate Selection
● Huge search space!
● Need smart heuristic

● First pass finds an approximate solution
● Second pass refines to local minimum

Bit Rate Selection

Bit Rate Selection

Bit Rate Selection

Bit Rate Selection

Bit Rate Selection

Bit Rate Selection

Bit Rate Selection

Bit Rate Selection

Bit Rate Selection
● We minimize the bit rate
● We maximize the error

● Threshold is important!
● 1 mm is too high

Bit Rate Selection
● Hardcoded threshold: 0.1 mm
● Sub-millimeter accuracy!

The results
● Aggregated
● Concrete examples

Aggregate Results
● 3900 clips (various characters)
● Compression time:
● 3.2 hours, single threaded
● 10 minutes, multi threaded

● Sum of clip lengths:
● 5.4 hours @ 30 FPS

Aggregate Results

Aggregate Results

Aggregate Results

Aggregate Results
● Total size on disk: 168.4 MB
● Legacy size: 300.0 MB

● Average number of animated tracks:
● 56.0 per clip

Aggregate Results

Aggregate Results

Raw Clip Size
● Compression ratio is meaningless

● Unless raw size is consistent!

Raw Clip Size

● Raw size =
key frames * # bones * 36 bytes

Raw Clip Size
● 1 track key = 3 floats = 12 bytes
● 1 bone key = 3 track keys = 36 bytes
● 1 key frame with 140 bones = 140 bone

keys = 4.9 KB
● 30 key frames = 147.7 KB

Some concrete examples
Scramble Idle Walk Cinematic

Num. key frames 24 80 38 2291

Num. animated tracks 56 (11%) 77 (15%) 82 (16%) 87 (16%)

Raw size 147 KB 489 KB 232 KB 14498 KB

Compressed size 7 KB 15 KB 12 KB 521 KB

Compression ratio 20 : 1 32 : 1 19 : 1 28 : 1

Avg key frame size 314 B 194 B 325 B 233 B

Decompression (XB1) 28us 32us 33us 27us

Some concrete examples
Scramble Idle Walk Cinematic

Num. key frames 24 80 38 2291

Num. animated tracks 56 (11%) 77 (15%) 82 (16%) 87 (16%)

Raw size 147 KB 489 KB 232 KB 14498 KB

Compressed size 7 KB 15 KB 12 KB 521 KB

Compression ratio 20 : 1 32 : 1 19 : 1 28 : 1

Avg key frame size 314 B 194 B 325 B 233 B

Decompression (XB1) 28us 32us 33us 27us

Some concrete examples
Scramble Idle Walk Cinematic

Num. key frames 24 80 38 2291

Num. animated tracks 56 (11%) 77 (15%) 82 (16%) 87 (16%)

Raw size 147 KB 489 KB 232 KB 14498 KB

Compressed size 7 KB 15 KB 12 KB 521 KB

Compression ratio 20 : 1 32 : 1 19 : 1 28 : 1

Avg key frame size 314 B 194 B 325 B 233 B

Decompression (XB1) 28us 32us 33us 27us

Some concrete examples
Scramble Idle Walk Cinematic

Num. key frames 24 80 38 2291

Num. animated tracks 56 (11%) 77 (15%) 82 (16%) 87 (16%)

Raw size 147 KB 489 KB 232 KB 14498 KB

Compressed size 7 KB 15 KB 12 KB 521 KB

Compression ratio 20 : 1 32 : 1 19 : 1 28 : 1

Avg key frame size 314 B 194 B 325 B 233 B

Decompression (XB1) 28us 32us 33us 27us

Some concrete examples
Scramble Idle Walk Cinematic

Num. key frames 24 80 38 2291

Num. animated tracks 56 (11%) 77 (15%) 82 (16%) 87 (16%)

Raw size 147 KB 489 KB 232 KB 14498 KB

Compressed size 7 KB 15 KB 12 KB 521 KB

Compression ratio 20 : 1 32 : 1 19 : 1 28 : 1

Avg key frame size 314 B 194 B 325 B 233 B

Decompression (XB1) 28us 32us 33us 27us

Conclusion
● Sweet spot
● Very fast decompression
● Reasonably compact
● High accuracy
● Future proof

Conclusion
● Versatile
● Works out of the box
● Nothing to tweak
● No need for fallback alternative

Conclusion
● Simple
● Implemented in 20-25 days
● No maintenance
● Easy to build on and improve

Questions?

● Blog: http://nfrechette.github.io/

