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● Our special blend!



A bit of context
● The game engine used by Rise of the Tomb 

Raider (2015)

● Same compression algorithms since ~1996!
● Used in dozens of AAA titles
● Based on linear key reduction



A bit of context
+ Good size

- Slow decompression
- Sub-par accuracy
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● Cinematic clips
● Need high accuracy
● Size matters



The problem
● Cinematic clips
● Need high accuracy
● Size matters

● Ever higher need for accuracy
● 40% clips used weak compression
● Time is the enemy



The problem
● Legacy code not ideal
● Very old, aged poorly
● Not streaming friendly
● Nobody wants to get near it



Design goals
● Solve cinematics first
● Through streaming (if we need to)

● Keep it simple
● Time budget: 20 days



Design goals
● Fast decompression
● High accuracy



Design goals
● Best effort
● Small size
● Nothing to tweak
● Supersede everything



Most common algorithm families
● Signal processing
● Curve fitting
● Linear key reduction
● Simple key quantization



Signal processing
● E.g. wavelets
● Too complex
● See blog!



Curve fitting



Curve fitting
● Pros
● Sensible choice
● Very compact



Curve fitting
● Cons
● Not accessible
● Slower decompression
● Medium complexity
● Not great for mocap



Linear key reduction



Linear key reduction



Linear key reduction
● Pros
● Reasonably simple
● Reasonably compact
● Similar to legacy impl.



Linear key reduction
● Cons
● Similar to legacy impl.
● Slow decompression
● Not great for mocap



Simple quantization



Simple quantization
● Pros
● Dead simple
● Very fast
● Solid foundation



Simple quantization
● Cons
● Not very compact

● Good enough!



Our solution
● Range reduction
● Uniform segmenting
● Constant tracks
● Quantization



Range reduction
● Tracks in terms of ranges
● E.g. my elbow rotates by 120° in a clip
● Theoretical range: 360°
● Effective range: 120°



Range reduction



Range reduction



Range reduction
● Some overhead
● Range Minimum
● Range Extent

● Normalizes our values
● Range expansion is trivial
● (normalized value * extent) + min



Range reduction
● 6 scalar values = full track range
● 3 components * (min, extent)

● Clip metadata
● 6x floats = 24 bytes
● per animated track



Range reduction
● More accuracy => can be more lossy
● Bad for short clips

● Worth it!



Uniform Partitioning
● Split clips in blocks of 16 key frames
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Uniform Partitioning
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● Fast and easy seeking
● Easy streaming



Uniform Partitioning
● Split clips in blocks of 16 key frames
● Fast and easy seeking
● Easy streaming
● Range reduction per block



Uniform Partitioning
● Block metadata
● 6x 8 bit = 48 bits = 6 bytes
● per animated track

● Lossy normalization!!



Constant Tracks
● For our main characters (~3500 clips)
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Constant Tracks
● For our main characters (~3500 clips)
● Bones: 65% constant, 45% bind pose
● Tracks: 87% constant, 79% bind pose



Constant Tracks
● Per clip, 1 bit per track:
● Is it bind pose?
● Yes? Drop it!



Constant Tracks
● Per clip, 1 bit per track:
● Is it bind pose?
● Yes? Drop it!

● Per clip, 1 bit per track:
● Is it constant?
● Yes? Keep 1 key! (3x floats)



Quantization
● Hard coded, 16 bits
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Quantization
● Hard coded, 16 bits
● Best common rate per clip
● Best rot/trans/scale rate per clip
● Best rot/trans/scale rate per block
● Best individual track rate per block



Variable bit rate
● Ideal for:
● Hierarchical data
● Exotic tracks
● Temporal coherence
● Everything!



Quantization details
● 16 possible bit rates

● Bit rates: 0, 3, 4, .., 16, 23



Quantization details
● 23 was a bad & naïve choice
● Same as float mantissa minus sign bit



Quantization details
● 23 was a bad & naïve choice
● Same as float mantissa minus sign bit
● De-quantization requires our integer to be 

representable as a floating point number



Quantization details
● 23 was a bad & naïve choice
● Same as float mantissa minus sign bit
● De-quantization requires our integer to be 

representable as a floating point number
● 32 bit float = 6 significant digits L



Quantization details
● 23 was a bad & naïve choice
● Same as float mantissa minus sign bit
● De-quantization requires our integer to be 

representable as a floating point number
● 32 bit float = 6 significant digits L
● 19 might be a better choice, measure!



Quantization details
● 0 => track is constant in block
● We don’t need range information



Quantization details
● 0 => track is constant in block
● We don’t need range information
● Store our constant key instead!



Compression
● Almost everything is fairly trivial
● Only complex step is bit rate selection



Compression
● Almost everything is fairly trivial
● Only complex step is bit rate selection
● Measuring accuracy
● Need a smart heuristic



Measuring accuracy
● Important!
● Our algorithm iterates with it
● We compare our results to others with it



Measuring accuracy
● Important!
● Our algorithm iterates with it
● We compare our results to others with it

● Often overlooked and poorly 
implemented!



Measuring accuracy
● Three important criteria:
● Account for hierarchy
● Account for aggregate transform
● Account for visual mesh



Measuring accuracy
● Hierarchy is important!
● Error accumulates down hierarchy
● Don’t use local space metrics!
● Use object space



Measuring accuracy
● Aggregate error is important!
● Don’t measure error with leaf bone position
● It ignores rotation/scale contribution!



Measuring accuracy
● Skeleton error != visual mesh error
● Skeleton is never visible, visual mesh is
● With rotation & scale, error increases with 

distance from bone



Measuring accuracy



Measuring accuracy
● Vertex displacement on the visual mesh 

is the true measure of accuracy
● Skinning == metric function
● Satisfies all 3 criteria



Measuring accuracy
● But…
● It is way too slow
● Mesh information might not be available
● Some bones have no skinned vertices



Measuring accuracy
● Use virtual vertices instead!
● Approximates skinning
● Satisfies all 3 criteria
● Intuitive tweaking: distance from bone
● Output is object space displacement error



Measuring accuracy
● We use:
● 3 cm for normal bones
● 1 m for high accuracy bones



Bit Rate Selection
● Huge search space!
● Need smart heuristic
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● First pass finds an approximate solution



Bit Rate Selection
● Huge search space!
● Need smart heuristic

● First pass finds an approximate solution
● Second pass refines to local minimum



Bit Rate Selection
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Bit Rate Selection



Bit Rate Selection



Bit Rate Selection



Bit Rate Selection



Bit Rate Selection



Bit Rate Selection
● We minimize the bit rate
● We maximize the error

● Threshold is important!
● 1 mm is too high



Bit Rate Selection
● Hardcoded threshold: 0.1 mm
● Sub-millimeter accuracy!



The results
● Aggregated
● Concrete examples



Aggregate Results
● 3900 clips (various characters)
● Compression time:
● 3.2 hours, single threaded
● 10 minutes, multi threaded

● Sum of clip lengths:
● 5.4 hours @ 30 FPS



Aggregate Results
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Aggregate Results
● Total size on disk: 168.4 MB
● Legacy size: 300.0 MB

● Average number of animated tracks:
● 56.0 per clip



Aggregate Results



Aggregate Results



Raw Clip Size
● Compression ratio is meaningless

● Unless raw size is consistent!



Raw Clip Size

● Raw size =
# key frames * # bones * 36 bytes



Raw Clip Size
● 1 track key = 3 floats = 12 bytes
● 1 bone key = 3 track keys = 36 bytes
● 1 key frame with 140 bones = 140 bone 

keys = 4.9 KB
● 30 key frames = 147.7 KB











Some concrete examples
Scramble Idle Walk Cinematic

Num. key frames 24 80 38 2291

Num. animated tracks 56 (11%) 77 (15%) 82 (16%) 87 (16%)

Raw size 147 KB 489 KB 232 KB 14498 KB

Compressed size 7 KB 15 KB 12 KB 521 KB

Compression ratio 20 : 1 32 : 1 19 : 1 28 : 1

Avg key frame size 314 B 194 B 325 B 233 B

Decompression (XB1) 28us 32us 33us 27us
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Some concrete examples
Scramble Idle Walk Cinematic

Num. key frames 24 80 38 2291

Num. animated tracks 56 (11%) 77 (15%) 82 (16%) 87 (16%)

Raw size 147 KB 489 KB 232 KB 14498 KB

Compressed size 7 KB 15 KB 12 KB 521 KB

Compression ratio 20 : 1 32 : 1 19 : 1 28 : 1

Avg key frame size 314 B 194 B 325 B 233 B

Decompression (XB1) 28us 32us 33us 27us



Conclusion
● Sweet spot
● Very fast decompression
● Reasonably compact
● High accuracy
● Future proof



Conclusion
● Versatile
● Works out of the box
● Nothing to tweak
● No need for fallback alternative



Conclusion
● Simple
● Implemented in 20-25 days
● No maintenance
● Easy to build on and improve



Questions?

● Blog: http://nfrechette.github.io/


