
● Cold, Hard Cache 
Insomniac Games’ Cache Simulator

● Andreas Fredriksson 
Lead Engine Programmer, Insomniac Games

Hi, I’m Andreas

● I lead the Core tools and infrastructure team at Insomniac

Hi, I’m Andreas

● I lead the Core tools and infrastructure team at Insomniac
● Today’s topic: Insomniac Games’ CacheSim

● Custom tooling for measuring cache effectiveness

Hi, I’m Andreas

● I lead the Core tools and infrastructure team at Insomniac
● Today’s topic: Insomniac Games’ CacheSim

● Custom tooling for measuring cache effectiveness

● Excited to be open sourcing this and sharing with you all today

Cache and memory sizes, visually

Cache and memory sizes, visually

4GB DRAM

Cache and memory sizes, visually

2 MB L24GB DRAM

Cache and memory sizes, visually

2 MB L24GB DRAM 64 KB L1

Cache and memory sizes, visually

2 MB L24GB DRAM 64 KB L1

Cache, memory access speeds in cycles
Chart Title

Speed

0 75 150 225 300

3

25

220

DRAM L2 D1

Background

● Cache orders of magnitude faster and smaller than RAM
● What you put into them makes a huge difference

Background

● Cache orders of magnitude faster and smaller than RAM
● What you put into them makes a huge difference

● Memory operations are extremely easy to add to a program
● Costs are hidden and non-obvious

Background

● Cache orders of magnitude faster and smaller than RAM
● What you put into them makes a huge difference

● Memory operations are extremely easy to add to a program
● Costs are hidden and non-obvious

● We desperately need actionable data on access patterns
● Not a wealth of options for the performance-aware programmer

Sampling profilers

● They’ve basically won – most profilers are sample based
● Great for many workflows

● Leverage CPU features to gather HW stats about cache

Sampling profilers

● They’ve basically won – most profilers are sample based
● Great for many workflows

● Leverage CPU features to gather HW stats about cache

● Limitation: Only every N instructions are sampled (N is large)

Sampling profilers

● They’ve basically won – most profilers are sample based
● Great for many workflows

● Leverage CPU features to gather HW stats about cache

● Limitation: Only every N instructions are sampled (N is large)
● Not ideal for smaller, “bursty” workloads

● Statistical means less reproducible for smaller things

● Point you in the right direction, but that’s about it

Outside the sampling space

● Cachegrind – part of Valgrind
● Simulate a cache based on the program’s instruction stream

Outside the sampling space

● Cachegrind – part of Valgrind
● Simulate a cache based on the program’s instruction stream

● Pros:
● Extremely thorough – every memory access is simulated

Outside the sampling space

● Cachegrind – part of Valgrind
● Simulate a cache based on the program’s instruction stream

● Pros:
● Extremely thorough – every memory access is simulated

● Cons:
● Linux only
● All or nothing
● Extremely slow to get to a point of interest

Outside the sampling space

● Cachegrind – part of Valgrind
● Simulate a cache based on the program’s instruction stream

● Pros:
● Extremely thorough – every memory access is simulated

● Cons:
● Linux only
● All or nothing
● Extremely slow to get to a point of interest

● Also – a vendor-specific tool from prevgen was awesome
● Could do simulated captures on demand for a short time

Why you want cache simulation tooling
void PushBuffer::SetTextureAssets(uint32_t start_slot, uint32_t slot_count,
 const TextureAsset** textures_assets, uint32_t slot_mask, uint32_t hq_mask)
{
 // …
 for(uint32_t itex = 0; itex < slot_count; ++itex, tex_unit_test <<= 1)
 {
 Texture const* tex = (slot_mask & tex_unit_test) ? textures_assets[itex]->GetTexture() : NULL;
 // …
 if(tex != NULL)
 {
 view = (textures_assets[itex]->GetFormatFlags() & TextureFormatFlags::kIsCube) ? tex->m_View : tex->m_ViewArray;
 samp = (hq_mask & tex_unit_test) ? textures_assets[itex]->GetAnisoSampler() : tex->m_SamplerState;
 }
 // …

Why you want cache simulation tooling
void PushBuffer::SetTextureAssets(uint32_t start_slot, uint32_t slot_count,
 const TextureAsset** textures_assets, uint32_t slot_mask, uint32_t hq_mask)
{
 // …
 for(uint32_t itex = 0; itex < slot_count; ++itex, tex_unit_test <<= 1)
 {
 Texture const* tex = (slot_mask & tex_unit_test) ? textures_assets[itex]->GetTexture() : NULL;
 // …
 if(tex != NULL)
 {
 view = (textures_assets[itex]->GetFormatFlags() & TextureFormatFlags::kIsCube) ? tex->m_View : tex->m_ViewArray;
 samp = (hq_mask & tex_unit_test) ? textures_assets[itex]->GetAnisoSampler() : tex->m_SamplerState;
 }
 // …

2800 L2 misses in a frame

It’s the small things

● A member had moved cache lines
● Accessing the 16-bit FormatFlags field was

now a guaranteed L2 miss

//HOT: Cache Line 1
Texture m_Texture;
TextureAsset* m_Default;

uint32_t m_ResidentSize;
uint32_t m_StreamSize;

uint32_t m_AnisoSamplerIndex;
... other fields...

// COLD: Cache Line 2
 
uint16_t m_FormatFlags;
uint16_t m_Flags;

int16_t m_TopHeight;
int16_t m_TopWidth;
... other fields ...

It’s the small things

● A member had moved cache lines
● Accessing the 16-bit FormatFlags field was

now a guaranteed L2 miss

//HOT: Cache Line 1
Texture m_Texture;
TextureAsset* m_Default;

uint32_t m_ResidentSize;
uint32_t m_StreamSize;

uint32_t m_AnisoSamplerIndex;
... other fields...

// COLD: Cache Line 2
 
uint16_t m_FormatFlags;
uint16_t m_Flags;

int16_t m_TopHeight;
int16_t m_TopWidth;
... other fields ...

It’s the small things

● A member had moved cache lines
● Accessing the 16-bit FormatFlags field was

now a guaranteed L2 miss

● Fix: Literally swap two lines in header

//HOT: Cache Line 1
Texture m_Texture;
TextureAsset* m_Default;

uint32_t m_ResidentSize;
uint32_t m_StreamSize;

uint32_t m_AnisoSamplerIndex;
... other fields...

// COLD: Cache Line 2
 
uint16_t m_FormatFlags;
uint16_t m_Flags;

int16_t m_TopHeight;
int16_t m_TopWidth;
... other fields ...

It’s the small things

● A member had moved cache lines
● Accessing the 16-bit FormatFlags field was

now a guaranteed L2 miss

● Fix: Literally swap two lines in header

● 150-250 us savings depending on view

//HOT: Cache Line 1
Texture m_Texture;
TextureAsset* m_Default;

uint32_t m_ResidentSize;
uint32_t m_StreamSize;

uint32_t m_AnisoSamplerIndex;
... other fields...

// COLD: Cache Line 2
 
uint16_t m_FormatFlags;
uint16_t m_Flags;

int16_t m_TopHeight;
int16_t m_TopWidth;
... other fields ...

It’s the small things

● A member had moved cache lines
● Accessing the 16-bit FormatFlags field was

now a guaranteed L2 miss

● Fix: Literally swap two lines in header

● 150-250 us savings depending on view
● Time investment: 30 minutes

//HOT: Cache Line 1
Texture m_Texture;
TextureAsset* m_Default;

uint32_t m_ResidentSize;
uint32_t m_StreamSize;

uint32_t m_AnisoSamplerIndex;
... other fields...

// COLD: Cache Line 2
 
uint16_t m_FormatFlags;
uint16_t m_Flags;

int16_t m_TopHeight;
int16_t m_TopWidth;
... other fields ...

More reasons you want cache tooling

● Small utilities miss cache a lot sometimes
● Vec3 SceneObject::GetPosition() { return m_ObjToWorld.v[3]; }

More reasons you want cache tooling

● Small utilities miss cache a lot sometimes
● Vec3 SceneObject::GetPosition() { return m_ObjToWorld.v[3]; }

● Can’t optimize a single return statement! /tableflip
● But you can optimize callers of that function to be less naïve

More reasons you want cache tooling

● Small utilities miss cache a lot sometimes
● Vec3 SceneObject::GetPosition() { return m_ObjToWorld.v[3]; }

● Can’t optimize a single return statement! /tableflip
● But you can optimize callers of that function to be less naïve

● Need to track call stacks as well, pass blame up the stack

More reasons you want cache tooling

● Small utilities miss cache a lot sometimes
● Vec3 SceneObject::GetPosition() { return m_ObjToWorld.v[3]; }

● Can’t optimize a single return statement! /tableflip
● But you can optimize callers of that function to be less naïve

● Need to track call stacks as well, pass blame up the stack

● Found that 12k out of 14k misses in GetPosition() came from
one gameplay system ☺

Who’s calling SceneObject::GetPosition() with cold data?

 uint32_t num_groups = 0;
 // Get a ton of stuff to work on
 ComponentHandle *groups = g_PlacedPedestrianSystem.GetGroups(num_groups);

 for (uint32_t idx = 0; idx < num_groups; ++idx)
 {
 PlacedPedestrianGroup *group = (PlacedPedestrianGroup*)groups[idx].Resolve();
 if(!group)
 continue;

 const Vec3 &group_pos = group->GetActorPosition();
 // ...
 }

Who’s calling SceneObject::GetPosition() with cold data?

 uint32_t num_groups = 0;
 // Get a ton of stuff to work on
 ComponentHandle *groups = g_PlacedPedestrianSystem.GetGroups(num_groups);

 for (uint32_t idx = 0; idx < num_groups; ++idx)
 {
 PlacedPedestrianGroup *group = (PlacedPedestrianGroup*)groups[idx].Resolve();
 if(!group)
 continue;

 const Vec3 &group_pos = group->GetActorPosition();
 // ...
 }

~12,000 L2 misses in a frame

Don’t ask about things you already know

● About 1 ms/frame on PC
● Thousands of (random order) items being processed every frame

Don’t ask about things you already know

● About 1 ms/frame on PC
● Thousands of (random order) items being processed every frame

● Digging in: They never move

Don’t ask about things you already know

● About 1 ms/frame on PC
● Thousands of (random order) items being processed every frame

● Digging in: They never move

● Fix: Keep local cache of positions in parallel array
● Avoiding the GetPosition() call entirely

Don’t ask about things you already know

● About 1 ms/frame on PC
● Thousands of (random order) items being processed every frame

● Digging in: They never move

● Fix: Keep local cache of positions in parallel array
● Avoiding the GetPosition() call entirely

● Result: 650 us/frame saved

Don’t ask about things you already know

● About 1 ms/frame on PC
● Thousands of (random order) items being processed every frame

● Digging in: They never move

● Fix: Keep local cache of positions in parallel array
● Avoiding the GetPosition() call entirely

● Result: 650 us/frame saved
● Time investment: 2 hours

Instructions, instructions

● All the data we want is right there, in the instruction stream
● We "just" need a way to look at each instruction as it executes

Instructions, instructions

● All the data we want is right there, in the instruction stream
● We "just" need a way to look at each instruction as it executes

● Plan:
● Flip a switch upon reaching a point of interest

● Trace every instruction (somehow)

● Update a simulated cache for each memory access

● Turn off trace (say at end of frame) & report!

Instructions, instructions

● All the data we want is right there, in the instruction stream
● We "just" need a way to look at each instruction as it executes

● Plan:
● Flip a switch upon reaching a point of interest

● Trace every instruction (somehow)

● Update a simulated cache for each memory access

● Turn off trace (say at end of frame) & report!

● But how?

Where to start?

● First: It really helps to have an
understanding boss

Where to start?

● First: It really helps to have an
understanding boss

Where to start?

● First: It really helps to have an
understanding boss

● Pitched 2 week project to dig in..
● Subject: “I can see crazy town from here”

Where to start?

● First: It really helps to have an
understanding boss

● Pitched 2 week project to dig in..
● Subject: “I can see crazy town from here”

● Approved!
● Ok, let’s start pitching a tent outside crazy town

Reasoning about instructions

● Binary instrumentation frameworks exist (off the shelf)
● DynamoRIO, Intel PIN, others

Reasoning about instructions

● Binary instrumentation frameworks exist (off the shelf)
● DynamoRIO, Intel PIN, others

● Quickly discarded this approach
● Massive performance problems instrumenting a AAA game executable

Reasoning about instructions

● Binary instrumentation frameworks exist (off the shelf)
● DynamoRIO, Intel PIN, others

● Quickly discarded this approach
● Massive performance problems instrumenting a AAA game executable

● Could have value for other things in our space
● More guided dynamic instrumentation without code changes

● “How often is this value zero at this spot?”

● “What are the min/max input values to this function?”

Idea #1

● Somehow write void TraceFunction(func_ptr)

Idea #1

● Somehow write void TraceFunction(func_ptr)
● Somehow, for each instruction:

● Disassemble the instruction

● Find memory derefs, update a simulated cache

● Copy instruction to temp buffer, run in isolation

● Sounds easy!

Idea #1 – not going anywhere

● Branches need to be special handled

Idea #1 – not going anywhere

● Branches need to be special handled
● Implicit uses of RIP (instruction pointer) are everywhere

Idea #1 – not going anywhere

● Branches need to be special handled
● Implicit uses of RIP (instruction pointer) are everywhere
● Win64 exception handling has rules we're violating

● OutputDebugString uses exceptions..

Idea #1 – not going anywhere

● Branches need to be special handled
● Implicit uses of RIP (instruction pointer) are everywhere
● Win64 exception handling has rules we're violating

● OutputDebugString uses exceptions..

● Super intrusive – need a top-level call to our trace function
● On every thread

Suddenly: EFLAGS

Suddenly: EFLAGS

Idea #2: Leveraging EFLAGS

● Single stepping is a CPU feature
● It’s how F11 in the debugger works

● Set TRAP bit in EFLAGS

Idea #2: Leveraging EFLAGS

● Single stepping is a CPU feature
● It’s how F11 in the debugger works

● Set TRAP bit in EFLAGS

● Routes as an exception through the Windows SEH machinery
● You can install a handler for it!

Idea #2: Leveraging EFLAGS

● Single stepping is a CPU feature
● It’s how F11 in the debugger works

● Set TRAP bit in EFLAGS

● Routes as an exception through the Windows SEH machinery
● You can install a handler for it!

● But how do you install SEH handlers for all threads?
● Vectored exception handlers

Revised plan of attack

● To start tracing:
● Install a VEH to filter TRAP exceptions
● Set TF EFLAGS bit for all threads we want to capture

Revised plan of attack

● To start tracing:
● Install a VEH to filter TRAP exceptions
● Set TF EFLAGS bit for all threads we want to capture

● In the handler:
● Disassemble instruction, find memory operands
● Update cache simulation
● Re-set the TF bit before leaving to keep tracing

Revised plan of attack

● To start tracing:
● Install a VEH to filter TRAP exceptions
● Set TF EFLAGS bit for all threads we want to capture

● In the handler:
● Disassemble instruction, find memory operands
● Update cache simulation
● Re-set the TF bit before leaving to keep tracing

● To stop tracing:
● Set some flag and (ultimately) remove the VEH

Every plan has problems

● Good news: It basically works

Every plan has problems

● Good news: It basically works
● Problem #1: The debugger is really unhappy

● “What? You want to break in?”

● Solution: Run detached

Every plan has problems

● Good news: It basically works
● Problem #1: The debugger is really unhappy

● “What? You want to break in?”

● Solution: Run detached

● Problem #2: Massive amounts of deadlocks in ntdll.dll
● Hanging on contended SRW lock protecting the VEH dispatch list

● Threads waiting on wakeups for locks

● But no one owns the lock, so it can never wake up

Deadlock woes

● Using SEH way, way more than anyone had anticipated at MS
● Every thread, every instruction will exercise the exception handling

● Nothing was obviously wrong in the code

● Suspect problem is reentrantly messing with critical sections

Solution: Disable the locking code in ntdll

● VEH are an exotic feature, typically no handlers are installed
● This is a debugging feature, not something we’re shipping to players

● Just smash ntdll!RtlpCallVectoredHandlers with a jump to our handler

● It’s ugly, but it gets the job done
● Also: take no OS locks internally, just spinlocks

It works!

● We can inspect instructions one by one!

It works!

● We can inspect instructions one by one!
● Need a disassembler that knows about memory operands

● Radare2 fork of udis86 fit the bill

It works!

● We can inspect instructions one by one!
● Need a disassembler that knows about memory operands

● Radare2 fork of udis86 fit the bill

uintptr_t rip = ExcInfo->ContextRecord->Rip;

ud_set_input_buffer(ud, (const uint8_t*) rip, 16);
ud_set_pc(ud, rip);
int ilen = ud_disassemble(ud);
GenerateMemoryAccesses(core_index, ud, rip, ilen, ExcInfo->ContextRecord);

Generating memory accesses

● Easy, right? Just look at memory operands
● mov dword ptr [rax], ebx => write 4 bytes at rax

Generating memory accesses

● Easy, right? Just look at memory operands
● mov dword ptr [rax], ebx => write 4 bytes at rax

● Yeah, in theory..
● Lots of things in x64 have memory operands

● Some access memory and don’t have memory operands!

Lots of special cases to consider

● String instructions, e.g. LODSB, MOVSD (implicit RSI/RDI accesses)

● Stack push/pop

● CALL, RET (also write/read the stack respectively)

● LEA – super common, has mem operand but doesn’t touch memory

● Crazy “long nop” instructions can have memory operands

● FXSTOR/FXRSTOR

● Prefetches and non-temporal loads/stores

Poking the cache simulation

// Generate I-cache traffic.
CacheSim::AccessResult r = g_Cache.Access(core_index, rip, ilen, CacheSim::kCodeRead);
stats->m_Stats[r] += 1;

Poking the cache simulation

// Generate I-cache traffic.
CacheSim::AccessResult r = g_Cache.Access(core_index, rip, ilen, CacheSim::kCodeRead);
stats->m_Stats[r] += 1;

// Generate D-cache traffic.
for (int i = 0; i < read_count; ++i)
{
 CacheSim::AccessResult r = g_Cache.Access(core_index, reads[i].ea, reads[i].sz, CacheSim::kRead);
 stats->m_Stats[r] += 1;
}

Poking the cache simulation

// Generate I-cache traffic.
CacheSim::AccessResult r = g_Cache.Access(core_index, rip, ilen, CacheSim::kCodeRead);
stats->m_Stats[r] += 1;

// Generate D-cache traffic.
for (int i = 0; i < read_count; ++i)
{
 CacheSim::AccessResult r = g_Cache.Access(core_index, reads[i].ea, reads[i].sz, CacheSim::kRead);
 stats->m_Stats[r] += 1;
}

for (int i = 0; i < write_count; ++i)
{
 CacheSim::AccessResult r = g_Cache.Access(core_index, writes[i].ea, writes[i].sz, CacheSim::kWrite);
 stats->m_Stats[r] += 1;
}

Can model a set-assoc cache as a 2D array

Take apart input address:

0100011…1111101001…110011

S
et

s

Ways

Can model a set-assoc cache as a 2D array

Take apart input address:

0100011…1111101001…110011

S
et

s

Ways

ADDRESS ADDRESS ADDRESS …Locate the set

Can model a set-assoc cache as a 2D array

Take apart input address:

0100011…1111101001…110011

S
et

s

Ways

Compare addr against each
way to see if cached

ADDRESS ADDRESS ADDRESS …Locate the set

Simulating a Jaguar cache

● Console Jaguar has 2 modules
● Each modules has a shared L2, 4 cores

● Each core has its own D1, I1 caches

Simulating a Jaguar cache

● Console Jaguar has 2 modules
● Each modules has a shared L2, 4 cores

● Each core has its own D1, I1 caches

● Jaguar cache is inclusive (lines in D1/I1 must also exist in L2)

Simulating a Jaguar cache

● Console Jaguar has 2 modules
● Each modules has a shared L2, 4 cores

● Each core has its own D1, I1 caches

● Jaguar cache is inclusive (lines in D1/I1 must also exist in L2)
● Map our set associativity for our array structures

● I1: 512 lines (32 KB), 2 ways, 256 sets

● D1: 512 lines (32 KB), 8 ways, 64 sets

● L2: 32,768 lines (2 MB), 16 ways, 2,048 sets

Defining our caches

 // Simulating a Jaguar cache

 // size in byte | assoc
 using JaguarD1 = Cache< 32 * 1024, 8>; 
 using JaguarI1 = Cache< 32 * 1024, 2>;
 using JaguarL2 = Cache<2 * 1024 * 1024, 16>;

Defining our caches

 // Simulating a Jaguar cache

 // size in byte | assoc
 using JaguarD1 = Cache< 32 * 1024, 8>; 
 using JaguarI1 = Cache< 32 * 1024, 2>;
 using JaguarL2 = Cache<2 * 1024 * 1024, 16>;

 struct JaguarModule
 {
 JaguarD1 m_CoreD1[4]; // 4 cores per module, with private D1 & I1
 JaguarI1 m_CoreI1[4];
 JaguarL2 m_Level2; // A shared L2
 JaguarModule* m_OtherModule; // Pointer to other module for invalidations
 };

Updating the cache, in pseudocode
For each cache line accessed:

Updating the cache, in pseudocode
For each cache line accessed:

 If we're writing:
 Kick line out of every other core
 Kick line out of other module's L2

Updating the cache, in pseudocode
For each cache line accessed:

 If we're writing:
 Kick line out of every other core
 Kick line out of other module's L2

 Hit1 = Lookup+Record Line in D1/I1
 Hit2 = Lookup+Record Line in L2

Updating the cache, in pseudocode
For each cache line accessed:

 If we're writing:
 Kick line out of every other core
 Kick line out of other module's L2

 Hit1 = Lookup+Record Line in D1/I1
 Hit2 = Lookup+Record Line in L2

 If Hit1 && Hit2:
 return kL1Hit
 Else If Hit2:
 return kL2Hit
 Else:
 return kL2Miss

Running it

● Hook up trace machinery to keyboard shortcut in main loop
● Automatically disable at end of frame

Running it

● Hook up trace machinery to keyboard shortcut in main loop
● Automatically disable at end of frame

● Data collection takes about 2-3 minutes
● Depends on workload

Running it

● Hook up trace machinery to keyboard shortcut in main loop
● Automatically disable at end of frame

● Data collection takes about 2-3 minutes
● Depends on workload

● Stash results in binary file
● About 100-150 MB of data for our use case

Running it

● Hook up trace machinery to keyboard shortcut in main loop
● Automatically disable at end of frame

● Data collection takes about 2-3 minutes
● Depends on workload

● Stash results in binary file
● About 100-150 MB of data for our use case

● Game resumes running at full framerate after collection!
● Analyze dump offline

Analysis

● Stats collected are associated with an instruction
● Call stack is also captured, used to disambiguate

● Current stats captured by our setup:
● L1 hit (separate tracking of I1/D1)

● L2 hit

● L2 miss (tracks instruction/data separately – better than HW can!)

● # of explicit prefetches that hit D1 or L2

● #Instructions executed

Tooling – Flat profile of stats

Tooling – Top-down tree

Tooling – Reverse trees

Tooling – Source annotation

Tooling considerations

● Want to make "obviously bad" data pop
● Badness Factor = L2miss^2 / #instructions

● Worth investing in a bunch of different views
● Maximizes value by allowing more analysis on dumps

PushBuffer::SetTextureAssets revisited

PushBuffer::SetTextureAssets revisited

CacheSim Pros

● Gathers data for every memory access in the program
● Non-intrusive
● Non-encumbered
● Works on Windows

● Deeply instruments even graphics drivers, OS calls down to syscall level

● Open Source
● Can easily extend to more scenarios

CacheSim Cons

● Capture speed could be better
● Only works on Windows

● Can still simulate a Jaguar cache for console workflows (ignore OS stuff)

● Not 100% hardware accurate (and can’t be)
● Treats the CPU as an in-order CPU – no OOO scheduling

● Must use virtual addresses to index cache (minor issue)

● Array prefetchers not simulated (overly pessimistic about arrays)

● MESI/Store forwarding buffers/...

Future

● Hardware prefetch simulation
● Non-temporal store simulation
● Speeding up captures
● Extensions

Thanks + Q & A

● Special thanks:
● Mike Acton, Jonathan Adamczewski & Elan Ruskin
● Mark Cerny

● http://github.com/insomniacgames/ig-cachesim
● Play with it and submit your own improvements

● Get in touch
● afredriksson@insomniacgames.com
● @deplinenoise

mailto:afredriksson@insomniacgames.com

