
1

2

Basic explanation of film response to light.
Non-linear, captures wide range.
Looks nice.

Image credit: http://www.naturephotographers.net/articles0303/tw0303-4.gif
From http://www.naturephotographers.net/articles0303/tw0303-1.html

3

Games are realtime CG with no film to develop
But we do need to broadcast our games on TVs
These TVs have a limited range not dissimilar to film/slide projectors
So we have similar requirements to perform range reduction

Tonemapping is just range reduction, done in such a way to preserve detail outside the
display range.
Follow a similar process.
First we would expose the scene such that the most interesting parts are in the mid
tones.
Then tonemap the rest of the range to best fit into the upper/lower regions of the SDR.

4

Going to use this example image for our tests, screenshot from internal test level built
by Joacim Lunde
-Good contrast
-Wide dynamic range
-Some saturated colours
-Clearly suffering from lack of tonemapping in several parts (lights, hologram)

5

Example of four tonemappers:
Two simple (Reinhard & Exponential). Primarily a shoulder (affect brightest parts the
most, darkest parts the least).
Two filmic (Hejl/Burgess-Dawson & Hable). Toe and shoulder as well as contrast
changes.

6

Color grading is the act of applying a characteristic look to the scene
Still has its background in film, for example one could choose different film stock to
achieve a look
Or during film processing (developing the negative) one could perhaps change the
processing
e.g. bleach bypass is skipping the bleaching process which produces a higher contrast
‘silvery’ look.

With CG, we can do a lot more than this
-Change white balance or exposure
-Arbitrary color replacement or highlighting (Schindler's List)
-Orange and Teal (Michael Bay)
-”Fix it in post”

Image credit: http://www.drodd.com/images14/schindlers-list3.jpg
Image credit: https://pix-media.priceonomics-media.com/blog/892/trans.jpg

11

Image credit: http://zerowaste.co.in/img/products/tv-crt-curve.png

12

13

Now to cover our legacy grading pipeline

14

High level summary of the legacy pipeline.

15

16

17

18

19

20

21

Image credit: http://www.naturephotographers.net/articles0303/tw0303-4.gif
From http://www.naturephotographers.net/articles0303/tw0303-1.html

22

23

Question is – can this be made to work?
Yes, in many cases it can.
Tweak tonemap to capture ‘enough’ range to reverse, and compute reverse function.
Increase precision of render targets and grades to 10bit.
Use less extreme color grading, work within the limits.
Scale the UI during rendering to avoid the shoulder region that will be reversed.

Sucker Punch (team behind Infamous: Second Son) has done some nice blog posts
which cover this approach. See
http://www.glowybits.com/blog/2016/12/21/ifl_iss_hdr_1/
http://www.glowybits.com/blog/2017/01/04/ifl_iss_hdr_2/

24

Our approach was to go for a new, clean sheet implementation.

LUT space = a single distribution function optimized for grading once in a master HDR
space, regardless of connected TV or output tonemap.

25

Move all “look” workflow into a single place.
Grade once in a master space, regardless of connected TV/output dynamic range.
Remove UI from the equation, since lots of UI exists that would look different/incorrect
if we changed the way that was drawn.
Regarding “future proof”, the current HDR specification is bigger (in terms of luminance
range and color gamut) than any display can reproduce today.
By targeting the full specification, our games will look better when played on better TVs
in future, which reproduce more of the range we use.

26

27

https://www.blackmagicdesign.com/uk/products/davinciresolve
Image credit:
http://is3.mzstatic.com/image/thumb/Purple122/v4/04/cc/37/04cc3729-b79f-37f4-
c5e3-1b70a942a728/source/1200x630bf.jpg

28

Will explain the HDR/Dolby Vision differences in later slides

29

30

Going to use this example image for our tests, screenshot from internal test level built
by Joacim Lunde
-Good contrast
-Wide dynamic range
-Clearly suffering from lack of tonemapping in several parts (lights, hologram)
-This shot is the image naively converted to sRGB

31

Going to use this example image for our tests, screenshot from internal test level built
by Joacim Lunde
-Good contrast
-Wide dynamic range
-Clearly suffering from lack of tonemapping in several parts (lights, hologram)
-This shot is the display mapped image

32

Note lack of hue shifts in the shoulder region.
No toe, no contrast or “look” just very neutral.
Rest of image is unchanged.

33

https://www.dolby.com/us/en/technologies/dolby-vision/ICtCp-white-paper.pdf

34

Comparison with our Filmic (modified Hable) and our Display Mapper

Filmic is 1D and applied to each channel independently, has hue shifts.
This can all be tuned, but ultimately any non-linear 1D operator applied to color
channels will hue shift.
Want to make a bright blue sky? It will become cyan.

Display mapper is highly neutral, hue-preserving, does a good job of reproducing
artistic intent.

35

Comparison with our Filmic (modified Hable) and our Display Mapper

Filmic is 1D and applied to each channel independently, has hue shifts.
This can all be tuned, but ultimately any non-linear 1D operator applied to color
channels will hue shift.
Watch our for desaturated midtones (in our case, at least).
Want to make a bright orange sunset? It will become yellow.

Display mapper is highly neutral, hue-preserving, does a good job of reproducing
artistic intent.

36

Even though this was planned & we worked with several game teams to figure this out
and roll it out, there were a few gotchas along the way.

37

As mentioned at the start the SDR version gets brightened up by the TV, sometimes
massively.
We can play to this strength and under-expose the SDR version so, when brightened by
the TV, it looks OK again.
No this is not correct, and it does require some guesswork as to how bright the TV will
be.
Artists can configure this SDR Peak value so when working on calibrated monitors it is
accurate.
Assume SDR TV is 200 nits as a default, considering letting people tune this value at
home as well.

38

Many assets were authored to leverage the hue shifts that come from clipping color
channels.
Any color that contains multiple primaries will hue shift if it’s brightened and one
channel clips but the other doesn’t.
The ratios between the color channels fundamentally change at this point, changing
the color itself.

If you leverage this hue shift during asset authoring, then these effects long longer look
correct when you remove the hue shift.

39

This is a contrived example showing a fireball.
It’s an effect kindly shared by DICE but modified by me to highlight the issue in
question.

This fireball is authored using a single hue … lets call it ‘burnt orange’.
Burnt orange has little to no blue component, but does have a lot of red and some
green.
When over-exposed and fed into a tonemap that has a strong shoulder and/or simply
hitting the color channel clipping point, the rate of change of red slows quickly and
then clips but green does not.
As one keeps over-exposing, red moves slowly (or is stationary, if clipped) but green
keeps increasing, fundamentally changing the color from orange to yellow creating a
multi-hue effect.

When using a hue preserving shoulder, the authored hue is preserved and it looks
‘correct’ but that is now completely wrong.
This isn’t just the case for hue preserving shoulders though. If the original image were
displayed via HDR broadcast standards which have much higher color channel clipping
points, it would look wrong in HDR as well because the red channel simply wouldn’t
clip as quickly. So the effect would appear bright orange.
So the hue preserving shoulder in SDR actually highlights trouble in the content that
would be wrong in HDR.
This is quite a nice way to author HDR content (and find issues with existing content)
without needing an HDR display.

40

Main point of this – any bright effects will suffer.
Many are authored to leverage the hue shifts that come from clipping color channels
(red clips but green doesn’t -> effect increasingly becomes yellow as green increases).
These effects do not work well in HDR, as the clip point differs per TV (see notes on
previous slide).

Intent must be to author to HDR as the reference, which means the hue shifts must be
present in the artwork, not an artefact of the mapper.
Blackbody ‘simulation’ (temp based hue color lookup) to the rescue.
Iterate the display mapper to preserve saturation of medium/bright effects on SDR
devices.

Image credit: https://en.wikipedia.org/wiki/Black-body_radiation

41

Old asset with display mapping ON (no hue shifts) vs Display mapping ON and hue
shifts are correctly present in source asset

42

Old asset with display mapping OFF (hue shifts come from channels clipping) vs Display
mapping ON and hue shifts are correctly present in source asset

43

Hue preserving operator is also troublesome if you are trying to match a “look” that is
close to a certain film stock.
Must be able to do that.
Have started to work on re-adding hue shifts.
We’re not done yet, are still actively working on this.

44

Blackbody fire contained all the correct hues …
-See smaller circle

…were getting desaturated when very bright.
-See larger circle

Original display mapper on the left, small hue shifts (but massive improvement) on the
right.

45

Hue preserving on the left.
Re-introduction of some hue shifts on the right.

46

No display mapping (tonemap disabled) on the left, hue-shifting display mapper on the
right.
Even with some hue shifts, still dramatically better than no display map.

47

As mentioned, still not done.
Likely to offer a configurable implementation, that each game can dial in the amount of
hue shifting.
Really easy to do though (no re-grading etc) due to the wide HDR working space and
display mapping right at the end of the frame.

48

But what about ACES?

49

http://www.oscars.org/science-technology/sci-tech-projects/aces
Image credit:
http://www.oscars.org/sites/oscars/files/styles/hero_image_wide_default/public/aces
_main3.png?itok=inY3Kf2j

50

High level summary of the ACES pipeline.

IDT (Input Device Transform) transforms a known input space to the ACES working
space.
LMT (Look Modification Transform) is where one applies the grade & “look”
RRT (Reference Rendering Transform) is essentially a filmic tonemap (an S curve
applying a toe and shoulder)
ODT (Output Device Transform) is a per-display output transform to ensure consistent
results on that display.

51

52

Due to the fundamentally aligned approaches, there is nothing stopping us from
changing from our custom approach to ACES (ACEScc/cg in particular) in future, and all
grades can be automatically upgraded/converted since both spaces are known and
published. We can and will re-evaluate this in due course.

53

Now we look at some performance/quality tradeoffs.
For performance reasons we wanted to dynamically inject the display mapping into the
same LUT as the grading.
This has some implications that we investigate here.

54

For performance reasons we wanted to dynamically inject the display mapping into the
same LUT as the grading.
The order of operations of combining the display mapping at the end of the grading, is
the same as doing it at the start of the composition shader. It’s just “free” (aside from
the cost of injecting it into the grade, which is very cheap).

However, even with PQ distribution we have precision issues which masquerade as
mach banding.
Top image is analytical display mapper, middle is baked into the RGB LUT, bottom has
levels adjusted to highlight the differences.

Note: screenshot is from a level purchased from Evermotion, not authored by
Frostbite.

55

Show linear filtering turns curves into piecewise linear approximations of curves.
Looks OK in 1D, where only pairs of values contribute.
But our LUTs are volumes (3D).
The luma axis (greyscale from black to white) is a diagonal, so exactly half way between
texels 8 neighbors contribute equally.

Image credit: https://en.wikipedia.org/wiki/Piecewise_linear_function
Image credit: https://engineering.purdue.edu/~abe305/HTMLS/rgbspace.htm

56

Using a higher order filter should improve things.
E.g. move from trilinear to tricubic.
But the cost is expensive (additional dimension over 2D).
Early tests of high order filtering doubled the costs of our main post process pass
(which does a lot more than just grading) so it was immediately prohibitive.

Image credit: https://en.wikipedia.org/wiki/Bicubic_interpolation

57

But can use different spaces for the LUT. We don’t *have* to index by RGB …
In fact the display mapper is working in luma/chroma, so let’s try that.

Here’s RGB again as a reminder.

58

YCgCo – fastest decorrelated space (luma and chroma are separate).
Major improvement on RGB.

59

YCbCr – better than YCgCo

60

ICtCp – not as good as YCbCr but comparable to YCgCo.
It should be best since it natively matches our display mapping space, but reasons for
this will be explained later. Relates to color gamut.

61

Compare RGB to the three decorrelated spaces.

Decorrelated are all better in terms of luma than RGB.
Still using linear filtering but luma and chroma axis are aligned with cubemap axis now.
Luma-only ramps become 1D and touch fewer neighbours so the PLA artefacts are
reduced.

62

So this is a major improvement and allows use of linear filtering without obvious
artefacts.
But, will it impact the grades themselves, which are authored in RGB?

63

Again, we look at this test image.
By plotting each pixel into each LUT and tracking the coverage, we can easily compute
the LUT volume used, as a percentage of the total number of texels that exist in the
LUT.
Basically, more texels used = more precision for grading.

64

Ah.
Decorrelated spaces fundamentally touch fewer texels, which is likely to have an
impact on color grading accuracy 
ICtCp is better than either YCC format, but still not as accurate as RGB.

So today we have stuck with RGB (the visual artefacts are minimal, after all) but we are
continuing to investigate decorrelated spaces for the future.
Perhaps we will transform RGB into a decorrelated space in the offline pipeline, using
most appropriate high order filter.

65

66

Performance parity was needed with the legacy path in order to achieve quick
adoption. Performance timings from Xbox One as that was the slowest platform.

Legacy end-of-frame path:
Separable Resample from sRGB render target to 1080p backbuffer, via ESRAM transient
on XBox: 0.43ms (Xbox is slowest platform, so is the one we use for timings).
UI draw on top of backbuffer: Arbitrary, typically 0.2-0.3ms.

67

68

69

ESRAM used for both planes (intermediate & UI). Manual ESRAM management *
Also roughly doubles speed of UI rendering, reaping benefits not shown here.

* See “FrameGraph: Extensible Rendering Architecture” talk for how we are moving to
automatic ESRAM management

70

Not super relevant to HDR, this was simply an enabling change.
Moving from two to one pass reduced work and enabled significantly better
scheduling.
We use a thread layout optimized for the consoles and also for the linear tile modes
used for swapchain/scanout targets.
Use of the 1D vertical thread layout allowed us to use the scalar pipeline present in
GCN to obtain some of the filter weights for free.

71

Actually GCN doesn’t always clear all pixels
Maintains metadata for which pixels were written.
Before readback, performs a “Fast Clear Eliminate” (FCE) pass to write back the clear
color only to unwritten pixels.

Example CMASK screenshot shows typical in-game UI coverage. Red = pixels written.
Black = unwritten pixels that will need clearing.

72

No FCE, instead use a custom CMASK transcode from sub-tiles to a 32x1 bitmask
designed to be loaded via the scalar pipeline ‘for free’ on the final
resample/merge/displaymap pass.

73

No FCE, instead use a custom CMASK transcode from sub-tiles to a 32x1 bitmask
designed to be loaded via the scalar pipeline ‘for free’ on the final
resample/merge/displaymap pass.

74

All timings so far have been from the SDR version on base Xbox One, since base Xbox
One only supports SDR and SDR output will be the most common path for a while.
However, Xbox One S supports HDR10 and this incurs some additional costs to encode.
Xbox One S is faster though, so these overheads are well within the extra performance.

75

77

Two primary (but very similar) HDR standards; likely more are coming
Frostbite can and will target any standard that makes sense
* It is down to each game to negotiate licensing though so I can’t say anything
about specific games
Our display mapping “scanout shader” allows easy plugin of any format, it’s just
another encoding/mapping.

Image credit:
https://s.aolcdn.com/hss/storage/midas/e94dc10a6894b46ee659c6136fd7040c/2032
13453/dolbyvision.jpg
Image credit: http://edge.alluremedia.com.au/m/g/2016/01/ultra_hd_premium_2.jpg

78

Essentially:
Dolby Vision uses a custom encoded framebuffer.
One must generate dynamic metadata (e.g. Min/max/avg luminance) & send it up to
every frame to the TV.
Dolby build a custom display mapping for each panel to get the best from it, and
achieve standardization of look across displays.

Can’t go into any more details here, suggest contacting Dolby if you are interested in
supporting Dolby Vision.
https://www.dolby.com/us/en/technologies/dolby-vision/dolby-vision-white-paper.pdf

79

Game can look quite different on each HDR10 TV, due to lack of standardization across
manufacturers.

80

Lots of high level commonalities … try to support both.

81

82

Huge number of SDR devices out there.
HDR must not be worse than SDR!
HDR is the reference in Frostbite; SDR is just an artefact of the display mapper.
Recall that SDR TVs scale the image up in terms of gamut and luminance.
No real control over this, though having HDR in the engine and being able to map to
SDR helps get the best from each display.
This includes re-exposing the image as part of display mapping (under-expose it so that
the SDR TV can re-brighten it again).

83

84

HDR movies need work.
Right now we use SDR movies but have a few tricks to extract pseudo-HDR data from
them.
True HDR movies need increased storage, streaming, runtime playback costs of high bit
depth video.
But the main issue is one of needing wide color gamut support.

Image credit: http://www.bbc.co.uk/news/technology-37908975

85

Not “just” rendering – requires a collaboration with multiple parts of Frostbite (data
pipelines, import/export, UI, movies, textures, shaders, timeline editors etc – anything
with color data needs color management).
Specifically, challenge is related to maintaining and respecting the necessary gamut
metadata.
First need to assign and manage gamut on every ‘colour’ asset (textures, colours in
shader graphs or timelines, movies etc).
DCC packages may or may not support this; different approaches may be necessary to
manage import/edit/export.

Likely to start by upgrading the engine from the “TV back” – first step will be to
upgrade the color grading to wide gamut (likely 2020). ICtCp likely necessary for LUTs at
this point (see next slides).
Runtime gamut reduction necessary; again we expect to use ICtCp for hue linear
desaturation and fold it into the display mapper for free.

Image credit: http://www.acousticfrontiers.com/wp-
content/uploads/2016/03/Color_Gamut.png

86

And we’re back here again.
This is a reminder about the LUT accuracy of different spaces, but specifically calling
out that we’re currently working in the sRGB gamut.

87

In the future we want to support wider gamuts, so let’s test in 2020.
Aha. Not so good now.

RGB, YCgCo and YCbCr all nearly halve in accuracy/volume.
But ICtCp is natively wide gamut so stays the same, becoming more of a sensible
choice now.

88

89

It has been an interesting journey, and we’re not done yet.
Hopefully our experiences learnt, and this talk, can be of use to someone.

90

Special thanks and credit especially to Tomasz who is the author of our display mapper.

91

Contact me if you need:

afry@europe.ea.com
@TheFryster

92

mailto:afry@europe.ea.com
https://twitter.com/TheFryster
https://twitter.com/TheFryster

Note: this function is expensive.
This is why we bake it down into a LUT (ideally the same LUT we use for grading, to make it free).
This is the hue-preserving version used for screenshots in this article, it’s very ad-hoc but hopefully interesting to
play with.

float3 applyHuePreservingShoulder(float3 col)
{

float3 ictcp = RGBToICtCp(col);

// Hue-preserving range compression requires desaturation in order to achieve a natural look. We adaptively
desaturate the input based on its luminance.

float saturationAmount = pow(smoothstep(1.0, 0.3, ictcp.x), 1.3);
col = ICtCpToRGB(ictcp * float3(1, saturationAmount.xx));

// Only compress luminance starting at a certain point. Dimmer inputs are passed through without modification.
float linearSegmentEnd = 0.25;

// Hue-preserving mapping
float maxCol = max(col.x, max(col.y, col.z));
float mappedMax = rangeCompress(maxCol, linearSegmentEnd);
float3 compressedHuePreserving = col * mappedMax / maxCol;

// Non-hue preserving mapping
float3 perChannelCompressed = rangeCompress(col, linearSegmentEnd);

// Combine hue-preserving and non-hue-preserving colors. Absolute hue preservation looks unnatural, as bright
colors *appear* to have been hue shifted.

// Actually doing some amount of hue shifting looks more pleasing
col = lerp(perChannelCompressed, compressedHuePreserving, 0.6);

float3 ictcpMapped = RGBToICtCp(col);

// Smoothly ramp off saturation as brightness increases, but keep some even for very bright input
float postCompressionSaturationBoost = 0.3 * smoothstep(1.0, 0.5, ictcp.x);

// Re-introduce some hue from the pre-compression color. Something similar could be accomplished by delaying the
luma-dependent desaturation before range compression.

// Doing it here however does a better job of preserving perceptual luminance of highly saturated colors. Because
in the hue-preserving path we only range-compress the max channel,

// saturated colors lose luminance. By desaturating them more aggressively first, compressing, and then re-adding
some saturation, we can preserve their brightness to a greater extent.

ictcpMapped.yz = lerp(ictcpMapped.yz, ictcp.yz * ictcpMapped.x / max(1e-3, ictcp.x),
postCompressionSaturationBoost);

col = ICtCpToRGB(ictcpMapped);

return col;
}

93

// RGB with sRGB/Rec.709 primaries to ICtCp

float3 RGBToICtCp(float3 col)

{

col = RGBToXYZ(col);

col = XYZToLMS(col);

// 1.0f = 100 nits, 100.0f = 10k nits

col = linearToPQ(max(0.0.xxx, col), 100.0);

// Convert PQ-LMS into ICtCp. Note that the "S" channel is not used,

// but overlap between the cone responses for long, medium, and short wavelengths

// ensures that the corresponding part of the spectrum contributes to luminance.

float3x3 mat = float3x3(

0.5000, 0.5000, 0.0000,

1.6137, -3.3234, 1.7097,

4.3780, -4.2455, -0.1325

);

return mul(mat, col);

}

float3 ICtCpToRGB(float3 col)

{

float3x3 mat = float3x3(

1.0, 0.00860514569398152, 0.11103560447547328,

1.0, -0.00860514569398152, -0.11103560447547328,

1.0, 0.56004885956263900, -0.32063747023212210

);

col = mul(mat, col);

// 1.0f = 100 nits, 100.0f = 10k nits

col = PQtoLinear(col, 100.0);

col = LMSToXYZ(col);

return XYZToRGB(col);

}

94

// RGB with sRGB/Rec.709 primaries to CIE XYZ

float3 RGBToXYZ(float3 c)

{

float3x3 mat = float3x3(

0.4124564, 0.3575761, 0.1804375,

0.2126729, 0.7151522, 0.0721750,

0.0193339, 0.1191920, 0.9503041

);

return mul(mat, c);

}

float3 XYZToRGB(float3 c)

{

float3x3 mat = float3x3(

3.24045483602140870, -1.53713885010257510, -0.49853154686848090,

-0.96926638987565370, 1.87601092884249100, 0.04155608234667354,

0.05564341960421366, -0.20402585426769815, 1.05722516245792870

);

return mul(mat, c);

}

// Converts XYZ tristimulus values into cone responses for the three types of cones in the human

visual system, matching long, medium, and short wavelengths.

// Note that there are many LMS color spaces; this one follows the ICtCp color space specification.

float3 XYZToLMS(float3 c)

{

float3x3 mat = float3x3(

0.3592, 0.6976, -0.0358,

-0.1922, 1.1004, 0.0755,

0.0070, 0.0749, 0.8434

);

return mul(mat, c);

}

float3 LMSToXYZ(float3 c)

{

float3x3 mat = float3x3(

2.07018005669561320, -1.32645687610302100, 0.206616006847855170,

0.36498825003265756, 0.68046736285223520, -0.045421753075853236,

-0.04959554223893212, -0.04942116118675749, 1.187995941732803400

);

return mul(mat, c);

}

95

static const float PQ_constant_N = (2610.0 / 4096.0 / 4.0);

static const float PQ_constant_M = (2523.0 / 4096.0 * 128.0);

static const float PQ_constant_C1 = (3424.0 / 4096.0);

static const float PQ_constant_C2 = (2413.0 / 4096.0 * 32.0);

static const float PQ_constant_C3 = (2392.0 / 4096.0 * 32.0);

// PQ (Perceptual Quantiser; ST.2084) encode/decode used for HDR TV and grading

float3 linearToPQ(float3 linearCol, const float maxPqValue)

{

linearCol /= maxPqValue;

float3 colToPow = pow(linearCol, PQ_constant_N);

float3 numerator = PQ_constant_C1 + PQ_constant_C2*colToPow;

float3 denominator = 1.0 + PQ_constant_C3*colToPow;

float3 pq = pow(numerator / denominator, PQ_constant_M);

return pq;

}

float3 PQtoLinear(float3 linearCol, const float maxPqValue)

{

float3 colToPow = pow(linearCol, 1.0 / PQ_constant_M);

float3 numerator = max(colToPow - PQ_constant_C1, 0.0);

float3 denominator = PQ_constant_C2 - (PQ_constant_C3 * colToPow);

float3 linearColor = pow(numerator / denominator, 1.0 / PQ_constant_N);

linearColor *= maxPqValue;

return linearColor;

}

96

// Aplies exponential ("Photographic") luma compression

float rangeCompress(float x)

{

return 1.0 - exp(-x);

}

float rangeCompress(float val, float threshold)

{

float v1 = val;

float v2 = threshold + (1 - threshold) * rangeCompress((val - threshold) / (1 -

threshold));

return val < threshold ? v1 : v2;

}

float3 rangeCompress(float3 val, float threshold)

{

return float3(

rangeCompress(val.x, threshold),

rangeCompress(val.y, threshold),

rangeCompress(val.z, threshold));

}

97

