
Telling Reactive Stories in an Agent-Driven World







#G
oa

ls
• Quirky, emergent occurrences amongst the 

socially-simulated citizens.
• Occurrences that the system deems the most 

'interesting' to be displayed (and narrated 
through voiceover).
• Lego-like remixing of displayed script lines.
• Select “most interesting” occurrences for an end-

of-game summary for the player, complete with 
screenshots, to form a 'comic book' retrospective.

i.e. a system which can tell interesting stories, in 
real-time, in response to agent-driven behaviors.



Making implicit narrative explicit.



Two-part, discrete-but-cooperative solutions

•A modified Goal Oriented Action Planner for 
citizen behaviors and decision-making.

•A rule-based query system for context-aware 
dialog and response.



1. Goal Oriented Action Planner
(GOAP)



Goal Oriented Action Planner

• Discrete
• Modular
• Easy to iterate - add/remove 

actions & test.
• Satisfying variation of actions 

chosen depending on 
world/agent state (in theory!)

Get	rid	
of	

aliens

Get	a	
job

Sleep

Eat	
food

Feel	
happier



The most traditional GOAPs…
1. Planner has goals and actions.
2. Goal chosen based on dynamic 

weighting.
3. Regressive search to build sequence of 

actions which would lead to that goal.
4. Goal is solvable once it has found a 

final action where all its pre-requisites 
are already resolved.

5. Plan then reversed; actions carried out 
one at a time until the goal is reached.



There are always conditions…

• IS_IN_CONVERSATION
• HAS_JOB_AT_RESTAURANT
• IS_MANNING_WEAPON
• IS_RUNNING_AWAY

• Each action has a list of pre-requisites and effects 
based on registered list of conditions.



How we deviated from traditional GOAPs

• Dynamic Weighting
• Execution Contexts
• Futures/Promises



Dynamic Weighting

• Goal weight as a function of 
utility. 
• Once the goals are weighted, 

each goal is queried to see if it 
is currently resolvable. 
• Actions in chain can 

dynamically self-evaluate 
weight.
• A weight of zero or less removes 

the goal or action from 
consideration.



Execution Contexts

• Goals	and	actions	exist	in	certain	
contexts.
• Execution	Contexts	provide	scope	
for	goals/actions.
• Prevents	evaluating	rules	which	
can’t	be	resolved	at	current	time.	
• Easily	shape	expected	behaviour at	
any	particular	time.	
• ECs	work	as	a	stack	- unrolls	as	
contexts	are	popped	off	the	stack.



Execution Context - Example



Future Conditions and Broken Promises
• Futures system allows actions to be 

considered without resolving all the 
prerequisites themselves.
• i.e. a promise to get the pre-reqs

resolved by an action in future.
• Actions required to take on 

unresolved pre-reqs.
• Action only considered for futures if 

it resolves at least one of the pre-reqs
of current action.
• (Stops the actions from flip-flopping 

without furthering the goal.)



Challenges



But…

• There are actions such as find out where nearest pub is – which an 
NPC can do by either exploring, or asking someone nearby. 

• How do we keep track of what an NPC knows? How do they share 
knowledge about the world?



2. Rule-based Query System 
… for	context-aware dialog	and	

response
&	story	generation	system.



Overview

•Defining rules and 
responses, picked based on 
some criteria which needs 
to be met for the rule to 
execute. 

• Inspired by system in Left 
4 Dead (2012 AI Summit) 
…but we can execute 
tasks as well as dialogue.



Overview

•Managing citizen conversations, sharing 
information, and their associated animations.

•Narrating story events to do with particular 
game states.

•Picking most interesting game events to 
display at the end of a play through.



Overview

• Rule-based XML execution environment.
• These rules can be queried.
• Each rule has a number of criteria, which need to be 

satisfied.
• Rule criteria tested against query from most to least 

specific. 
•When rule passes, it triggers Rule Payload
• response, and a write-back section.



Parts of the Query System

•Rules	have:
• Concepts,	Who,	Criteria,	Rule	Payload

•Rule	payload	has:
•Writeback,	Response	Reference

•Response	has:
• Execution	Item(s):
• Say,	Dialog,	Audio,	Emote,	Story,	HandleData,	
Trigger/CancelExecutionContext,	NewQuery



Interconnected with GOAP

var response = GetResponseQuery("Ask
ForDirections");

response.Add("IsAQuestion", true);
response.Add("AskingAbout" + knowled
geInfo.BuildingType.ToString(), true);
response.Add("TargetBuildingType", kn
owledgeInfo.BuildingType.ToString());
StartQuery(response);

Kicked	off	from	a	generic	
“AskForBuildingLocation” 
action which passes along what 
type of building the NPC is 
interested in.



Easy Authoring of Rules/Responses for 
Quick Iteration and Accessibility



Example Rules and Responses:

<Rule Concept="AskForDirections"
Name="AskForDirections">

<Criteria>
<IsTrue>AskingAboutFood</IsTrue>

</Criteria>
<WriteBack>

<Once Expires="10" />
</WriteBack>
<Response>

AskForDirectionsFood
</Response>

</Rule>

<Response Key="AskForDirectionsFood">
<Phrase>Does {CityName}

have anywhere I can eat?</Phrase>
<Phrase>Hey {TheirName}, 

what's good to eat here?</Phrase>
<Phrase>Hi! I'm {MyName}. Where can

I find some food?</Phrase>
</Say>
<NewQuery>

<Concept>RespondToDirections</Concept>
<Target>Nearby50</Target>

</NewQuery>
</Response>



Example Rules and Responses:

<Rule Concept="RespondToDirections" Name="
RespondToDirectionsFoodLocation01">

<Criteria>
<IsTrue>AskingAboutFood</IsTrue>
<HasData Type="Knowledge">

Food
</HasData>

</Criteria>
<Response>

RespondToDirectionsFoodLocation
</Response>

</Rule>

<Response Key="RespondToDirectionsFoodLoc
ation">

<Say WaitForItem="true">
<Phrase>Check out this place!</Phrase>
<Phrase>Food? Over there!</Phrase>
<Phrase>Yes! Best food in {CityName}!<

/Phrase>
</Say>
<NewQuery>

<Concept>GetDirections</Concept>
<Target>Sender</Target>
<IncludeData Type="Knowledge">Food

</IncludeData>
</NewQuery>

</Response>



Example Rules and Responses:

<Response Key="GetDirections">
<Say WaitForItem="true">

<Phrase>Hey, Thanks!</Phrase>
<Phrase>Great! I'll check it out!</Phrase>
<Phrase>Thanks for the directions!</Phrase>
<Phrase>Thanks {TheirName}!</Phrase>
<Phrase>Thanks for the directions {TheirName}!</Phrase>

</Say>
<HandleData Process="Learn">Knowledge</HandleData>

</Response>







Mitu: @MituK
Alan: @alanhinchcliffe

littleinvasiontales.com


